1
|
Palit K, Das S. Cellulolytic potential of mangrove bacteria Bacillus haynesii DS7010 and the effect of anthropogenic and environmental stressors on bacterial survivability and cellulose metabolism. ENVIRONMENTAL RESEARCH 2024; 252:118774. [PMID: 38552827 DOI: 10.1016/j.envres.2024.118774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Cellulose degrading bacterial diversity of Bhitarkanika mangrove ecosystem, India, was uncovered and the cellulose degradation mechanism in Bacillus haynesii DS7010 under the modifiers such as pH (pCO2), salinity and lead (Pb) was elucidated in the present study. The abundance of cellulose degrading heterotrophic bacteria was found to be higher in mangrove sediment than in water. The most potential strain, B. haynesii DS7010 showed the presence of endoglucanase, exoglucanase and β-glucosidase with the maximum degradation recorded at 48 h of incubation, with 1% substrate concentration at 41 °C incubation temperature. Two glycoside hydrolase genes, celA and celB were confirmed in this bacterium. 3D structure prediction of the translated CelA and CelB proteins showed maximum similarities with glycoside hydrolase 48 (GH48) and glycoside hydrolase 5 (GH5) respectively. Native PAGE followed by zymogram assay unveiled the presence of eight isoforms of cellulase ranged from 78 kDa to 245 kDa. Among the stressors, most adverse effect was observed under Pb stress at 1400 ppm concentration, followed by pH at pH 4. This was indicated by prolonged lag phase growth, higher reactive oxygen species (ROS) production, lower enzyme activity and downregulation of celA and celB gene expressions. Salinity augmented bacterial metabolism up to 3% NaCl concentration. Mangrove leaf litter degradation by B. haynesii DS7010 indicated a substantial reduction in cellulolytic potential of the bacterium in response to the synergistic effect of the stressors. Microcosm set up with the stressors exhibited 0.97% decrease in total carbon (C%) and 0.02% increase in total nitrogen (N%) after 35 d of degradation while under natural conditions, the reduction in C and the increase in N were 4.05% and 0.2%, respectively. The findings of the study suggest the cellulose degradation mechanism of a mangrove bacterium and its resilience to the future consequences of environmental pollution and climate change.
Collapse
Affiliation(s)
- Krishna Palit
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
2
|
Malik WA, Javed S. Enhancement of cellulase production by cellulolytic bacteria SB125 in submerged fermentation medium and biochemical characterization of the enzyme. Int J Biol Macromol 2024; 263:130415. [PMID: 38403232 DOI: 10.1016/j.ijbiomac.2024.130415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Microbial diversity from indigenous cultures has the potential to accelerate lignocellulose degradation through enzymes and make composting economically feasible. Therefore, this study is designed to boost cellulase output from a bacterial strain obtained from soil using a one-variable-at-a-time approach and response surface methodology. The bacteria recognized as Bacillus tequilensis (ON754229) produced the maximum cellulase at a temperature of 37 °C, pH -7.0, and incubation time of 72 h. A major contribution was anticipated by glucose (17 %) and ammonium sulfate (11 %) with cellulase activity of 0.56 U/mL in the optimized medium. The enzyme possessed activity of CMCase, FPase, and amylase of 0.589 μmol/min, 1.22 μmol/min, and 0.92 μmol/min respectively. SDS-PAGE showed a 65 kDa molecular weight of the enzyme capable of degrading cellulose, as confirmed by zymogram analysis. The enzyme showed relatively moderate thermo-stability towards neutral pH conditions possessing optimum conditions at pH 6.5 and temperature of 50 °C. The Km and Vmax values were 11.44 mM and 0.643 μmol/min respectively. The presence of MgSO4, ZnSO4, and Triton X- 100 increased the enzymatic reaction however AgNO3, EDTA, and HgCl2 altered the activation process. These results showed cellulase from B. tequilensis SB125 would be suitable for conventional industrial processes that convert biomass into biofuels.
