1
|
Kakade A, Zhang Q, Wu T, Yang X, Mi J, Jing X, Long R. An integrated evaluation of potentially toxic elements and microplastics in the highland soils of the northeastern Qinghai-Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137453. [PMID: 39933466 DOI: 10.1016/j.jhazmat.2025.137453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/13/2025]
Abstract
As gateways to the scenic Qinghai-Tibetan Plateau (QTP), some underexplored five grassland (GLs) and three farmland (FLs) soil locations of northeastern counties were investigated. Preliminary detection showed that in the grazing and agricultural soils, elemental concentrations (Fe>Zn>Cr>Cu>Pb>Co>As>Cd) were up to 37 and 10 mg/g, but within the China soil standards, except Cd, while microplastics (MPs) abundances were 200-3640 and 280-973 particles/kg, respectively. Polypropylene (PP: 40-55 %) dominated in GLs mostly as fragments, whereas polyethylene (PE: 72-92 %) in FLs as films. Adsorption results demonstrated that potentially toxic elements (PTEs)-MPs' interaction may chiefly depend on their types and speciation in soils, the physiochemical structure of MPs, and surrounding conditions. The integrated two-dimensional risk assessment categorized three of five GLs under Risk Level VI (high pollution), whereas one of three FLs displayed Risk Level III (moderate pollution). Correlation analysis revealed that altitude, organic matter, soil clay content, and precipitation significantly affected PTEs (p ≤ 0.01), whereas MPs were influenced by altitude, soil clay content, precipitation (p ≤ 0.001), and population density (p ≤ 0.05). Comparison with low-land soils globally designated QTP as a vulnerable region to MPs due to the expanding development. Overall, our study provides a data set to understand the pollution scenario of highlands for its targeted management.
Collapse
Affiliation(s)
- Apurva Kakade
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China
| | - Qunying Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China
| | - Tao Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China
| | - Xin Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China
| | - Jiandui Mi
- International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China; State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Xiaoping Jing
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China
| | - Ruijun Long
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China; International Cooperation Hub of Mountain Eco-Agriculture of Gansu Province, Lanzhou 730000, China.
| |
Collapse
|
2
|
Gallego‐Cartagena E, Morgado‐Gamero W, de Moya‐Hernández I, Díaz‐Uribe C, Parody A, Morillas H, Bayona‐Pacheco B, Pellegrin G, Agudelo‐Castañeda D. Urbanisation and Lockdown Impact on Airborne Fungal Communities in Tropical Landscapes: A Comparative Study of Urban and Peri-Urban Environments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2025; 17:e70078. [PMID: 40359960 PMCID: PMC12074671 DOI: 10.1111/1758-2229.70078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 05/15/2025]
Abstract
This study assessed the concentration, composition, and spatiotemporal distribution of airborne fungi in a metropolitan area, comparing urban and peri-urban sites across rainy and dry seasons. An 8-month fungal bioaerosol monitoring was conducted using a six-stage Andersen cascade impactor. Data analysis involved generalised linear regression models and multifactorial ANOVA to assess the relationships between meteorological conditions, sampling sites, campaigns, fungal concentrations, and impactor stages. Additionally, a Bayesian neural network was developed to predict bioaerosol dynamics based on the analysed variables. We identified 10 viable fungal species, including Aspergillus niger, Aspergillus nidulans, Aspergillus. fumigatus, Aspergillus terreus, Aspergillus flavus, Aspergillus versicolor, Penicillium spp. and Fusarium oxysporum. Notable differences in the aerodynamic sizes of fungal particles influenced their distribution and potential impact on the respiratory system. The Bayesian neural network successfully predicted fungal bioaerosol concentrations with an accuracy of 76.87%. Our findings reveal the significant role of environmental and human-related factors in shaping bioaerosol distribution in tropical urban contexts. This research provides essential insights into the behaviour of fungal bioaerosols, highlighting their relevance for public health, especially for immunocompromised populations, and their impact on local agriculture. Furthermore, it demonstrates the potential of fungal bioaerosols as bioindicators for environmental monitoring and predictive modelling.
Collapse
Affiliation(s)
| | - Wendy Morgado‐Gamero
- Department of Exact and Natural SciencesUniversidad de la CostaBarranquillaColombia
- Department of BiologyMcGill UniversityMontrealQuebecCanada
| | | | - Carlos Díaz‐Uribe
- Chemistry Program, Faculty of Basic SciencesUniversidad del AtlánticoPuerto ColombiaColombia
| | | | - Héctor Morillas
- Department of Didactic of Mathematics, Experimental and Social Sciences, Faculty of Education and SportUniversity of the Basque CountryVitoria‐GasteizSpain
| | - Brayan Bayona‐Pacheco
- Department of Medicine, Division of Health SciencesUniversidad del NorteBarranquillaColombia
| | | | | |
Collapse
|
3
|
Ding J, Yu S. Mechanisms of Soil Microbial Community Adaptation in Cold-Region Wetlands Under Retrogressive Succession. Life (Basel) 2025; 15:817. [PMID: 40430243 PMCID: PMC12112864 DOI: 10.3390/life15050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2025] [Revised: 05/08/2025] [Accepted: 05/17/2025] [Indexed: 05/29/2025] Open
Abstract
Retrogressive succession alters soil conditions and microbial community dynamics in cold-region wetlands, yet its ecological implications remain understudied. This study explored the structure and function of soil microbial communities across three successional stages: swamp (SP), swamped meadow (SM), and meadow (MW). High-throughput 16S rRNA gene sequencing identified 2852 operational taxonomic units (OTUs), with 1682 shared among all stages (58.85%). Alpha diversity indices, including Shannon, Chao, ACE, and Sobs, were significantly higher in MW, with the Shannon index increasing by approximately 32% compared to SP, indicating enhanced richness and evenness. In contrast, Simpson and Coverage indices were highest in SP. Proteobacteria, Actinobacteriota, and Acidobacteriota were dominant phyla, showing distinct distributions across stages. Beta diversity analysis (PCoA and NMDS) revealed clear separation of microbial communities. Soil organic carbon (SOC), pH, soil water content (SWC), cation exchange capacity (CEC), and bulk density (BD) significantly influenced microbial composition and distribution. Functional prediction using FAPROTAX and BugBase indicated a shift from anaerobic metabolism, nitrogen fixation, and cellulolysis in the SP to aerobic chemoheterotrophy and stress tolerance in MW. These results demonstrate that microbial communities adapt to changing soil environments during retrogressive succession, highlighting their role in ecosystem function and resilience in cold-region wetlands.
