1
|
Toraño P, Balmaseda A, Bordons A, Rozès N, Reguant C. Proteomic insight into the beneficial effect of mannoproteins on Oenococcus oeni in wine malolactic fermentation. Food Microbiol 2025; 129:104754. [PMID: 40086985 DOI: 10.1016/j.fm.2025.104754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Oenococcus oeni is the main species of lactic acid bacteria (LAB) responsible for malolactic fermentation (MLF) in winemaking. MLF development can present difficulties because of the harsh, stressful conditions of wine. Yeast mannoproteins have been described as possible activators of O. oeni and MLF. This study investigated the proteomic response of O. oeni PSU-1 to the presence of yeast mannoproteins in wine like-medium (WLM). In the proteomic analysis, 956 proteins were identified, with 59 differentially expressed proteins (DEPs) when mannoproteins were added. Notably, carbohydrate metabolism and transport were activated, suggesting the use of the mannose oligosaccharides released from mannoproteins. Some of the DEP proteins identified have been associated with mannan recognition in other LAB. However, proteins associated with amino acid metabolism were relatively low in abundance in the presence of mannoproteins, indicating that the amino acid fraction of mannoproteins is not relevant to O. oeni metabolism under the studied conditions. Surprisingly, some stress response proteins, such as ClpP, cold-shock DNA-binding protein, and the citrate transporter MaeP, presented increased abundance. The roles of these proteins in the presence of mannoproteins require further investigation.
Collapse
Affiliation(s)
- Paloma Toraño
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain
| | - Aitor Balmaseda
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain
| | - Albert Bordons
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain
| | - Nicolas Rozès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Microbiana dels Aliments, C/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel·lí Domingo s/n, 43007, Tarragona, Catalonia, Spain.
| |
Collapse
|
2
|
Toraño P, Martín-García A, Bordons A, Rozès N, Reguant C. Enhancing wine malolactic fermentation: Variable effect of yeast mannoproteins on Oenococcus oeni strains. Food Microbiol 2025; 127:104689. [PMID: 39667857 DOI: 10.1016/j.fm.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/14/2024]
Abstract
Lactic acid bacteria (LAB), principally Oenococcus oeni, play crucial roles in wine production, contributing to the transformation of L-malic acid into L-lactic acid during malolactic fermentation (MLF). This fermentation is influenced by different factors, including the initial LAB population and wine stress factors, such as nutrient availability. Yeast mannoproteins can enhance LAB survival in wine. This study explored in model conditions the impact of a commercial mannoprotein extract on MLF dynamics in ten O. oeni strains. The results revealed strain-specific responses in fermentation kinetics and mannoprotein utilization. Mannoprotein addition influenced MLF outcomes, depending on the strain and concentration. The variability in MLF confirmed different technological aptitude of the strains used. The α-mannosidase enzymatic activity was determined and showed higher values in the supernatant than in whole cells. Moreover, α-mannosidase activity varied among strains, suggesting differential regulation in response to fermentation conditions. These findings highlight the importance of understanding mannoprotein interactions with O. oeni for optimizing MLF efficiency and enhancing wine quality. Further research under cellar conditions is needed to evaluate the potential of yeast mannoproteins to promote MLF.
Collapse
Affiliation(s)
- Paloma Toraño
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Alba Martín-García
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Albert Bordons
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Nicolas Rozès
- Universitat Rovira i Virgili, Grup de Biotecnologia Microbiana dels Aliments, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
3
|
Eicher C, Coulon J, Favier M, Alexandre H, Reguant C, Grandvalet C. Citrate metabolism in lactic acid bacteria: is there a beneficial effect for Oenococcus oeni in wine? Front Microbiol 2024; 14:1283220. [PMID: 38249489 PMCID: PMC10798043 DOI: 10.3389/fmicb.2023.1283220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Lactic acid bacteria (LAB) are Gram positive bacteria frequently used in the food industry for fermentation, mainly transformation of carbohydrates into lactic acid. In addition, these bacteria also have the capacity to metabolize citrate, an organic acid commonly found in food products. Its fermentation leads to the production of 4-carbon compounds such as diacetyl, resulting in a buttery flavor desired in dairy products. Citrate metabolism is known to have several beneficial effects on LAB physiology. Nevertheless, a controversial effect of citrate has been described on the acid tolerance of the wine bacterium Oenococcus oeni. This observation raises questions about the effect of citrate on the capacity of O. oeni to conduct malolactic fermentation in highly acidic wines. This review aims to summarize the current understanding of citrate metabolism in LAB, with a focus on the wine bacterium O. oeni. Metabolism with the related enzymes is detailed, as are the involved genes organized in cit loci. The known systems of cit locus expression regulation are also described. Finally, the beneficial effects of citrate catabolism on LAB physiology are reported and the negative impact observed in O. oeni is discussed.
