1
|
Yin C, Larson M, Lahr N, Paulitz T. Wheat Rhizosphere-Derived Bacteria Protect Soybean from Soilborne Diseases. PLANT DISEASE 2024; 108:1565-1576. [PMID: 38105448 DOI: 10.1094/pdis-08-23-1713-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Soybean (Glycine max [L.] Merr.) is an important oilseed crop with a high economic value. However, three damaging soybean diseases, soybean cyst nematode (SCN; Heterodera glycines Ichinohe), Sclerotinia stem rot caused by the fungus Sclerotinia sclerotiorum (Lid.) de Bary, and soybean root rot caused by Fusarium spp., are major constraints to soybean production in the Great Plains. Current disease management options, including resistant or tolerant varieties, fungicides, nematicides, and agricultural practices (crop rotation and tillage), have limited efficacy for these pathogens or have adverse effects on the ecosystem. Microbes with antagonistic activity are a promising option to control soybean diseases with the advantage of being environmentally friendly and sustainable. In this study, 61 bacterial strains isolated from wheat rhizospheres were used to examine their antagonistic abilities against three soybean pathogens. Six bacterial strains significantly inhibited the growth of Fusarium graminearum in the dual-culture assay. These bacterial strains were identified as Chryseobacterium ginsengisoli, C. indologenes, Pseudomonas poae, two Pseudomonas spp., and Delftia acidovorans by 16S rRNA gene sequencing. Moreover, C. ginsengisoli, C. indologenes, and P. poae significantly increased the mortality of SCN second-stage juveniles (J2), and two Pseudomonas spp. inhibited the growth of S. sclerotiorum in vitro. Further growth chamber tests found that C. ginsengisoli and C. indologenes reduced soybean Fusarium root rot disease. C. ginsengisoli and P. poae dramatically decreased SCN egg number on SCN-susceptible soybean 'Williams 82'. Two Pseudomonas spp. protected soybean plants from leaf damage and collapse after being infected by S. sclerotiorum. These bacteria exhibit versatile antagonistic potential. This work lays the foundation for further research on the field control of soybean pathogens.
Collapse
Affiliation(s)
- Chuntao Yin
- North Central Agricultural Research Laboratory, USDA-ARS, Brookings, SD
| | - Matt Larson
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD
| | - Nathan Lahr
- North Central Agricultural Research Laboratory, USDA-ARS, Brookings, SD
| | - Timothy Paulitz
- Wheat Health, Genetics, and Quality Research Unit, USDA-ARS, Pullman, WA
| |
Collapse
|
2
|
Anand U, Vaishnav A, Sharma SK, Sahu J, Ahmad S, Sunita K, Suresh S, Dey A, Bontempi E, Singh AK, Proćków J, Shukla AK. Current advances and research prospects for agricultural and industrial uses of microbial strains available in world collections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156641. [PMID: 35700781 DOI: 10.1016/j.scitotenv.2022.156641] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Microorganisms are an important component of the ecosystem and have an enormous impact on human lives. Moreover, microorganisms are considered to have desirable effects on other co-existing species in a variety of habitats, such as agriculture and industries. In this way, they also have enormous environmental applications. Hence, collections of microorganisms with specific traits are a crucial step in developing new technologies to harness the microbial potential. Microbial culture collections (MCCs) are a repository for the preservation of a large variety of microbial species distributed throughout the world. In this context, culture collections (CCs) and microbial biological resource centres (mBRCs) are vital for the safeguarding and circulation of biological resources, as well as for the progress of the life sciences. Ex situ conservation of microorganisms tagged with specific traits in the collections is the crucial step in developing new technologies to harness their potential. Type strains are mainly used in taxonomic study, whereas reference strains are used for agricultural, biotechnological, pharmaceutical research and commercial work. Despite the tremendous potential in microbiological research, little effort has been made in the true sense to harness the potential of conserved microorganisms. This review highlights (1) the importance of available global microbial collections for man and (2) the use of these resources in different research and applications in agriculture, biotechnology, and industry. In addition, an extensive literature survey was carried out on preserved microorganisms from different collection centres using the Web of Science (WoS) and SCOPUS. This review also emphasizes knowledge gaps and future perspectives. Finally, this study provides a critical analysis of the current and future roles of microorganisms available in culture collections for different sustainable agricultural and industrial applications. This work highlights target-specific potential microbial strains that have multiple important metabolic and genetic traits for future research and use.
Collapse
Affiliation(s)
- Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Anukool Vaishnav
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, Uttar Pradesh 281406, India; Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland; Plant-Soil Interaction Group, Agroscope (Reckenholz), Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Sushil K Sharma
- National Agriculturally Important Microbial Culture Collection (NAIMCC), ICAR-National Bureau of Agriculturally Important Microorganisms (ICAR-NBAIM), Mau 275 103, Uttar Pradesh, India.
| | - Jagajjit Sahu
- GyanArras Academy, Gothapatna, Malipada, Bhubaneswar, Odisha 751029, India
| | - Sarfaraz Ahmad
- Department of Botany, Jai Prakash University, Saran, Chhapra 841301, Bihar, India
| | - Kumari Sunita
- Department of Botany, Faculty of Science, Deen Dayal Upadhyay Gorakhpur University, Gorakhpur, Uttar Pradesh 273009, India
| | - S Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal 462 003, Madhya Pradesh, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123 Brescia, Italy
| | - Amit Kishore Singh
- Department of Botany, Bhagalpur National College, (A Constituent unit of Tilka Manjhi Bhagalpur University), Bhagalpur 812007, Bihar, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya (affiliated to Dr. Rammanohar Lohia Avadh University, Ayodhya) 224123, Uttar Pradesh, India.