Collapse
Affiliation(s)
- Waseem Ayoub Malik
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India.
| |
Collapse
|
3
|
Singh R, Saati AA, Faidah H, Bantun F, Jalal NA, Haque S, Rai AK, Srivastava M. Prospects of microbial cellulase production using banana peels wastes for antimicrobial applications. Int J Food Microbiol 2023; 388:110069. [PMID: 36640563 DOI: 10.1016/j.ijfoodmicro.2022.110069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/14/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
Microorganisms have been extensively studied and used to produce a wide range of enzymes and bioactive substances for a number of uses. Cellulases have also been widely used for a variety of bioprocessing and biotransformation purposes and are acknowledged as the essential enzymes for industrial applications. Broad industrial applications and huge demand essentially require mass-scale and low-cost production of cellulase enzyme. Nevertheless, low-cost production of cellulase enzyme at industrial-level finds certain issues, and this may be mainly associated with the unavailability of cheap and effective substrate to be utilized in fermentation process. In this context, cellulosic wastes are counted as one of the suitable bioresources and have been well explored for low-cost and highly efficient cellulase enzyme productions. Further, banana peels waste is considered as the high cellulose & sugar containing food wastes which is renewable and hugely available worldwide. Therefore, the present review explores the possible utilizations of banana peels as a potential food waste to be employed as substrate to produce cellulase enzymes. Availability and compositional analysis of banana peels has been explored for the microbial cellulase production based on reported studies. Further, this review explores the applications of cellulase enzymes as antimicrobial agents. Based on the available studies and their evaluation, potential limitations and future suggestions for the production of cellulase enzymes and their applications as antibacterial agents have been provided, which have a high potential for numerous biomedical applications and may offer a new opportunity for industrial utility.
Collapse
Affiliation(s)
- Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi 110052, India; Department of Environmental Science, Jamia Millia Islamia, (A Central University), New Delhi 110025, India
| | - Abdullah Ali Saati
- Department of Community Medicine & Pilgrims Healthcare, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naif A Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ashutosh Kumar Rai
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, Varanasi 221005, India; LCB Fertilizers Pvt. Ltd., Shyam Vihar Phase 2, Rani Sati Mandir Road, Lachchhipur, Gorakhpur, Uttar Pradesh-273015, India.
| |
Collapse
|
4
|
Malik WA, Javed S. Biochemical Characterization of Cellulase From Bacillus subtilis Strain and its Effect on Digestibility and Structural Modifications of Lignocellulose Rich Biomass. Front Bioeng Biotechnol 2022; 9:800265. [PMID: 34988069 PMCID: PMC8721162 DOI: 10.3389/fbioe.2021.800265] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Microbial cellulases have become the mainstream biocatalysts due to their complex nature and widespread industrial applications. The present study reports the partial purification and characterization of cellulase from Bacillus subtilis CD001 and its application in biomass saccharification. Out of four different substrates, carboxymethyl cellulose, when amended as fermentation substrate, induced the highest cellulase production from B. subtilis CD001. The optimum activity of CMCase, FPase, and amylase was 2.4 U/ml, 1.5 U/ml, and 1.45 U/ml, respectively. The enzyme was partially purified by (NH4)2SO4 precipitation and sequenced through LC-MS/MS. The cellulase was found to be approximately 55 kDa by SDS-PAGE and capable of hydrolyzing cellulose, as confirmed by zymogram analysis. The enzyme was assigned an accession number AOR98335.1 and displayed 46% sequence homology with 14 peptide-spectrum matches having 12 unique peptide sequences. Characterization of the enzyme revealed it to be an acidothermophilic cellulase, having an optimum activity at pH 5 and a temperature of 60°C. Kinetic analysis of partially purified enzyme showed the Km and Vmax values of 0.996 mM and 1.647 U/ml, respectively. The enzyme activity was accelerated by ZnSO4, MnSO4, and MgSO4, whereas inhibited significantly by EDTA and moderately by β-mercaptoethanol and urea. Further, characterization of the enzyme saccharified sugarcane bagasse, wheat straw, and filter paper by SEM, ATR-FTIR, and XRD revealed efficient hydrolysis and structural modifications of cellulosic materials, indicating the potential industrial application of the B. subtilis CD001 cellulase. The findings demonstrated the potential suitability of cellulase from B. subtilis CD001 for use in current mainstream biomass conversion into fuels and other industrial processes.