Collapse
Affiliation(s)
- Camille Eicher
- UMR PAM, Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, Dijon, France
| | | | | | - Hervé Alexandre
- UMR PAM, Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, Dijon, France
| | - Cristina Reguant
- Universitat Rovira i Virgili, Grup de Biotecnologia Enològica, Departament de Bioquímica i Biotecnologia, Tarragona, Catalonia, Spain
| | - Cosette Grandvalet
- UMR PAM, Université de Bourgogne Franche-Comté, Institut Agro, Université de Bourgogne, INRAE, Dijon, France
| |
Collapse
|
4
|
Rivas GA, Valdés La Hens D, Delfederico L, Olguin N, Bravo-Ferrada BM, Tymczyszyn EE, Semorile L, Brizuela NS. Molecular tools for the analysis of the microbiota involved in malolactic fermentation: from microbial diversity to selection of lactic acid bacteria of enological interest. World J Microbiol Biotechnol 2022; 38:19. [PMID: 34989896 DOI: 10.1007/s11274-021-03205-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023]
Abstract
Winemaking is a complex process involving two successive fermentations: alcoholic fermentation, by yeasts, and malolactic fermentation (MLF), by lactic acid bacteria (LAB). During MLF, LAB can contribute positively to wine flavor through decarboxylation of malic acid with acidity reduction and other numerous enzymatic reactions. However, some microorganisms can have a negative impact on the quality of the wine through processes such as biogenic amine production. For these reasons, monitoring the bacterial community profiles during MLF can predict and control the quality of the final product. In addition, the selection of LAB from a wine-producing area is necessary for the formulation of native malolactic starter cultures well adapted to local winemaking practices and able to enhance the regional wine typicality. In this sense, molecular biology techniques are fundamental tools to decipher the native microbiome involved in MLF and to select bacterial strains with potential to function as starter cultures, given their enological and technological characteristics. In this context, this work reviews the different molecular tools (both culture-dependent and -independent) that can be applied to the study of MLF, either in bacterial isolates or in the microbial community of wine, and of its dynamics during the process.
Collapse
Affiliation(s)
- Gabriel Alejandro Rivas
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Danay Valdés La Hens
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Lucrecia Delfederico
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Nair Olguin
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Bárbara Mercedes Bravo-Ferrada
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Emma Elizabeth Tymczyszyn
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Liliana Semorile
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina
| | - Natalia Soledad Brizuela
- Departamento de Ciencia y Tecnología, Instituto de Microbiología Básica y Aplicada (IMBA), Laboratorio de Microbiología Molecular, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal, B1876BXD, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Use of Yeast Mannoproteins by Oenococcus oeni during Malolactic Fermentation under Different Oenological Conditions. Foods 2021; 10:foods10071540. [PMID: 34359413 PMCID: PMC8305826 DOI: 10.3390/foods10071540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/25/2021] [Accepted: 07/01/2021] [Indexed: 01/28/2023] Open
Abstract
Oenococcus oeni is the main agent of malolactic fermentation in wine. This fermentation takes place after alcoholic fermentation, in a low nutrient medium where ethanol and other inhibitor compounds are present. In addition, some yeast-derived compounds such as mannoproteins can be stimulatory for O. oeni. The mannoprotein concentration in wine depends on the fermenting yeasts, and non-Saccharomyces in particular can increase it. As a result of the hydrolytic activity of O. oeni, these macromolecules can be degraded, and the released mannose can be taken up and used as an energy source by the bacterium. Here we look at mannoprotein consumption and the expression of four O. oeni genes related to mannose uptake (manA, manB, ptsI, and ptsH) in a wine-like medium supplemented with mannoproteins and in natural wines fermented with different yeasts. We observe a general gene upregulation in response to wine-like conditions and different consumption patterns in the studied media. O. oeni was able to consume mannoproteins in all the wines. This consumption was notably higher in natural wines, especially in T. delbrueckii and S. cerevisiae 3D wines, which presented the highest mannoprotein levels. Regardless of the general upregulation, it seems that mannoprotein degradation is more closely related to the fermenting medium.
