1
|
LaCasse Z, Chivte P, Kress K, Seethi VDR, Bland J, Alhoori H, Kadkol SS, Gaillard ER. Enhancing saliva diagnostics: The impact of amylase depletion on MALDI-ToF MS profiles as applied to COVID-19. J Mass Spectrom Adv Clin Lab 2024; 31:59-71. [PMID: 38323116 PMCID: PMC10846328 DOI: 10.1016/j.jmsacl.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 12/19/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024] Open
Abstract
Introduction Human saliva contains a wealth of proteins that can be monitored for disease diagnosis and progression. Saliva, which is easy to collect, has been extensively studied for the diagnosis of numerous systemic and infectious diseases. However, the presence of amylase, the most abundant protein in saliva, can obscure the detection of low-abundance proteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-ToF MS), thus reducing its diagnostic utility. Objectives In this study, we used a device to deplete salivary amylase from water-gargle samples by affinity adsorption. Following depletion, saliva proteome profiling was performed using MALDI-ToF MS on gargle samples from individuals confirmed to have COVID-19 based on nasopharyngeal (NP) swab reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results The depletion of amylase led to increased signal intensities of various peaks and the detection of previously unobserved peaks in the MALDI-ToF MS spectra. The overall specificity and sensitivity after amylase depletion were 100% and 85.17%, respectively, for detecting COVID-19. Conclusion This simple, rapid, and inexpensive technique for depleting salivary amylase can reveal spectral diversity in saliva using MALDI-ToF MS, expose low-abundance proteins, and assist in establishing novel biomarkers for diseases.
Collapse
Affiliation(s)
- Zane LaCasse
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Prajkta Chivte
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| | - Kari Kress
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
- Thermo Fisher Scientific, Rockford, IL 61101, USA
| | | | - Joshua Bland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hamed Alhoori
- Departments of Computer Science, Northern Illinois University, DeKalb, IL 60115, USA
| | - Shrihari S. Kadkol
- Department of Pathology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Elizabeth R. Gaillard
- Departments of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA
| |
Collapse
|
2
|
You T, Jeong W, Lee H, Huh YS, Kim SM, Jeon TJ. A simple strategy for signal enhancement in lateral flow assays using superabsorbent polymers. Mikrochim Acta 2021; 188:364. [PMID: 34613450 DOI: 10.1007/s00604-021-05026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
To enhance the sensitivity of lateral flow assays (LFAs), a simple strategy is proposed using a nitrocellulose membrane modified with a superabsorbent polymer (SAP). SAP was incorporated into a nitrocellulose membrane for the flow control of detection probes. When absorbing aqueous solutions, SAP promoted the formation of biomolecule complexes to achieve up to a tenfold sensitivity improvement for the detection of human IgG. The assay time was optimized experimentally and numerically to within 20 min using this strategy. Moreover, fluid saturation in LFAs modified with SAP was mathematically simulated to better understand the underlying process, and molecular dynamics simulations were carried out to determine the effect of SAP. The proposed design was also applied to samples spiked with human immunoglobulin-depleted serum to test its applicability. The strategy presented is unique in that it preserves the characteristics of conventional LFAs, as it minimizes user intervention and is simple to manufacture at scale.
Collapse
Affiliation(s)
- Taeyeong You
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, South Korea.,Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, South Korea
| | - Woojin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, South Korea.,Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, South Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin, 16890, South Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, South Korea. .,Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, South Korea. .,Department of Biological Engineering, Inha University, Incheon, 22212, South Korea.
| | - Sun Min Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, South Korea. .,Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, South Korea. .,Department of Mechanical Engineering, Inha University, Incheon, 22212, South Korea.
| | - Tae-Joon Jeon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, South Korea. .,Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, South Korea. .,Department of Biological Engineering, Inha University, Incheon, 22212, South Korea.
| |
Collapse
|
3
|
Abstract
AbstractThe outbreak of new viral strains promotes advances in universal diagnostic techniques for detecting infectious diseases with unknown viral sequence. Long double-stranded RNA (dsRNA), a hallmark of infections, serves as a virus marker for prompt detection of viruses with unknown genomes. Here, we report on-chip paper electrophoresis for ultrafast screening of infectious diseases. Negatively charged RNAs pass through the micro and nanoscale pores of cellulose in order of size under an external electric field applied to the paper microfluidic channel. Quantitative separation of long dsRNA mimicking poly I:C was analyzed from 1.67 to 33 ng·μL−1, which is close to the viral dsRNA concentration in infected cells. This paper-based capillary electrophoresis chip (paper CE chip) can provide a new diagnostic platform for ultrafast viral disease detection at the point-of-care (POC) level.
Collapse
|