Collapse
Affiliation(s)
- Junnan Ding
- Heilongjiang Province Key Laboratory of Cold Region Wetland Ecology and Environment Research, Harbin University, Harbin 150086, China;
| | | |
Collapse
|
4
|
Bogdanova O, Krause K, Pietschmann S, Kothe E. Drivers of fungal and bacterial communities in ectomycorrhizospheres of birch, oak, and pine in a former uranium mining site, Ronneburg, Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10786-10799. [PMID: 40172807 PMCID: PMC12014720 DOI: 10.1007/s11356-025-36330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/23/2025] [Indexed: 04/04/2025]
Abstract
The impact of soil and tree species on fungal and bacterial communities was investigated in a former uranium mining area with field and pot studies of the mycorrhizospheres of birch (Betula pendula), oak (Quercus robur), and pine (Pinus sylvestris). At the initial stages of succession re-created in the pot experiment, tree-species-specific microbial communities were detected. The pot microbiomes showed lower diversity and evenness of fungi and bacteria as compared to field-grown trees. In the natural field setting, the fungal community both in bulk and rhizosphere soil consisted of mainly Thelephoraceae, Inocybaceae and Russulaceae. They contributed with Leotiaceae and Herpotrichiellaceae to 52-85% of overall abundances, showing the soil hyphae impact of ectomycorrhiza in the tree stand. The fungal communities and their distribution patterns reflected host tree specificity and successional stage of the ectomycorrhizosphere. In the bacterial community, the most abundant bacterial classes were Alphaproteobacteria, Acidobacteria, Ktedonobacteria, Bacteroidia, Gammaproteobacteria, and Phycisphaerae representing about 59-80% of all bacterial sequences. The bacterial communities correlated with soil chemical parameters, particularly the content of toxic metals, total nitrogen and C/N ratio. This study allowed to identify drivers for microbial community composition, which might be helpful to develop afforestation strategies in post-mining landscapes.
Collapse
Affiliation(s)
- Olga Bogdanova
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany.
| | - Sebastian Pietschmann
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| |
Collapse
|
5
|
Yang B, Zhai J, He M, Ma R, Li Y, Zhang H, Guo J, Hu Z, Zhang W, Bai J. Linking Soil Properties and Bacterial Communities with Organic Matter Carbon During Vegetation Succession. PLANTS (BASEL, SWITZERLAND) 2025; 14:937. [PMID: 40265837 PMCID: PMC11944809 DOI: 10.3390/plants14060937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025]
Abstract
Land use change driven by vegetation succession significantly enhances soil carbon storage, yet the microbial mechanisms underlying this process remain poorly understood. This study aims to elucidate the mechanistic linkages between bacterial community dynamics and organic matter carbon stabilization across four vegetation succession stages on the Loess Plateau: abandoned farmland (AF), grassland stage (GS), shrub-land stage (SS), and forest stage (FS). We analyzed soil organic matter carbon (SOM_C) fractions, physicochemical properties, and bacterial communities (16S rRNA sequencing), employing structural equation modeling to quantify causal pathways. The results showed that the content of soil total organic matter carbon (TOM_C), labile organic matter carbon (LOM_C), dissolved organic matter carbon (DOM_C), and microbial biomass carbon (MBC) increased progressively with succession, peaking in the FS, with 23.87 g/kg, 4.13 g/kg, 0.33 mg/kg, and 0.14 mg/kg, respectively. Furthermore, vegetation succession also led to heterogeneity in the bacterial community structure. The number of soil bacterial operational taxonomic units (OTUs) for the four succession stages was 9966, 13,463, 14,122, and 10,413, with the shrub-land stage showcasing the highest OTUs. Nine bacterial taxa were strongly correlated with SOM_C stabilization. Affected by soil bacteria, soil physicochemical properties and litter biomass directly influence SOM_C, with the physicochemical pathway (path coefficient: 0.792, p < 0.001) having a greater impact on organic matter carbon than the litter pathway (path coefficient: 0.221, p < 0.001). This study establishes that vegetation succession enhances SOM_C content not only through increased litter inputs but also by reshaping bacterial communities toward taxa that stabilize carbon via physicochemical interactions.
Collapse
Affiliation(s)
- Bin Yang
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China; (B.Y.); (J.Z.); (M.H.); (Y.L.); (H.Z.); (J.G.); (Z.H.)
| | - Jie Zhai
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China; (B.Y.); (J.Z.); (M.H.); (Y.L.); (H.Z.); (J.G.); (Z.H.)
| | - Mengjie He
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China; (B.Y.); (J.Z.); (M.H.); (Y.L.); (H.Z.); (J.G.); (Z.H.)
| | - Ruihao Ma
- Institute of Forest Ecology, Environment and Nature Conservation, Chinese Academy of Forestry, Beijing 100091, China;
| | - Yusong Li
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China; (B.Y.); (J.Z.); (M.H.); (Y.L.); (H.Z.); (J.G.); (Z.H.)
| | - Hanyu Zhang
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China; (B.Y.); (J.Z.); (M.H.); (Y.L.); (H.Z.); (J.G.); (Z.H.)
| | - Jiachang Guo
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China; (B.Y.); (J.Z.); (M.H.); (Y.L.); (H.Z.); (J.G.); (Z.H.)
| | - Zhenhua Hu
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China; (B.Y.); (J.Z.); (M.H.); (Y.L.); (H.Z.); (J.G.); (Z.H.)
| | - Wenhui Zhang
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Jinhua Bai
- College of Forestry, Shanxi Agriculture University, Taigu 030801, China; (B.Y.); (J.Z.); (M.H.); (Y.L.); (H.Z.); (J.G.); (Z.H.)
| |
Collapse
|
6
|
Flores FJ, Mena E, Granda S, Duchicela J. Microbial Community Composition of Explosive-Contaminated Soils: A Metataxonomic Analysis. Microorganisms 2025; 13:453. [PMID: 40005819 PMCID: PMC11858405 DOI: 10.3390/microorganisms13020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Munition disposal practices have significant effects on microbial composition and overall soil health. Explosive soil contamination can disrupt microbial communities, leading to microbial abundance and richness changes. This study investigates the microbial diversity of soils and roots from sites with a history of ammunition disposal, aiming to identify organisms that may play a role in bioremediation. Soil and root samples were collected from two types of ammunition disposal (through open burning and open detonation) and unpolluted sites in Machachi, Ecuador, over two years (2022 and 2023). High-throughput sequencing of the 16S rRNA gene (for bacteria) and the ITS region (for fungi and plants) was conducted to obtain taxonomic profiles. There were significant variations in the composition of bacteria, fungi, and plant communities between polluted and unpolluted sites. Bacterial genera such as Pseudarthrobacter, Pseudomonas, and Rhizobium were more abundant in roots, while Candidatus Udaeobacter dominated unpolluted soils. Fungal classes Dothideomycetes and Sordariomycetes were prevalent across most samples, while Leotiomycetes and Agaricomycetes were also highly abundant in unpolluted samples. Plant-associated reads showed a higher abundance of Poa and Trifolium in root samples, particularly at contaminated sites, and Alchemilla, Vaccinium, and Hypericum were abundant in unpolluted sites. Alpha diversity analysis indicated that bacterial diversity was significantly higher in unpolluted root and soil samples, whereas fungal diversity was not significantly different among sites. Redundancy analysis of beta diversity showed that site, year, and sample type significantly influenced microbial community structure, with the site being the most influential factor. Differentially abundant microbial taxa, including bacteria such as Pseudarthrobacter and fungi such as Paraleptosphaeria and Talaromyces, may contribute to natural attenuation processes in explosive-contaminated soils. This research highlights the potential of certain microbial taxa to restore environments contaminated by explosives.