Collapse
|
6
|
Balmaseda A, Rozès N, Bordons A, Reguant C. Simulated lees of different yeast species modify the performance of malolactic fermentation by Oenococcus oeni in wine-like medium. Food Microbiol 2021; 99:103839. [PMID: 34119090 DOI: 10.1016/j.fm.2021.103839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 11/30/2022]
Abstract
The use of non-Saccharomyces yeast together with S. cerevisiae in winemaking is a current trend. Apart from the organoleptic modulation of the wine, the composition of the resulting yeast lees is different and may thus impact malolactic fermentation (MLF). Yeasts of Saccharomyces cerevisiae, Torulaspora delbrueckii and Metschnikowia pulcherrima were inactivated and added to a synthetic wine. Three different strains of Oenococcus oeni were inoculated and MLF was monitored. Non-Saccharomyces lees, especially from some strains of T. delbrueckii, showed higher compatibility with some O. oeni strains, with a shorter MLF and a maintained bacterial cell viability. The supplementation of lees increased nitrogen compounds available by O. oeni. A lower mannoprotein consumption was related with longer MLF. Amino acid assimilation by O. oeni was strain specific. There may be many other compounds regulating these yeast lees-O. oeni interactions apart from the well-known mannoproteins and amino acids. This is the first study of MLF with different O. oeni strains in the presence of S. cerevisiae and non-Saccharomyces yeast lees to report a strain-specific interaction between them.
Collapse
Affiliation(s)
- Aitor Balmaseda
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel.lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Nicolas Rozès
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Microbiana dels Aliments, C/ Marcel·lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Albert Bordons
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel.lí Domingo 1, 43007 Tarragona, Catalonia, Spain
| | - Cristina Reguant
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Grup de Biotecnologia Enològica, C/ Marcel.lí Domingo 1, 43007 Tarragona, Catalonia, Spain.
| |
Collapse
|
7
|
Relative expression of stress-related genes during acclimation at low temperature of psychrotrophic Oenococcus oeni strains from Patagonian wine. World J Microbiol Biotechnol 2018; 35:5. [DOI: 10.1007/s11274-018-2577-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
|
8
|
Miranda-Castilleja DE, Martínez-Peniche RÁ, Nadal Roquet-Jalmar M, Aldrete-Tapia JA, Arvizu-Medrano SM. Enological Qualities and Interactions Between Native Yeast and Lactic Acid Bacteria from Queretaro, Mexico. J Food Sci 2018; 83:1904-1912. [PMID: 29905939 DOI: 10.1111/1750-3841.14197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 04/04/2018] [Accepted: 04/24/2018] [Indexed: 12/01/2022]
Abstract
Despite the importance of strain compatibility, most of the enological strain selection studies are carried out separately on yeasts and lactic acid bacteria (LAB). In this study, the enological traits and interactions between native yeasts and LAB were studied. The H2 S and acetic acid production, growth rates at 8 °C, killer phenotypes, flocculation, and tolerance to must and wine inhibitors were determined for 25 Saccharomyces yeasts. The ability to grow under two wine-like conditions was also determined in 37 LAB (Oenococcus oeni and Lactobacillus plantarum). The yeast-LAB compatibility of selected strains was tested in a sequential scheme. Finally, microvinification trials were performed using two strains from each group to determine the efficiencies and quality parameters. The phenotypic characterization by the K-means and hierarchical clusters indicated a correlation between flocculation and optical density increase in simulated must and wine medium (r = -0.415) and grouped the prominent yeasts SR19, SR26, and N05 as moderately flocculent, killer, acid producing, and highly tolerant strains. Among the LAB, L. plantarum FU39 grew 230% more than the rest. With regard to interactions, LAB growth stimulation (14-fold on average) due to the previous action of yeasts, particularly of SR19, was observed. The final quality of all wines was similar, but yeast SR19 performed a faster and more efficient fermentation than did N05, Also L. plantarum FU39 fermented faster than did O. oeni VC32. The use of quantitative data, and multivariate analyses allowed an integrative approach to the selection of a compatible and efficient pair of enological yeast-LAB strains. PRACTICAL APPLICATION An alternative scheme is proposed for the joint selection of yeast and lactic acid bacteria strains, which allows us to foresee the interactions that may occur between them during winemaking. The kinetic parameters, turbidimetrically measured and analyzed by multivariate methods, simplify the detection of outstanding selectable microorganisms. This methodology can be implemented at any cellar or even any fermentative industry that aims to select compatible yeast and lactic acid bacteria.