Collapse
Affiliation(s)
- Waseem Ayoub Malik
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Saleem Javed
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
5
|
Patel A, Divecha J, Shah A. Fomitopsis meliae CFA 2, a novel brown rot for endoglucanase: emphasis towards enhanced endoglucanase production by statistical approach. Mycology 2021; 12:325-340. [PMID: 34900384 PMCID: PMC8654404 DOI: 10.1080/21501203.2021.1918277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brown rot basidiomycetes are a principal group of wood-decaying fungi which degrade wood cellulose and hemicellulose by the combination of carbohydrate active enzymes and non-enzymatic oxidation reactions. Very scant information is available on carbohydrate active enzymes of brown rot fungi. In this context, present study focused on the production of cellulolytic–hemicellulolytic enzymes from newly isolated brown rot Fomitopsis meliae CFA 2. Under solid-state fermentation using wheat bran as the substrate Fomitopsis meliae CFA 2 was able to produce a maximum of 1391.12 ± 21.13 U/g of endoglucanase along with other cellulolytic and hemicellulolytic enzymes. Various fermentation parameters were optimised for enhanced production of endoglucanase by employing Plackett-Burman design followed by Box-Behnken design. A well-fitted regression equation with R2 value of 98.91% was attained for endoglucanase. The yield of endoglucanase was enhanced by 1.83-fold after executing statistical optimisation of various fermentative parameters. The newly isolated Fomitopsis meliae CFA 2 was found to be a potential producer of endoglucanase. Enzymatic saccharification of alkali-treated wheat straw and rice straw resulted in release of 190.8 and 318.8 mg/g of reducing sugars, respectively.
Collapse
Affiliation(s)
- Amisha Patel
- P. G. Department of Biosciences, Sardar Patel University, Satellite Campus, Anand, Gujarat, India
| | - Jyoti Divecha
- Department of Statistics, Sardar Patel University, Gujarat, India
| | - Amita Shah
- P. G. Department of Biosciences, Sardar Patel University, Satellite Campus, Anand, Gujarat, India
| |
Collapse
|
6
|
Thermotolerance and Cellulolytic Activity of Fungi Isolated from Soils/Waste Materials in the Industrial Region of Nigeria. Curr Microbiol 2021; 78:2660-2671. [PMID: 34002268 DOI: 10.1007/s00284-021-02528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
The current study aimed on isolating thermotolerant, cellulolytic fungi from different tropical soil/waste materials samples such as wood waste, sawmill, decomposing straw and compost pit sites in Abraka, Southern Nigeria and assessing their applications in diverse cellulolytic processes. Fungal isolates were identified based on cultural, morphological, ITS-5.8S barcoding, reproductive structures and thereafter screened for thermotolerance and cellulolytic activities [carboxy methyl cellulase (CMC-ase) and filter paperase (FP-ase)] by cultivating at 45, 50, 60, 70, 80° and 45 °C, respectively. The highest fungal abundance (44.4%) was observed in the compost pit while the lowest (11.1%) was recorded for sawmill. Nine thermotolerant fungal isolates were identified: Aspergillus flavus (4), Blakeslea sp. (3), and Trichoderma asperellum (2). Among them only five, including three A. flavus, one Blakeslea sp. and one T. asperellum, exhibited cellulolytic activity ranging from 12.11 ± 0.01 to 18.42 ± 5.39 µg/mL and 0.36 ± 0.01-9.21 ± 2.52 µg/mL for CMC-ase and filter paperase FP-ase assay, respectively. The low Michaelis-Menten constants of 1.137 for CMC-ase and 1.195 for FP-ase were obtained, indicated a strong affinity for the substrate. The thermotolerance coupled with cellulolytic activity of these isolates make them attractive for potential application in industries where they can be of economic and environmental benefits as against the use of chemicals.