Collapse
Affiliation(s)
- Francisco J. Flores
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito 170527, Ecuador
| | - Esteban Mena
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
| | - Silvana Granda
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
| | - Jéssica Duchicela
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
| |
Collapse
|
7
|
Kumari M, Tamang A, Swarnkar M, Kumar P, Kumar D, Warghat AR, Hallan V, Pandey SS. Deciphering the endomicrobiome of Podophyllum hexandrum to reveal the endophytic bacterial-association of in-planta podophyllotoxin biosynthesis. World J Microbiol Biotechnol 2025; 41:38. [PMID: 39815146 DOI: 10.1007/s11274-024-04245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/29/2024] [Indexed: 01/18/2025]
Abstract
Understanding the change in plant-associated microbial diversity and secondary metabolite biosynthesis in medicinal plants due to their cultivation in non-natural habitat (NNH) is important to maintain their therapeutic importance. Here, the bacterial endomicrobiome of Podophyllum hexandrum plants of natural habitat (NH; Kardang and Triloknath locations) and NNH (Palampur location) was identified and its association with the biosynthesis of podophyllotoxin (PTOX) was revealed. Rhizomes (source of PTOX) of plants of NH had highest endophytic bacterial diversity compared to NNH-plants. Presence of plant-location and tissue-specific distinct and common taxa were also identified. Acinetobacter, Ralstonia and Pseudomonas were identified as core taxa, present in plants of both NH and NNH. Predictive functional analysis of endophytic communities revealed abundant presence of genes encoding initial enzymes of PTOX biosynthesis and plant growth promotion in the rhizomes and roots of Kardang locations. Higher accumulations of secondary metabolites such as PTOX (2.78 and 2.11 folds in Kardang and Triloknath rhizomes, respectively; 1.48 and 1.71 fold in Kardang and Triloknath roots, respectively), Picropodophyllotoxin (3.08 fold in Kardang rhizomes), Quercetin (1.65 fold in Kardang and 1.32 fold in Triloknath rhizomes; 3.07-fold in Kardang and 1.60 fold in Triloknath roots) and Kaempferol (1.66 and 1.24-fold in Kardang and Triloknath rhizomes, respectively; 2.91 and 1.94-fold in Kardang and Triloknath roots, respectively) were also found in NH compared to NNH. This study provides novel insight into the change in the endomicrobiome of NH and NNH-plants and their correlation to secondary metabolites biosynthesis, and that must be considered for cultivation practices.
Collapse
Affiliation(s)
- Manju Kumari
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anish Tamang
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mohit Swarnkar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
| | - Pawan Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Dinesh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP, 176061, India
| | - Ashish Rambau Warghat
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vipin Hallan
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shiv Shanker Pandey
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Gravesen E, Dušátková L, Athey KJ, Qin J, Krogh PH. Arthropod Food Webs in the Foreland of a Retreating Greenland Glacier: Integrating Molecular Gut Content Analysis With Structural Equation Modelling. Ecol Evol 2024; 14:e70687. [PMID: 39697976 PMCID: PMC11652110 DOI: 10.1002/ece3.70687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
The Arctic has warmed nearly four times faster than the global average since 1979, resulting in rapid glacier retreat and exposing new glacier forelands. These forelands offer unique experimental settings to explore how global warming impacts ecosystems, particularly for highly climate-sensitive arthropods. Understanding these impacts can help anticipate future biodiversity and ecosystem changes under ongoing warming scenarios. In this study, we integrate data on arthropod diversity from DNA gut content analysis-offering insight into predator diets-with quantitative measures of arthropod activity-density at a Greenland glacier foreland using Structural Equation Modelling (SEM). Our SEM analysis reveals both bottom-up and top-down controlled food chains. Bottom-up control, linked to sit-and-wait predator behavior, was prominent for spider and harvestman populations, while top-down control, associated with active search behavior, was key for ground beetle populations. Bottom-up controlled dynamics predominated during the early stages of vegetation succession, while top-down mechanisms dominated in later successional stages further from the glacier, driven largely by increasing temperatures. In advanced successional stages, top-down cascades intensify intraguild predation (IGP) among arthropod predators. This is especially evident in the linyphiid spider Collinsia holmgreni, whose diet included other linyphiid and lycosid spiders, reflecting high IGP. The IGP ratio in C. holmgreni negatively correlated with the activity-density of ground-dwelling prey, likely contributing to the local decline and possible extinction of this cold-adapted species in warmer, late-succession habitats where lycosid spiders dominate. These findings suggest that sustained warming and associated shifts in food web dynamics could lead to the loss of cold-adapted species, while brief warm events may temporarily impact populations without lasting extinction effects.
Collapse
Affiliation(s)
| | - Lenka Dušátková
- Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Kacie J. Athey
- Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| | | | | |
Collapse
|
9
|
Ran F, Zhou C, Wang J. Distribution characteristics of soil active organic carbon at different elevations and its effects on microbial communities in southeast Tibet. Front Microbiol 2024; 15:1458750. [PMID: 39507336 PMCID: PMC11537981 DOI: 10.3389/fmicb.2024.1458750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Global mountain ecosystems have garnered significant attention due to their rich biodiversity and crucial ecological functions; however, there is a dearth of research on the variations in soil active organic carbon across altitudinal gradients and their impacts on microbial communities. In this study, soil samples at an altitude of 3,800 m to 4,400 m were collected from Sejira Mountain in the southeast Tibet, and soil active organic carbon components, soil microbial community diversity, composition and structure distribution and their relationships were systematically analyzed. The results revealed a non-linear relationship between the elevation and the contents of soil organic carbon (SOC) and easily oxidized organic carbon (ROC), with an initial increase followed by a subsequent decrease, reaching their peak at an altitude of 4,200 m. The Shannon diversity of bacteria exhibited a significant decrease with increasing altitude, whereas no significant change was observed in the diversity of fungi. The bacterial community primarily comprised Acidobacteria, Proteobacteria, Chloroflexi, and Actinobacteriota. Among them, the relative abundance of Proteobacteria exhibited a negative correlation with increasing altitude, whereas Actinobacteriota demonstrated a positive correlation with elevation. The fungal communities primarily consisted of Basidiomycota, Ascomycota, and Mortierellomycota, with Ascomycota prevailing at lower altitudes and Basidiomycota dominating at higher altitudes. The diversity and composition of bacterial communities were primarily influenced by altitude, SOC, ROC, and POC (particulate organic carbon). Soil carbon-to-nitrogen ratio (C/N), dissolved organic carbon (DOC), and available phosphorus (AP) emerged as key factors influencing fungal community diversity, while POC played a pivotal role in shaping the composition and structure of the fungal community. In conclusion, we believe that soil active organic carbon components had a greater impact on the bacterial community in the primary forest ecosystem in southeast Tibet with the elevation gradient increasing, which provided a theoretical basis for further understanding of the relationship between the microbial community and soil carbon cycle in the plateau mountain ecosystem under the background of climate change.