Collapse
Affiliation(s)
- Dalia E Miranda-Castilleja
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| | - Ramón Á Martínez-Peniche
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| | - Montserrat Nadal Roquet-Jalmar
- Grup Vitivinicultura, Facultat d'Enologia, Dept. Bioquímica i Biotecnologia, Univ. Rovira i Virgili, Campus Sescelades, 43007, Tarragona, España
| | - J Alejandro Aldrete-Tapia
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| | - Sofía M Arvizu-Medrano
- Cuerpo Académico de Inocuidad Microbiana de los Alimentos. Depto. de Investigación y Posgrado en Alimentos, Facultad de Química, Univ. Autónoma de Querétaro, Centro Univ. S/N, Colonia Las Campanas, 76010, Querétaro, México
| |
Collapse
|
9
|
Contreras A, Ribbeck M, Gutiérrez GD, Cañon PM, Mendoza SN, Agosin E. Mapping the Physiological Response of Oenococcus oeni to Ethanol Stress Using an Extended Genome-Scale Metabolic Model. Front Microbiol 2018; 9:291. [PMID: 29545779 PMCID: PMC5838312 DOI: 10.3389/fmicb.2018.00291] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 02/07/2018] [Indexed: 11/13/2022] Open
Abstract
The effect of ethanol on the metabolism of Oenococcus oeni, the bacterium responsible for the malolactic fermentation (MLF) of wine, is still scarcely understood. Here, we characterized the global metabolic response in O. oeni PSU-1 to increasing ethanol contents, ranging from 0 to 12% (v/v). We first optimized a wine-like, defined culture medium, MaxOeno, to allow sufficient bacterial growth to be able to quantitate different metabolites in batch cultures of O. oeni. Then, taking advantage of the recently reconstructed genome-scale metabolic model iSM454 for O. oeni PSU-1 and the resulting experimental data, we determined the redistribution of intracellular metabolic fluxes, under the different ethanol conditions. Four growth phases were clearly identified during the batch cultivation of O. oeni PSU-1 strain, according to the temporal consumption of malic and citric acids, sugar and amino acids uptake, and biosynthesis rates of metabolic products - biomass, erythritol, mannitol and acetic acid, among others. We showed that, under increasing ethanol conditions, O. oeni favors anabolic reactions related with cell maintenance, as the requirements of NAD(P)+ and ATP increased with ethanol content. Specifically, cultures containing 9 and 12% ethanol required 10 and 17 times more NGAM (non-growth associated maintenance ATP) during phase I, respectively, than cultures without ethanol. MLF and citric acid consumption are vital at high ethanol concentrations, as they are the main source for proton extrusion, allowing higher ATP production by F0F1-ATPase, the main route of ATP synthesis under these conditions. Mannitol and erythritol synthesis are the main sources of NAD(P)+, countervailing for 51-57% of its usage, as predicted by the model. Finally, cysteine shows the fastest specific consumption rate among the amino acids, confirming its key role for bacterial survival under ethanol stress. As a whole, this study provides a global insight into how ethanol content exerts a differential physiological response in O. oeni PSU-1 strain. It will help to design better strategies of nutrient addition to achieve a successful MLF of wine.
