1
|
Zhang J, Zhu B, Zhang X, Peng Y, Li S, Han D, Ren S, Qin K, Wang Y, Zhou H, Gao Z. CLICK-FLISA Based on Metal-Organic Frameworks for Simultaneous Detection of Fumonisin B1 (FB1) and Zearalenone (ZEN) in Maize. BIOSENSORS 2024; 14:355. [PMID: 39056631 PMCID: PMC11275017 DOI: 10.3390/bios14070355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Mycotoxins are secondary products produced primarily by fungi and are pathogens of animals and cereals, not only affecting agriculture and the food industry but also causing great economic losses. The development of rapid and sensitive methods for the detection of mycotoxins in food is of great significance for livelihood issues. This study employed an amino-functionalized zirconium luminescent metal-organic framework (LOF) (i.e., UiO-66-NH2). Click chemistry was utilized to assemble UiO-66-NH2 in a controlled manner, generating LOF assemblies to serve as probes for fluorescence-linked immunoassays. The proposed fluoroimmunoassay method for Zearalenone (ZEN) and Fumonisin B1 (FB1) detection based on the UiO-66-NH2 assembled probe (CLICK-FLISA) afforded a linear response range of 1-20 μmol/L for ZEN, 20 μmol/L for FB1, and a very low detection limit (0.048-0.065 μmol/L for ZEN; 0.048-0.065 μmol/L for FB1). These satisfying results demonstrate promising applications for on-site quick testing in practical sample analysis. Moreover, the amino functionalization may also serve as a modification strategy to design luminescent sensors for other food contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yu Wang
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (J.Z.); (X.Z.); (Y.P.); (S.L.); (D.H.); (S.R.); (K.Q.)
| | - Huanying Zhou
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (J.Z.); (X.Z.); (Y.P.); (S.L.); (D.H.); (S.R.); (K.Q.)
| | - Zhixian Gao
- Military Medical Sciences Academy, Academy of Military Sciences, Tianjin 300050, China; (J.Z.); (X.Z.); (Y.P.); (S.L.); (D.H.); (S.R.); (K.Q.)
| |
Collapse
|
2
|
Zheng C, Dai P, You H, Xian Z, Su W, Wu S, Xing D, Sun C. A compact microfluidic laser-induced fluorescence immunoassay system using avalanche photodiode for rapid detection of alpha-fetoprotein. ANAL SCI 2024; 40:1239-1248. [PMID: 38598051 DOI: 10.1007/s44211-024-00553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Alpha-fetoprotein (AFP), commonly employed for early diagnosis of liver cancer, serves as a biomarker for cancer screening and diagnosis. Combining the high sensitivity and specificity of fluorescence immunoassay (FIA), developing a low-cost and efficient immunoassay system for AFP detection holds significant importance in disease diagnosis. In this work, we developed a miniaturized oblique laser-induced fluorescence (LIF) immunoassay system, coupled with a microfluidic PMMA/paper hybrid chip, for rapid detection of AFP. The system employed an avalanche photodiode (APD) as the detector, and implemented multi-level filtering in the excitation light channel using the dichroic mirror and optical trap. At first, we employed the Savitzky-Golay filter and baseline off-set elimination methods to denoise and normalize the original data. Then the cutoff frequency of the low-pass filter and the reverse voltage of the APD were optimized to enhance the detection sensitivity of the system. Furthermore, the effect of laser power on the fluorescence excitation efficiency was investigated, and the sampling time during the scanning process was optimized. Finally, a four-parameter logistic (4PL) model was utilized to establish the concentration-response equation for AFP. The system was capable of detecting concentrations of AFP standard solution within the range of 1-500 ng/mL, with a detection limit of 0.8 ng/mL. The entire immunoassay process could be completed within 15 min. It has an excellent potential for applications in low-cost portable diagnostic instruments for the rapid detection of biomarkers.