Collapse
Affiliation(s)
- Fanglin Ran
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| | - Chenni Zhou
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
- Research Center of Agricultural Economy, School of Economics, Sichuan University of Science and Engineering, Yibin, China
| | - Jianke Wang
- Research Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
- Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, China
- National Key Station of Field Scientific Observation and Experiment, Nyingchi, China
- Key Laboratory of Alpine Vegetation Ecological Security in Tibet, Nyingchi, China
- Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming, China
| |
Collapse
|
10
|
Li H, Tian S, Shang F, Shi X, Zhang Y, Cao Y. Impacts of oxbow lake evolution on sediment microbial community structure in the Yellow River source region. ENVIRONMENTAL RESEARCH 2024; 252:119042. [PMID: 38692420 DOI: 10.1016/j.envres.2024.119042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Oxbow lake formation and evolution have significant impacts on the fragile Yellow River Basin ecosystem. However, the effects of different oxbow lake evolutionary stages on sediment microbial community structure are not yet understood comprehensively. Therefore, microbial community structure in three stages of oxbow lake succession, namely, lotic lake (early stage), semi-lotic lake (middle stage), and lentic lake (late stage), was investigated in the present study in the Yellow River Basin on the Qinghai-Tibet Plateau. Amplicon sequencing was employed to reveal differences in microbial community diversity and composition. The bacterial and fungal communities in sediment were significantly different among the three succession stages and were driven by different environmental factors. In particular, bacterial community structure was influenced primarily by nitrate-nitrogen (N), microbial biomass phosphorus, and total carbon (C) and organic C in the early, middle, and late stages, respectively. Conversely, fungal community structure was influenced primarily by ammonium-N in the early stage and by moisture content in the middle and late stages. However, the predicted functions of the microbial communities did not exhibit significant differences across the three succession stages. Both bacteria and fungi were influenced significantly by stochastic factors. Homogeneous selection had a high relative contribution to bacteria community assembly in the middle stage, whereas the relative contributions of heterogeneous selection processes to fungal community assembly increased through the three stages. As succession time increased, the total number of keystone species increased gradually, and the late succession stage had high network complexity and the highest network stability. The findings could facilitate further elucidation of the evolution mechanisms of oxbow lake source area, high-altitude river evolution dynamics, in addition to aiding a deeper understanding of the long-term ecological evolution patterns of source river ecosystems.
Collapse
Affiliation(s)
- Huinan Li
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Shimin Tian
- Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, YRCC, Zhengzhou, 450003, China.
| | - Fude Shang
- School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Xiaoyu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yang Zhang
- Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, YRCC, Zhengzhou, 450003, China
| | - Yongtao Cao
- Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Ecological Environment Protection and Restoration of Yellow River Basin, YRCC, Zhengzhou, 450003, China
| |
Collapse
|
11
|
Dal-Ferro LS, Schenider A, Missiaggia DG, Silva LJ, Maciel-Silva AS, Figueredo CC. Organizing a global list of cyanobacteria and algae from soil biocrusts evidenced great geographic and taxonomic gaps. FEMS Microbiol Ecol 2024; 100:fiae086. [PMID: 38816216 PMCID: PMC11221558 DOI: 10.1093/femsec/fiae086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 02/12/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Biocrusts determine soil stability and resiliency, with a special role played by oxygenic photoautotrophic microorganisms in these communities. We evaluated temporal and geographic trends in studies focused on these microorganisms in biocrusts. Two databases were surveyed to obtain scientific articles published from 1998 to 2020 containing the terms 'biocrusts,' 'algae,' and 'cyanobacteria.' Although interest in biocrusts has increased recently, their ecological importance is still little explored. The scientific articles that mentioned a species list of cyanobacteria and/or algae revealed a very heterogeneous geographic distribution of research. Biocrusts have not been explored in many regions and knowledge in the tropics, where these communities showed high species richness, is limited. Geographic gaps were detected and more detailed studies are needed, mainly where biocrust communities are threatened by anthropogenic impacts. Aiming to address these knowledge gaps, we assembled a taxonomic list of all algae and cyanobacteria found in these articles, including information on their occurrence and ecology. This review is an updated global taxonomic survey of biocrusts, which importantly reveals their high species richness of oxygenic photoautotrophic microorganisms. We believe this database will be useful to future research by providing valuable taxonomic and biogeographic information regarding algae and cyanobacteria in biocrusts.
Collapse
Affiliation(s)
- Luana Soares Dal-Ferro
- Departamento de Botânica, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Arthur Schenider
- Departamento de Botânica, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Dabny Goulart Missiaggia
- Departamento de Botânica, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Libério Junio Silva
- Instituto Nacional de Pesquisas Espaciais, Divisão de Observação da Terra e Geoinformática (DIOTG), 12227-010 São José dos Campos, São Paulo, Brazil
| | - Adaíses Simone Maciel-Silva
- Departamento de Botânica, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Cleber Cunha Figueredo
- Departamento de Botânica, Universidade Federal de Minas Gerais, P.O. Box 486, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Wu H, Gao T, Dini-Andreote F, Xiao N, Zhang L, Kimirei IA, Wang J. Biotic and abiotic factors interplay in structuring the dynamics of microbial co-occurrence patterns in tropical mountainsides. ENVIRONMENTAL RESEARCH 2024; 250:118517. [PMID: 38401680 DOI: 10.1016/j.envres.2024.118517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Ecological interactions are important for maintaining biodiversity and ecosystem functions. Particularly in stream biofilms, little is known about the distributional patterns of different taxonomic groups and their potential interactions along elevational gradients. Here, we investigated the bacterial and fungal community structures of stream biofilms across elevational gradients on Mount Kilimanjaro, and explored patterns of their distribution, diversity, community structures, and taxa co-occurrence. We found that fungal and bacterial richness were more convergent at higher elevations, while their community structures became significantly more divergent. Inferred network complexity and stability significantly decreased with increasing elevation for fungi, while an opposite trend was observed for bacteria. Further quantitative analyses showed that network structures of bacteria and fungi were more divergent as elevation increased. This pattern was strongly associated with shifts in abiotic factors, such as mean annual temperatures, water PO43--P, and stream width. By constructing bipartite networks, we showed the fungal-bacterial network to be less redundant, more clustering, and unstable with increasing elevation. Abiotic factors (e.g., temperatures and stream width) and microbial community properties (i.e., structure and composition) significantly explained the dynamic changes in fungal-bacterial network properties. Taken together, this study provides evidence for the interplay of biotic and abiotic factors structuring potential microbial interactions in stream biofilms along a mountainside elevational gradient.