| |
Collapse
|
3
|
Vazquez-Munoz R, Thompson A, Russell JT, Sobue T, Zhou Y, Dongari-Bagtzoglou A. Insights From the Lactobacillus johnsonii Genome Suggest the Production of Metabolites With Antibiofilm Activity Against the Pathobiont Candida albicans. Front Microbiol 2022; 13:853762. [PMID: 35330775 PMCID: PMC8940163 DOI: 10.3389/fmicb.2022.853762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Lactobacillus johnsonii is a probiotic bacterial species with broad antimicrobial properties; however, its antimicrobial activities against the pathobiont Candida albicans are underexplored. The aim of this study was to study the interactions of L. johnsonii with C. albicans and explore mechanisms of bacterial anti-fungal activities based on bacterial genomic characterization coupled with experimental data. We isolated an L. johnsonii strain (MT4) from the oral cavity of mice and characterized its effect on C. albicans growth in the planktonic and biofilm states. We also identified key genetic and phenotypic traits that may be associated with a growth inhibitory activity exhibited against C. albicans. We found that L. johnsonii MT4 displays pH-dependent and pH-independent antagonistic interactions against C. albicans, resulting in inhibition of C. albicans planktonic growth and biofilm formation. This antagonism is influenced by nutrient availability and the production of soluble metabolites with anticandidal activity.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| | - Angela Thompson
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| | - Jordan T Russell
- Department of Psychiatry/Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Takanori Sobue
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| | - Yanjiao Zhou
- Department of Psychiatry/Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Anna Dongari-Bagtzoglou
- Department of Periodontology, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
4
|
Yang J, Zhu Q, Chai J, Xu F, Ding Y, Zhu Q, Lu Z, Khoo KS, Bian X, Wang S, Show PL. Development of environmentally friendly biological algicide and biochemical analysis of inhibitory effect of diatom Skeletonema costatum. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Lin F, Zhu X, Sun J, Meng F, Lu Z, Lu Y. Bacillomycin D-C16 inhibits growth of Fusarium verticillioides and production of fumonisin B 1 in maize kernels. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 181:105015. [PMID: 35082038 DOI: 10.1016/j.pestbp.2021.105015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/08/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Fusarium verticillioides causes ear and kernel rot in maize and produces mycotoxins, like fumonisin B1 (FB1). Bacillomycin D-C16 is a natural antimicrobial lipopeptide produced by Bacillus subtilis. In this study, the inhibitory effects of Bacillomycin D-C16 on the growth of F. verticillioides and on the production of FB1 in maize were investigated. Bacillomycin D-C16 displayed strong fungicidal activity against F. verticillioides, with a minimum inhibitory concentration (MIC) of 32 g/L. Scanning electron microscopy (SEM) showed that Bacillomycin D-C16 altered the morphology of F. verticillioides mycelia. Bacillomycin D-C16 reduced the ergosterol content, increased the release of nucleic acids and proteins, and increased the levels of reactive oxygen species (ROS) in fungal mycelia. Bacillomycin D-C16 also significantly inhibited the production of FB1 by inhibiting mycelial growth and decreasing the levels of fumonisin biosynthetic genes 1 (fum1), fum6 and fum14. The application of Bacillomycin D-C16 on maize kernels prior to storage inhibited the growth of F. verticillioides and the production of FB1. Our results suggested that Bacillomycin D-C16 has a significant antifungal activity that could be used as a potential natural antimicrobial agent to control food contamination and to ensure food safety.
Collapse
Affiliation(s)
- Fuxing Lin
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China; School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Fanqiang Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China.
| |
Collapse
|
6
|
Kazerooni EA, Maharachchikumbura SSN, Al-Sadi AM, Kang SM, Yun BW, Lee IJ. Biocontrol Potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum. J Fungi (Basel) 2021; 7:jof7060472. [PMID: 34200967 PMCID: PMC8230671 DOI: 10.3390/jof7060472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess the ability of Bacillus amyloliquefaciens, to augment plant growth and suppress gray mold and leaf spot in pepper plants. Morphological modifications in fungal pathogen hyphae that expanded toward the PGPR colonies were detected via scanning electron microscope. Furthermore, preliminary screening showed that PGPR could produce various hydrolytic enzymes in its media. Treatments with B. amyloliquefaciens suppressed Botrytis gray mold and Alternaria leaf spot diseases on pepper caused by Botrytis pelargonii and Alternaria alternata, respectively. The PGPR strain modulated plant physio-biochemical processes. The inoculation of pepper with PGPR decreased protein, amino acid, antioxidant, hydrogen peroxide, lipid peroxidation, and abscisic acid levels but increased salicylic acid and sugar levels compared to those of uninoculated plants, indicating a mitigation of the adverse effects of biotic stress. Moreover, gene expression studies confirmed physio-biochemical findings. PGPR inoculation led to increased expression of the CaXTH genes and decreased expression of CaAMP1, CaPR1, CaDEF1, CaWRKY2, CaBI-1, CaASRF1, CaSBP11, and CaBiP genes. Considering its beneficial effects, the inoculation of B. amyloliquefaciens can be proposed as an eco-friendly alternative to synthetic chemical fungicides.
Collapse
Affiliation(s)
- Elham Ahmed Kazerooni
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
- Correspondence: (E.A.K.); (I.-J.L.)
| | | | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman;
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
- Correspondence: (E.A.K.); (I.-J.L.)
| |
Collapse
|