Collapse
Affiliation(s)
- Angela Contreras
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Magdalena Ribbeck
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Guillermo D Gutiérrez
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo M Cañon
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sebastián N Mendoza
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.,Center for Genome Regulation, Universidad de Chile, Santiago, Chile
| | - Eduardo Agosin
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Romero J, Ilabaca C, Ruiz M, Jara C. Oenococcus oeni in Chilean Red Wines: Technological and Genomic Characterization. Front Microbiol 2018; 9:90. [PMID: 29491847 PMCID: PMC5817079 DOI: 10.3389/fmicb.2018.00090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 01/15/2018] [Indexed: 12/26/2022] Open
Abstract
The presence and load of species of LAB at the end of the malolactic fermentation (MLF) were investigated in 16 wineries from the different Chilean valleys (Limarí, Casablanca, Maipo, Rapel, and Maule Valleys) during 2012 and 2013, using PCR-RFLP and qPCR. Oenococcus oeni was observed in 80% of the samples collected. Dominance of O. oeni was reflected in the bacterial load (O. oeni/total bacteria) measured by qPCR, corresponding to >85% in most of the samples. A total of 178 LAB isolates were identified after sequencing molecular markers, 95 of them corresponded to O. oeni. Further genetic analyses were performed using MLST (7 genes) including 10 commercial strains; the results indicated that commercial strains were grouped together, while autochthonous strains distributed among different genetic clusters. To pre-select some autochthonous O. oeni, these isolates were also characterized based on technological tests such as ethanol tolerance (12 and 15%), SO2 resistance (0 and 80 mg l−1), and pH (3.1 and 3.6) and malic acid transformation (1.5 and 4 g l−1). For comparison purposes, commercial strain VP41 was also tested. Based on their technological performance, only 3 isolates were selected for further examination (genome analysis) and they were able to reduce malic acid concentration, to grow at low pH 3.1, 15% ethanol and 80 mg l−1 SO2. The genome analyses of three selected isolates were examined and compared to PSU-1 and VP41 strains to study their potential contribution to the organoleptic properties of the final product. The presence and homology of genes potentially related to aromatic profile were compared among those strains. The results indicated high conservation of malolactic enzyme (>99%) and the absence of some genes related to odor such as phenolic acid decarboxylase, in autochthonous strains. Genomic analysis also revealed that these strains shared 470 genes with VP41 and PSU-1 and that autochthonous strains harbor an interesting number of unique genes (>21). Altogether these results reveal the presence of local strains distinguishable from commercial strains at the genetic/genomic level and also having genomic traits that enforce their potential use as starter cultures.
Collapse
Affiliation(s)
- Jaime Romero
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Carolina Ilabaca
- Laboratorio de Biotecnología, Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile.,Departamento de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | | | - Carla Jara
- Departamento de Agroindustria y Enología, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Application of directed evolution to develop ethanol tolerant Oenococcus oeni for more efficient malolactic fermentation. Appl Microbiol Biotechnol 2017; 102:921-932. [PMID: 29150706 DOI: 10.1007/s00253-017-8593-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
Malolactic fermentation (MLF) is an important step in winemaking, which can be notoriously unreliable due to the fastidious nature of Oenococcus oeni. This study aimed to use directed evolution (DE) to produce a more robust strain of O. oeni having the ability to withstand high ethanol concentrations. DE involves an organism mutating and potentially adapting to a high stress environment over the course of extended cultivation. A continuous culture of O. oeni was established and exposed to progressively increasing ethanol content such that after approximately 330 generations, an isolate from this culture was able to complete MLF in high ethanol content medium earlier than its parent. The ethanol tolerance of a single isolate, A90, was tested to confirm the phenotype and its fermentation performance in wine. In order to investigate the genotypic differences in the evolved strain that led to the ethanol tolerance phenotype, the relative expression of a number of known stress response genes was compared between SB3 and A90. Notably, there was increase in hsp18 expression in 20% (v/v) ethanol by both strains with A90 exhibiting a higher degree of expression. This study is the first to use directed evolution for O. oeni strain improvement and confirms that this technique can be used successfully for the development of new candidate strains for the wine industry. This study also adds to the current knowledge on the genetic basis of ethanol tolerance in this bacterium.
Collapse
|
12
|
Margalef-Català M, Felis GE, Reguant C, Stefanelli E, Torriani S, Bordons A. Identification of variable genomic regions related to stress response in Oenococcus oeni. Food Res Int 2017; 102:625-638. [PMID: 29195994 DOI: 10.1016/j.foodres.2017.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 01/24/2023]
Abstract
The lactic acid bacterium Oenococcus oeni is the most important species involved in malolactic fermentation due to its capability to survive in presence of ethanol and in the acidic environment of wine. In order to identify novel genes involved in adaptation to wine, a new approach using genome-wide analysis based on stress-related genes was performed in strain O. oeni PSU-1, and 106 annotated stress genes were identified. The in silico analysis revealed the high similarity of all those genes through 57 O. oeni genomes; however, seven variable regions of genomic plasticity could be determined for their different presence observed among these strains. Regions 3 and 5 had the typical hallmarks of horizontal transfer, suggesting that the strategy of acquiring genes from other bacteria enhanced the fitness of O. oeni strains. Certain genes related to stress resistance were described in these regions, and similarities of putative acquired regions with other lactic acid bacteria species were found. Some genomic fragments present in all the strains were described and another new genomic island harbouring a threonine dehydrogenase was found. The association of selected sequences with adaptation to wine was assessed by screening 31 O. oeni strains using PCR of single genes, but no sequences were found to be exclusive to highly performing malolactic fermentation strains. This study provides new information about the genomic variability of O. oeni strains contributing to a further understanding of this species and the relationship of its genomic traits with the ability to adapt to stress conditions.