Collapse
Affiliation(s)
- Hao Wu
- College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tianheng Gao
- College of Oceanography, Hohai University, Nanjing, 210098, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing, Jiangsu Province, 210023, China.
| | - Francisco Dini-Andreote
- Department of Plant Science & Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA; The One Health Microbiome Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Nengwen Xiao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lu Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ismael Aaron Kimirei
- Tanzania Fisheries Research Institute, Headquarter, Dar Es Salaam, P.O. Box 9750, Tanzania
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
13
|
Mukhia S, Kumar A, Kumar R. Bacterial community distribution and functional potentials provide key insights into their role in the ecosystem functioning of a retreating Eastern Himalayan glacier. FEMS Microbiol Ecol 2024; 100:fiae012. [PMID: 38305149 PMCID: PMC10876117 DOI: 10.1093/femsec/fiae012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/03/2024] Open
Abstract
Himalayan glaciers are receding at an exceptional rate, perturbing the local biome and ecosystem processes. Understanding the microbial ecology of an exclusively microbe-driven biome provides insights into their contributions to the ecosystem functioning through biogeochemical fluxes. Here, we investigated the bacterial communities and their functional potential in the retreating East Rathong Glacier (ERG) of Sikkim Himalaya. Amplicon-based taxonomic classification revealed the dominance of the phyla Proteobacteria, Bacteroidota, and candidate Patescibacteria in the glacial sites. Further, eight good-quality metagenome-assembled genomes (MAGs) of Proteobacteria, Patescibacteria, Acidobacteriota, and Choloflexota retrieved from the metagenomes elucidated the microbial contributions to nutrient cycling. The ERG MAGs showed aerobic respiration as a primary metabolic feature, accompanied by carbon fixation and complex carbon degradation potentials. Pathways for nitrogen metabolism, chiefly dissimilatory nitrate reduction and denitrification, and a complete sulphur oxidation enzyme complex for sulphur metabolism were identified in the MAGs. We observed that DNA repair and oxidative stress response genes complemented with osmotic and periplasmic stress and protein chaperones were vital for adaptation against the intense radiation and stress conditions of the extreme Himalayan niche. Current findings elucidate the microbiome and associated functional potentials of a vulnerable glacier, emphasizing their significant ecological roles in a changing glacial ecosystem.
Collapse
Affiliation(s)
- Srijana Mukhia
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur 176061, Himachal Pradesh, India
- Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Anil Kumar
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR – Institute of Himalayan Bioresource Technology, Post Box No. 06, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Purcell AM, Dijkstra P, Hungate BA, McMillen K, Schwartz E, van Gestel N. Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula. THE ISME JOURNAL 2023; 17:2290-2302. [PMID: 37872274 PMCID: PMC10689830 DOI: 10.1038/s41396-023-01536-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Ice-free terrestrial environments of the western Antarctic Peninsula are expanding and subject to colonization by new microorganisms and plants, which control biogeochemical cycling. Measuring growth rates of microbial populations and ecosystem carbon flux is critical for understanding how terrestrial ecosystems in Antarctica will respond to future warming. We implemented a field warming experiment in early (bare soil; +2 °C) and late (peat moss-dominated; +1.2 °C) successional glacier forefield sites on the western Antarctica Peninsula. We used quantitative stable isotope probing with H218O using intact cores in situ to determine growth rate responses of bacterial taxa to short-term (1 month) warming. Warming increased the growth rates of bacterial communities at both sites, even doubling the number of taxa exhibiting significant growth at the early site. Growth responses varied among taxa. Despite that warming induced a similar response for bacterial relative growth rates overall, the warming effect on ecosystem carbon fluxes was stronger at the early successional site-likely driven by increased activity of autotrophs which switched the ecosystem from a carbon source to a carbon sink. At the late-successional site, warming caused a significant increase in growth rate of many Alphaproteobacteria, but a weaker and opposite gross ecosystem productivity response that decreased the carbon sink-indicating that the carbon flux rates were driven more strongly by the plant communities. Such changes to bacterial growth and ecosystem carbon cycling suggest that the terrestrial Antarctic Peninsula can respond fast to increases in temperature, which can have repercussions for long-term elemental cycling and carbon storage.
Collapse
Affiliation(s)
- Alicia M Purcell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kelly McMillen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Natasja van Gestel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- TTU Climate Center, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
15
|
Bhagat NR, Chauhan P, Verma P, Mishra A, Bharti VK. High-altitude and low-altitude adapted chicken gut-microbes have different functional diversity. Sci Rep 2023; 13:20856. [PMID: 38012260 PMCID: PMC10682461 DOI: 10.1038/s41598-023-48147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
Recently, there has been considerable interest in the functions of gut microbiota in broiler chickens in relation to their use as feed additives. However, the gut-microbiota of chickens reared at different altitudes are not well documented for their potential role in adapting to prevailing conditions and functional changes. In this context, the present study investigates the functional diversity of gut-microbes in high-altitude (HACh) and low-altitude adapted chickens (LACh), assessing their substrate utilization profile through Biolog Ecoplates technology. This will help in the identification of potential microbes or their synthesized metabolites, which could be beneficial for the host or industrial applications. Results revealed that among the 31 different types of studied substrates, only polymers, carbohydrates, carboxylic acids, and amine-based substrates utilization varied significantly (p < 0.05) among the chickens reared at two different altitudes where gut-microbes of LACh utilized a broad range of substrates than the HACh. Further, diversity indices (Shannon and MacIntosh) analysis in LACh samples showed significant (p < 0.05) higher richness and evenness of microbes as compared to the HACh samples. However, no significant difference was observed in the Simpson diversity index in gut microbes of lowversus high-altitude chickens. In addition, the Principal Component Analysis elucidated variation in substrate preferences of gut-microbes, where 13 and 8 carbon substrates were found to constitute PC1 and PC2, respectively, where γ-aminobutyric acid, D-glucosaminic acid, i-erythritol and tween 40 were the most relevant substrates that had a major effect on PC1, however, alpha-ketobutyric acid and glycyl-L-glutamic acid affected PC2. Hence, this study concludes that the gut-microbes of high and low-altitudes adapted chickens use different carbon substrates so that they could play a vital role in the health and immunity of an animal host based on their geographical location. Consequently, this study substantiates the difference in the substrate utilization and functional diversity of the microbial flora in chickens reared at high and low altitudes due to altitudinal changes.