Collapse
|
7
|
Ma L, Zhao Y, Meng L, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Isolation of Thermostable Lignocellulosic Bacteria From Chicken Manure Compost and a M42 Family Endocellulase Cloning From Geobacillus thermodenitrificans Y7. Front Microbiol 2020; 11:281. [PMID: 32174898 PMCID: PMC7054444 DOI: 10.3389/fmicb.2020.00281] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/07/2020] [Indexed: 01/01/2023] Open
Abstract
The composting ecosystem provides a potential resource for finding new microorganisms with the capability for cellulose degradation. In the present study, Congo red method was used for the isolating of thermostable lignocellulose-degrading bacteria from chicken manure compost. A thermophilic strain named as Geobacillus thermodenitrificans Y7 with acid-resident property was successfully isolated and employed to degrade raw switchgrass at 60°C for 5 days, which resulted in the final degradation rates of cellulose, xylan, and acid-insoluble lignin as 18.64, 12.96, and 17.21%, respectively. In addition, GC-MS analysis about aromatic degradation affirm the degradation of lignin by G. thermodenitrificans Y7. Moreover, an endocellulase gene belong to M42 family was successfully cloned from G. thermodenitrificans Y7 and expressed in Escherichia coli BL21. Recombinant enzyme Cel-9 was purified by Ni-NTA column based the His-tag, and the molecular weight determined as 40.4 kDa by SDA-PAGE. The characterization of the enzyme Cel-9 indicated that the maximum enzyme activity was realized at 50°C and pH 8.6 and, Mn2+ could greatly improve the CMCase enzyme activity of Cel-9 at 10 mM, which was followed by Fe2+ and Co2+. Besides, it also found that the β-1,3-1,4, β-1,3, β-1,4, and β-1,6 glucan linkages all could be hydrolyzed by enzyme Cel-9. Finally, during the application of enzyme Cel-9 to switchgrass, the saccharification rates achieved to 1.81 ± 0.04% and 2.65 ± 0.03% for 50 and 100% crude enzyme, respectively. All these results indicated that both the strain G. thermodenitrificans Y7 and the recombinant endocellulase Cel-9 have the potential to be applied to the biomass industry.
Collapse
Affiliation(s)
- Lingling Ma
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuchun Zhao
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Limin Meng
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Wang
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yanglei Yi
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanyuan Shan
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Bianfang Liu
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuan Zhou
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Laboratory of Bioresources, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Chen Z, Zaky AA, Liu Y, Chen Y, Liu L, Li S, Jia Y. Purification and characterization of a new xylanase with excellent stability from Aspergillus flavus and its application in hydrolyzing pretreated corncobs. Protein Expr Purif 2019; 154:91-97. [DOI: 10.1016/j.pep.2018.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/01/2018] [Accepted: 10/10/2018] [Indexed: 12/31/2022]
|
9
|
Bai H, Zi H, Huang Y, Han M, Irfan M, Liu N, Yang J, Wang H, Han X. Catalytic Properties of Carboxymethyl Cellulase Produced from Newly Isolated Novel Fungus Penicillium ochrochloron ZH1 in Submerged Fermentation. Catal Letters 2017. [DOI: 10.1007/s10562-017-2119-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Gao G, Mao RQ, Xiao Y, Zhou J, Liu YH, Li G. Efficient yeast cell-surface display of an endoglucanase of Aspergillus flavus and functional characterization of the whole-cell enzyme. World J Microbiol Biotechnol 2017; 33:114. [PMID: 28488197 DOI: 10.1007/s11274-016-2182-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 11/21/2016] [Indexed: 11/26/2022]
Abstract
The endoglucanase gene endo753 from Aspergillus flavus NRRL3357 strains was cloned, and the recombinant Endo753 was displayed on the cell surface of Saccharomyces cerevisiae EBY100 strain by the C-terminal fusion using Aga2p protein as anchor attachment tag. The results of indirect immunofluorescence and Western blot confirmed the expression and localization of Endo753 on the yeast cell surface. The hydrolytic activity test of the whole-cell enzyme revealed that Endo753 immobilized on the yeast cell surface had high endoglucanase activity. The functional characterization of the whole-cell enzyme was investigated, and the whole-cell enzyme displayed the maximum activity at pH 8 and 50 °C. The enzyme was stable in a pH range of 7.0-10.0. Furthermore, the whole-cell enzyme displayed high thermostability below 50 °C and moderate stability between 50 and 70 °C. These properties make endo753 a good candidate in bioethanol production from lignocellulosic materials after displaying on the yeast cell surface.
Collapse
Affiliation(s)
- Gang Gao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Run-Qian Mao
- Guangdong Entomological Institute, Guangzhou, 510260, People's Republic of China.
| | - Yue Xiao
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Jing Zhou
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Yu-Huan Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China
| | - Gang Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
11
|
Abdullah R, Zafar W, Nadeem M, Iqtedar M, Naz S, Syed Q, Butt ZA. Random mutagenesis and media optimisation for hyperproduction of cellulase fromBacillusspecies using proximally analysedSaccharum spontaneumin submerged fermentation. Nat Prod Res 2014; 29:336-44. [DOI: 10.1080/14786419.2014.951355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|