Collapse
Affiliation(s)
- Mar Margalef-Català
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Giovanna E Felis
- Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Cristina Reguant
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain
| | - Elena Stefanelli
- Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Sandra Torriani
- Department of Biotechnology, Università degli Studi di Verona, Verona, Italy
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili, Tarragona, Catalonia, Spain.
| |
Collapse
|
13
|
Sternes PR, Costello PJ, Chambers PJ, Bartowsky EJ, Borneman AR. Whole transcriptome RNAseq analysis of Oenococcus oeni reveals distinct intra-specific expression patterns during malolactic fermentation, including genes involved in diacetyl metabolism. Int J Food Microbiol 2017; 257:216-224. [DOI: 10.1016/j.ijfoodmicro.2017.06.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/06/2017] [Accepted: 06/25/2017] [Indexed: 12/23/2022]
|
14
|
Margalef-Català M, Araque I, Bordons A, Reguant C. Genetic and transcriptional study of glutathione metabolism in Oenococcus oeni. Int J Food Microbiol 2017; 242:61-69. [DOI: 10.1016/j.ijfoodmicro.2016.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 12/21/2022]
|
15
|
Margalef-Català M, Araque I, Bordons A, Reguant C, Bautista-Gallego J. Transcriptomic and Proteomic Analysis of Oenococcus oeni Adaptation to Wine Stress Conditions. Front Microbiol 2016; 7:1554. [PMID: 27746771 PMCID: PMC5044463 DOI: 10.3389/fmicb.2016.01554] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/16/2016] [Indexed: 11/13/2022] Open
Abstract
Oenococcus oeni, the main lactic acid bacteria responsible for malolactic fermentation in wine, has to adapt to stressful conditions, such as low pH and high ethanol content. In this study, the changes in the transcriptome and the proteome of O. oeni PSU-1 during the adaptation period before MLF start have been studied. DNA microarrays were used for the transcriptomic analysis and two complementary proteomic techniques, 2-D DIGE and iTRAQ labeling were used to analyze the proteomic response. One of the most influenced functions in PSU-1 due to inoculation into wine-like medium (WLM) was translation, showing the over-expression of certain ribosomal genes and the corresponding proteins. Amino acid metabolism and transport was also altered and several peptidases were up regulated both at gene and protein level. Certain proteins involved in glutamine and glutamate metabolism showed an increased abundance revealing the key role of nitrogen uptake under stressful conditions. A strong transcriptional inhibition of carbohydrate metabolism related genes was observed. On the other hand, the transcriptional up-regulation of malate transport and citrate consumption was indicative of the use of L-malate and citrate associated to stress response and as an alternative energy source to sugar metabolism. Regarding the stress mechanisms, our results support the relevance of the thioredoxin and glutathione systems in the adaptation of O. oeni to wine related stress. Genes and proteins related to cell wall showed also significant changes indicating the relevance of the cell envelop as protective barrier to environmental stress. The differences found between transcriptomic and proteomic data suggested the relevance of post-transcriptional mechanisms and the complexity of the stress response in O. oeni adaptation. Further research should deepen into the metabolisms mostly altered due to wine conditions to elucidate the role of each mechanism in the O. oeni ability to develop MLF.
Collapse
Affiliation(s)
- Mar Margalef-Català
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Isabel Araque
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Albert Bordons
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Cristina Reguant
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| | - Joaquín Bautista-Gallego
- Departament de Bioquímica i Biotecnologia, Facultat d'Enologia, Universitat Rovira i Virgili Tarragona, Spain
| |
Collapse
|