Collapse
Affiliation(s)
- Neha Rani Bhagat
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Priyanka Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- School of Sciences, P. P. Savani University, NH-8, GETCO, Near Biltech, Kosamba, Surat, 394125, India
| | - Pratibha Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Aradhana Mishra
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, Uttar Pradesh, India
| | - Vijay K Bharti
- DRDO-Defence Institute of High-Altitude Research (DIHAR), Ministry of Defence, Leh, 194101, UT Ladakh, India.
| |
Collapse
|
16
|
Sun S, Ma B, Wang G, Tan X. Linking microbial biogeochemical cycling genes to the rhizosphere of pioneering plants in a glacier foreland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:161944. [PMID: 36737018 DOI: 10.1016/j.scitotenv.2023.161944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Glacier retreat raises global concerns but brings about the moment to study soil and ecosystem development. In nutrient-limited glacier forelands, the adaptability of pioneering plant and microbial species is facilitated by their interactions, including rhizosphere effects, but the details of this adaptability are not yet understood. In the rhizosphere of five pioneering plants, we comprehensively deciphered the microbial taxonomic and functional compositions. Two nitrogen-fixing microbial genera, Bradyrhizobium and Mesorhizobium, were among the most abundant taxa in the rhizomicrobiome. Moreover, several rhizobial genera, including Rhizobium, Pararhizobium, Allohrizobium, and Sinorhizobium, head the list of major modules in microbial co-occurrence networks, highlighting the vital roles of nitrogen-cycling taxa in the rhizomicrobiome of pioneering plants. Microbial genes involved in nitrogen, sulfur, phosphorus, and methane cycles were simultaneously correlated with microbial community dissimilarity, and 12 functional pathways were detected with distinct relative abundances among soils. Zooming in on the nitrogen-cycling genes, nifW, narC, nasA, nasB, and nirA were mainly responsible for the significant differences between soils. Furthermore, soil pH and the carbon/nitrogen ratio were among the topsoil properties interacting with nitrogen and sulfur cycling gene dissimilarity. These results explicitly linked biogeochemical cycling genes to the rhizomicrobiome and soil properties, revealing the roles of these genes as microbial drivers in mediating rhizosphere soil-plant-microbiome interactions.
Collapse
Affiliation(s)
- Shouqin Sun
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China.
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Genxu Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China.
| | - Xiangfeng Tan
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
17
|
Díaz M, Monfort-Lanzas P, Quiroz-Moreno C, Rivadeneira E, Castillejo P, Arnau V, Díaz W, Agathos SN, Sangari FJ, Jarrín-V P, Molina CA. The microbiome of the ice-capped Cayambe Volcanic Complex in Ecuador. Front Microbiol 2023; 14:1154815. [PMID: 37213502 PMCID: PMC10196084 DOI: 10.3389/fmicb.2023.1154815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/17/2023] [Indexed: 05/23/2023] Open
Abstract
A major challenge in microbial ecology is to understand the principles and processes by which microbes associate and interact in community assemblages. Microbial communities in mountain glaciers are unique as first colonizers and nutrient enrichment drivers for downstream ecosystems. However, mountain glaciers have been distinctively sensitive to climate perturbations and have suffered a severe retreat over the past 40 years, compelling us to understand glacier ecosystems before their disappearance. This is the first study in an Andean glacier in Ecuador offering insights into the relationship of physicochemical variables and altitude on the diversity and structure of bacterial communities. Our study covered extreme Andean altitudes at the Cayambe Volcanic Complex, from 4,783 to 5,583 masl. Glacier soil and ice samples were used as the source for 16S rRNA gene amplicon libraries. We found (1) effects of altitude on diversity and community structure, (2) the presence of few significantly correlated nutrients to community structure, (3) sharp differences between glacier soil and glacier ice in diversity and community structure, where, as quantified by the Shannon γ-diversity distribution, the meta-community in glacier soil showed more diversity than in glacier ice; this pattern was related to the higher variability of the physicochemical distribution of variables in the former substrate, and (4) significantly abundant genera associated with either high or low altitudes that could serve as biomarkers for studies on climate change. Our results provide the first assessment of these unexplored communities, before their potential disappearance due to glacier retreat and climate change.
Collapse
Affiliation(s)
- Magdalena Díaz
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Ingeniería Química, Universidad Central del Ecuador, Quito, Ecuador
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
- *Correspondence: Magdalena Díaz,
| | - Pablo Monfort-Lanzas
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Cristian Quiroz-Moreno
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, United States
| | - Erika Rivadeneira
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
| | - Pablo Castillejo
- Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud (BIOMAS), Universidad de las Américas, Quito, Ecuador
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad Internacional SEK, Quito, Ecuador
| | - Vicente Arnau
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Wladimiro Díaz
- Institute of Integrative Systems Biology (ISysBio), University of Valencia and Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Spiros N. Agathos
- Earth and Life Institute (ELI), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Félix J. Sangari
- Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC – Universidad de Cantabria, Santander, Spain
| | - Pablo Jarrín-V
- Dirección de Innovación, Instituto Nacional de Biodiversidad INABIO, Quito, Ecuador
| | - C. Alfonso Molina
- Instituto de Investigación en Zoonosis (CIZ), Universidad Central del Ecuador, Quito, Ecuador
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Central del Ecuador, Quito, Ecuador
- C. Alfonso Molina,
| |
Collapse
|
18
|
Peck C, Jackobs F, Smith E. The PortaLyzer, a DIY tool that allows environmental DNA extraction in the field. HARDWAREX 2022; 12:e00373. [PMID: 36393914 PMCID: PMC9644035 DOI: 10.1016/j.ohx.2022.e00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The PortaLyzer is a portable homemade device that allows researchers to perform bead-beating steps commonly found in environmental DNA (eDNA) extraction protocols in the field without access to power. This allows researchers to preserve in situ organism abundance by beginning eDNA extraction quickly. The PortaLyzer is composed of a variable speed, battery-powered multi-tool and a vortexer adapter plate. We used the PortaLyzer, in conjunction with the Qiagen DNEasy PowerSoil Pro kit, to successfully field process samples taken from the forelands of the Sólheimajökull and Kvíárjökull glaciers in Iceland, as well as soil samples acquired from a prairie in Indiana. Additionally, we provide evidence that samples held in Buffer CD2 of the DNEasy PowerSoil Pro Kit may be transported to traditional lab spaces and processed up to one month after the initial protocol steps, and still provide an equivalent DNA quality and abundance yield as those processed the same day. These improvements to DNA extraction protocols give researchers more flexibility while sampling, shipping and processing eDNA samples.