Collapse
Affiliation(s)
- Chaowen Zheng
- College of Mechanics, Guangxi University, 100 East University Road, Nanning, 530004, Guangxi, China
| | - Peng Dai
- College of Mechanics, Guangxi University, 100 East University Road, Nanning, 530004, Guangxi, China
| | - Hui You
- College of Mechanics, Guangxi University, 100 East University Road, Nanning, 530004, Guangxi, China
| | - Zhaokun Xian
- College of Mechanics, Guangxi University, 100 East University Road, Nanning, 530004, Guangxi, China
| | - Wenyun Su
- College of Medical, Guangxi University, 100 East University Road, Nanning, 530004, Guangxi, China
| | - Shixiong Wu
- College of Mechanics, Guangxi University, 100 East University Road, Nanning, 530004, Guangxi, China
| | - Dong Xing
- College of Mechanics, Guangxi University, 100 East University Road, Nanning, 530004, Guangxi, China
| | - Cuimin Sun
- College of Computer and Electronic Information, Guangxi University, 100 East University Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
3
|
Li B, Zhang L, Bai S, Jin J, Chen H. A brief overview of passive microvalves in microfluidics: Mechanism, manufacturing, and applications. BIOMICROFLUIDICS 2024; 18:021506. [PMID: 38659429 PMCID: PMC11037934 DOI: 10.1063/5.0188807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Microvalves play a crucial role in manipulating fluid states within a microfluidic system and are finding widespread applications in fields such as biology, medicine, and environmental preservation. Leveraging the characteristics and features of microvalves enables the realization of various complicated microfluidic functions. Continuous advancement in the manufacturing process contributes to more flexible control modes for passive microvalves. As a consequence, these valves are progressively shrinking in size while simultaneously improving in precision and stability. Although active microvalves have the benefits of low leakage, rapid response time, and wide adaptability range, the energy supply system limits the size and even their applicability in integration and miniaturization. In comparison, passive microvalves have the advantage of relying solely on the fluid flow or fluid driving pressure to control the open/close of fluid flow over active microvalves, in spite of having slightly reduced control accuracy. Their self-sustaining feature is highly consistent with the need for assembly and miniaturization in the point-of-care testing technology. Hence, these valves have attracted significant interest for research and application purposes. This review focuses on the recent literature on passive microvalves and details existing passive microvalves from three different aspects: operating principle, processing method, and applications. This work aims to increase the visibility of passive microvalves among researchers and enhance their comprehension by classifying them according to the aforementioned three aspects, facilitating the practical applications and further developments of passive microvalves. Additionally, this paper is expected to serve as a comprehensive and systematic reference for interdisciplinary researchers that intend to design related microfluidic systems.
Collapse
Affiliation(s)
- Bin Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Ludan Zhang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Siwei Bai
- Authors to whom correspondence should be addressed:; ; and . Tel.: +86 755 8615 3249
| | - Jing Jin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| | - Huaying Chen
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
| |
Collapse
|
4
|
Park JH, Lee GY, Song Z, Bong JH, Kim HR, Kang MJ, Pyun JC. A vertically paired electrode for redox cycling and its application to immunoassays. Analyst 2023; 148:1349-1361. [PMID: 36857647 DOI: 10.1039/d2an01648f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
An electrochemical immunoassay based on the redox cycling method was presented using vertically paired electrodes (VPEs), which were fabricated using poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as an electrode material and parylene-C as a dielectric layer. For the application to immunoassays, different electrochemical properties of PEDOT:PSS were analyzed for the redox reaction of 3,3',5,5'-tetramethylbenzidine (TMB, the chromogenic substrate for enzyme-immunoassays) at different pH conditions, including the conductivity (σ), electron transfer rate constant (kapp), and double-layer capacitance (Cdl). The influencing factors on the sensitivity of redox cycling based on VPE based on PEDOT:PSS were analyzed for the redox reaction of TMB, such as the electrode gap and number of electrode pairs. Computer simulation was also performed for the redox cycling results based on VPEs, which had limitations in fabrication, such as VPEs with an electrode gap of less than 100 nm and more than five electrode pairs. Finally, the redox cycling based on VPE was applied to the medical diagnosis of human hepatitis-C virus (hHCV) using a commercial ELISA kit. The sensitivity of the redox cycling method for the medical diagnosis of hHCV was compared with conventional assay methods, such as TMB-based chromogenic detection, luminol-based chemiluminescence assay, and a rapid test kit (lateral flow immunoassay).