Collapse
|
19
|
Dong K, Yu Z, Kerfahi D, Lee SS, Li N, Yang T, Adams JM. Soil microbial co-occurrence networks become less connected with soil development in a high Arctic glacier foreland succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152565. [PMID: 34953844 DOI: 10.1016/j.scitotenv.2021.152565] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Classically, ecologists have considered that biota becomes more integrated and interdependent with ecosystem development in primary successional environments. However, recent work on soil microbial communities suggests that there may in fact be no change in network integration over successional time series. Here, we performed a test of this principle by identifying network-level topological features of the soil microbial co-occurrence networks in the primary successional foreland environment of the retreating high-Arctic glacier of Midtre Lovénbreen, Svalbard. Soil was sampled at sites along the foreland of inferred ages 10-90 years since deglaciation. DNA was extracted and amplicon sequenced for 16 s rRNA genes for bacteria and ITS1 region for fungi. Despite the chronologically-related soil pH decline and organic C/N accumulation, analysis on network-level topological features showed network integration did not change with inferred chronological ages, whereas network integration declined with decreasing pH and increasing total organic carbon (TOC) - both factors that can be viewed as an indicator of soil development. We also found that bacteria played a greater role in the network structure than fungi, with all keystone species in the microbial co-occurrence network being bacteria species. Both number and relative abundance of the keystone species were significantly higher when soil pH increased or TOC decreased. It appears that in the more extreme and less productive conditions of early primary succession, integration between members of soil biota into consortia may play a greater role in niche adaptation and survival. Our finding also emphasizes that ecosystem development is not simply a product of time but is influenced by locally heterogeneous factors.
Collapse
Affiliation(s)
- Ke Dong
- Life Science Major, Kyonggi University, Suwon, South Korea
| | - Zhi Yu
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Dorsaf Kerfahi
- School of Natural Sciences, Department of Biological Sciences, Keimyung University, Daegu, South Korea
| | - Sang-Seob Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon, South Korea
| | - Nan Li
- Key laboratory of Ministry of Education for Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| | - Teng Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
Macías-Pérez LA, Levard C, Barakat M, Angeletti B, Borschneck D, Poizat L, Achouak W, Auffan M. Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127470. [PMID: 34687997 DOI: 10.1016/j.jhazmat.2021.127470] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Bauxite residue is the alkaline byproduct generated during alumina extraction and is commonly landfilled in open-air deposits. The growth in global alumina production have raised environmental concerns about these deposits since no large-scale reuses exist to date. Microbial-driven techniques including bioremediation and critical metal bio-recovery are now considered sustainable and cost-effective methods to revalorize bauxite residues. However, the establishment of microbial communities and their active role in these strategies are still poorly understood. We thus determined the geochemical composition of different bauxite residues produced in southern France and explored the development of bacterial and fungal communities using Illumina high-throughput sequencing. Physicochemical parameters were influenced differently by the deposit age and the bauxite origin. Taxonomical analysis revealed an early-stage microbial community dominated by haloalkaliphilic microorganisms and strongly influenced by chemical gradients. Microbial richness, diversity and network complexity increased significantly with the deposit age, reaching an equilibrium community composition similar to typical soils after decades of natural weathering. Our results suggested that salinity, pH, and toxic metals affected the bacterial community structure, while fungal community composition showed no clear correlations with chemical variations.
Collapse
Affiliation(s)
- Luis Alberto Macías-Pérez
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France; Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Clément Levard
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | - Mohamed Barakat
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Bernard Angeletti
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | - Daniel Borschneck
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France.
| | | | - Wafa Achouak
- Aix Marseille Univ, CEA, CNRS, BIAM, LEMIRE, Laboratory of Microbial Ecology of the Rhizosphere, ECCOREV FR 3098, F-13108 St-Paul-lez-Durance, France.
| | - Mélanie Auffan
- Aix Marseille Université, CNRS, IRD, INRAE, Collège de France, CEREGE, Technopôle de l'Arbois-Méditerranée, BP80, 13545 Aix-en-Provence, France; Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
21
|
Shifts in Bacterial Community Composition and Functional Traits at Different Time Periods Post-deglaciation of Gangotri Glacier, Himalaya. Curr Microbiol 2022; 79:91. [PMID: 35129698 DOI: 10.1007/s00284-022-02779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/20/2022] [Indexed: 11/03/2022]
Abstract
Climate change causes an unprecedented increase in glacial retreats. The melting ice exposes land for colonization and diversification of bacterial communities leading to soil development, changes in plant community composition, and ecosystem functioning. Although a few studies have focused on macro-level deglaciation impacts, little is known about such effects on the bacterial community succession. Here, we provide meta-barcoding-based insight into the ecological attributes of bacterial community across different retreating periods of the Gangotri glacier, western Himalaya. We selected three sites along a terminal moraine representing recent (~ 20 yrs), intermediate (~ 100 yrs), and late (~ 300 yrs) deglaciation periods. Results showed that the genus Mycobacterium belonging to phylum Actinobacteria dominated recently deglaciated land. Relative abundance of these pioneer bacterial taxa decreased by 20-50% in the later stages with the emergence of new and rising of the less abundant members of the phyla Proteobacteria, Firmicutes, Planctomycetes, Acidobacteria, Verrucomicrobia, Candidatus TM6, and Chloroflexi. The community in the recent stage was less rich and harbored competitive interactions, while the later stages experienced a surge in bacterial diversity with cooperative interactions. The shift in α-diversity and composition was strongly influenced by soil organic carbon, carbon to nitrogen ratio, and soil moisture content. The functional analyses revealed a progression from a metabolism focused to a functionally progressive community required for bacterial co-existence and succession in plant communities. Overall, the findings indicate that the bacterial communities inhabit, diversify, and develop specialized functions post-deglaciation leading to nutrient inputs to soil and vegetation development, which may provide feedback to climate change.
Collapse
|
22
|
Marian M, Licciardello G, Vicelli B, Pertot I, Perazzolli M. Ecology and potential functions of plant-associated microbial communities in cold environments. FEMS Microbiol Ecol 2022; 98:fiab161. [PMID: 34910139 PMCID: PMC8769928 DOI: 10.1093/femsec/fiab161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Complex microbial communities are associated with plants and can improve their resilience under harsh environmental conditions. In particular, plants and their associated communities have developed complex adaptation strategies against cold stress. Although changes in plant-associated microbial community structure have been analysed in different cold regions, scarce information is available on possible common taxonomic and functional features of microbial communities across cold environments. In this review, we discuss recent advances in taxonomic and functional characterization of plant-associated microbial communities in three main cold regions, such as alpine, Arctic and Antarctica environments. Culture-independent and culture-dependent approaches are analysed, in order to highlight the main factors affecting the taxonomic structure of plant-associated communities in cold environments. Moreover, biotechnological applications of plant-associated microorganisms from cold environments are proposed for agriculture, industry and medicine, according to biological functions and cold adaptation strategies of bacteria and fungi. Although further functional studies may improve our knowledge, the existing literature suggest that plants growing in cold environments harbor complex, host-specific and cold-adapted microbial communities, which may play key functional roles in plant growth and survival under cold conditions.