Collapse
Affiliation(s)
- Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Ga-Yeon Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea. .,Electronic Convergence Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju, Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Korea.
| |
Collapse
|
5
|
Lim JM, Supianto M, Kim TY, Kim BS, Park JW, Jang HH, Lee HJ. Fluorescent Lateral Flow Assay with Carbon Nanodot Conjugates for Carcinoembryonic Antigen. BIOCHIP JOURNAL 2023. [DOI: 10.1007/s13206-022-00093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Fabrication of a Cell-Friendly Poly(dimethylsiloxane) Culture Surface via Polydopamine Coating. MICROMACHINES 2022; 13:mi13071122. [PMID: 35888939 PMCID: PMC9315764 DOI: 10.3390/mi13071122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/24/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
In this study, we fabricated a poly(dimethylsiloxane) (PDMS) surface coated with polydopamine (PDA) to enhance cell adhesion. PDA is well known for improving surface adhesion on various surfaces due to the abundant reactions enabled by the phenyl, amine, and catechol groups contained within it. To confirm the successful surface coating with PDA, the water contact angle and X-ray photoelectron spectroscopy were analyzed. Human umbilical vein endothelial cells (HUVECs) and human-bone-marrow-derived mesenchymal stem cells (MSCs) were cultured on the PDA-coated PDMS surface to evaluate potential improvements in cell adhesion and proliferation. HUVECs were also cultured inside a cylindrical PDMS microchannel, which was constructed to mimic a human blood vessel, and their growth and performance were compared to those of cells grown inside a rectangular microchannel. This study provides a helpful perspective for building a platform that mimics in vivo environments in a more realistic manner.
Collapse
|
7
|
Park JH, Song Z, Bong JH, Kim HR, Kim MJ, Choi KH, Shin SS, Kang MJ, Lee DY, Pyun JC. Electrochemical One-Step Immunoassay Based on Switching Peptides and Pyrolyzed Carbon Electrodes. ACS Sens 2022; 7:215-224. [PMID: 34984905 DOI: 10.1021/acssensors.1c01998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Switching peptides were designed to bind reversibly to the binding pocket of antibodies (IgG) by interacting with frame regions (FRs). These peptides can be quantitatively released when antigens bind to IgG. As FRs have conserved amino acid sequences, switching peptides can be used as antibodies for different antigens and different source animals. In this study, an electrochemical one-step immunoassay was conducted using switching peptides labeled with ferrocene for the quantitative measurement of analytes. For the effective amperometry of the switching peptides labeled with ferrocene, a pyrolyzed carbon electrode was prepared by pyrolysis of the parylene-C film. The feasibility of the pyrolyzed carbon electrode for the electrochemical one-step immunoassay was determined by analyzing its electrochemical properties, such as its low double-layer capacitance (Cdl), high electron transfer rate (kapp), and wide electrochemical window. In addition, the factors influencing the amperometry of switching peptides labeled with ferrocene were analyzed according to the hydrodynamic radius, the number of intrahydrogen bonds, dipole moments, and diffusion coefficients. Finally, the applicability of the electrochemical one-step immunoassay for the medical diagnosis of the human hepatitis B surface antigen (hHBsAg) was assessed.
Collapse
Affiliation(s)
- Jun-Hee Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Zhiquan Song
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ji-Hong Bong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hong-Rae Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Moon-Ju Kim
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyung-Hak Choi
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Seung-Shick Shin
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Do Young Lee
- OPTOLANE Technologies Inc., 20 Pangyoyeok-ro 241beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13494, Republic of Korea
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Zhang Z, Cai F, Chen J, Luo S, Lin Y, Zheng T. Ion-selective electrode-based potentiometric immunoassays for the quantitative monitoring of alpha-fetoprotein by coupling rolling cycle amplification with silver nanoclusters. Analyst 2022; 147:4752-4760. [DOI: 10.1039/d2an01282k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports an ion-selective electrode-based potentiometric immunoassay for AFP detection coupling rolling cycle amplification with silver nanoclusters.
Collapse
Affiliation(s)
- Zhishan Zhang
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Fan Cai
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Jintu Chen
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Shimu Luo
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| | - Yao Lin
- Central Laboratory at the Second Affiliated Hospital of Fujian Traditional Chinese Medical University, Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Tingjin Zheng
- Department of Clinical Laboratory, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 36200, Fujian, China
| |
Collapse
|