Collapse
Affiliation(s)
- Malek Marian
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Giorgio Licciardello
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Bianca Vicelli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Ilaria Pertot
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all'Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| |
Collapse
|
23
|
Composition and Potential Functions of Rhizobacterial Communities in a Pioneer Plant from Andean Altiplano. DIVERSITY 2021. [DOI: 10.3390/d14010014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Plant microbiota that associate with pioneer plants are essential to their growth and adaptation to harsh conditions found in the Central Volcanic Zone of the Andes. In this sense, the rhizosphere of pioneer species represents a unique opportunity to examine how bacterial communities are recruited and support the growth of plants under abiotic stress conditions, such low nutrient availability, high solar irradiation, water scarcity, soil salinity, etc. In this study, we explored the community composition and potential functions of rhizobacteria obtained from specimens of Parastrephia quadrangularis (Meyen) Cabrera, commonly called Tola, grown on the slopes of the Guallatiri, Isluga, and Lascar volcanoes in the Atacama Desert of Chile by using 16S rRNA amplicon sequencing. Sequence analysis showed that the Actinobacteria, Proteobacteria, Acidobacteria, and Bacteroidetes were the most abundant phyla of the rhizobacterial communities examined. A similar diversity, richness, and abundance of OTUs were also observed in rhizosphere samples obtained from different plants. However, most of OTUs were not shared, suggesting that each plant recruits a specific rhizobacterial communities independently of volcanoes slope. Analyses of predicted functional activity indicated that the functions were mostly attributed to chemoheterotrophy and aerobic chemoheterotrophy, followed by nitrogen cycling (nitrate reduction and denitrification), and animal parasites or symbionts. In addition, co-occurrence analysis revealed that complex rhizobacterial interactions occur in P. quadrangularis rhizosphere and that members of the Patulibacteraceae comprise a keystone taxon. This study extends our understanding on the composition and functions of the rhizobiome, which is pivotal for the adaptability and colonization of pioneer plant to harsh conditions of the Atacama Desert, widely recognized as the driest place on planet Earth.
Collapse
|
24
|
Kelbrick M, Oliver JAW, Ramkissoon NK, Dugdale A, Stephens BP, Kucukkilic-Stephens E, Schwenzer SP, Antunes A, Macey MC. Microbes from Brine Systems with Fluctuating Salinity Can Thrive under Simulated Martian Chemical Conditions. Life (Basel) 2021; 12:life12010012. [PMID: 35054406 PMCID: PMC8781782 DOI: 10.3390/life12010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/15/2021] [Accepted: 12/18/2021] [Indexed: 12/01/2022] Open
Abstract
The waters that were present on early Mars may have been habitable. Characterising environments analogous to these waters and investigating the viability of their microbes under simulated martian chemical conditions is key to developing hypotheses on this habitability and potential biosignature formation. In this study, we examined the viability of microbes from the Anderton Brine Springs (United Kingdom) under simulated martian chemistries designed to simulate the chemical conditions of water that may have existed during the Hesperian. Associated changes in the fluid chemistries were also tested using inductively coupled plasma-optical emission spectroscopy (ICP-OES). The tested Hesperian fluid chemistries were shown to be habitable, supporting the growth of all of the Anderton Brine Spring isolates. However, inter and intra-generic variation was observed both in the ability of the isolates to tolerate more concentrated fluids and in their impact on the fluid chemistry. Therefore, whilst this study shows microbes from fluctuating brines can survive and grow in simulated martian water chemistry, further investigations are required to further define the potential habitability under past martian conditions.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Biology Department, Edge Hill University, Ormskirk L39 4QP, UK;
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3GJ, UK
- Correspondence: (M.K.); (M.C.M.)
| | | | - Nisha K. Ramkissoon
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (S.P.S.)
| | - Amy Dugdale
- AstrobiologyOU, School of Physical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes W23 F2H6, UK;
- Biology Department, Maynooth University, Maynooth, W23 F2H6 Kildare, Ireland
| | - Ben P. Stephens
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (S.P.S.)
| | - Ezgi Kucukkilic-Stephens
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (S.P.S.)
| | - Susanne P. Schwenzer
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (S.P.S.)
| | - André Antunes
- State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology (MUST), Macau, China;
- China National Space Administration (CNSA), Macau Center for Space Exploration and Science, Macau, China
| | - Michael C. Macey
- AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, UK; (N.K.R.); (B.P.S.); (E.K.-S.); (S.P.S.)
- Correspondence: (M.K.); (M.C.M.)
| |
Collapse
|
25
|
Krauze P, Wagner D, Yang S, Spinola D, Kühn P. Influence of prokaryotic microorganisms on initial soil formation along a glacier forefield on King George Island, maritime Antarctica. Sci Rep 2021; 11:13135. [PMID: 34162928 PMCID: PMC8222374 DOI: 10.1038/s41598-021-92205-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/02/2021] [Indexed: 02/05/2023] Open
Abstract
Compared to the 1970s, the edge of the Ecology Glacier on King George Island, maritime Antarctica, is positioned more than 500 m inwards, exposing a large area of new terrain to soil-forming processes and periglacial climate for more than 40 years. To gain information on the state of soil formation and its interplay with microbial activity, three hyperskeletic Cryosols (vegetation cover of 0-80%) deglaciated after 1979 in the foreland of the Ecology Glacier and a Cambic Cryosol (vegetation cover of 100%) distal to the lateral moraine deglaciated before 1956 were investigated by combining soil chemical and microbiological methods. In the upper part of all soils, a decrease in soil pH was observed, but only the Cambic Cryosol showed a clear direction of pedogenic and weathering processes, such as initial silicate weathering indicated by a decreasing Chemical Index of Alteration with depth. Differences in the development of these initial soils could be related to different microbial community compositions and vegetation coverage, despite the short distance among them. We observed-decreasing with depth-the highest bacterial abundances and microbial diversity at vegetated sites. Multiple clusters of abundant amplicon sequence variants were found depending on the site-specific characteristics as well as a distinct shift in the microbial community structure towards more similar communities at soil depths > 10 cm. In the foreland of the Ecology Glacier, the main soil-forming processes on a decadal timescale are acidification and accumulation of soil organic carbon and nitrogen, accompanied by changes in microbial abundances, microbial community compositions, and plant coverage, whereas quantifiable silicate weathering and the formation of pedogenic oxides occur on a centennial to a millennial timescale after deglaciation.
Collapse
Affiliation(s)
- Patryk Krauze
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, 14473, Potsdam, Germany.
| | - Dirk Wagner
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, 14473, Potsdam, Germany
- Institute of Geosciences, University of Potsdam, 14476, Potsdam, Germany
| | - Sizhong Yang
- GFZ, German Research Centre for Geosciences, Helmholtz Centre Potsdam, Section Geomicrobiology, 14473, Potsdam, Germany
| | - Diogo Spinola
- Department of Geosciences, Research Area Geography, Laboratory of Soil Science and Geoecology, Eberhard Karls University Tübingen, 72070, Tübingen, Germany
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, 99775-6160, USA
| | - Peter Kühn
- Department of Geosciences, Research Area Geography, Laboratory of Soil Science and Geoecology, Eberhard Karls University Tübingen, 72070, Tübingen, Germany
| |
Collapse
|
26
|
Jiang H, Chen Y, Hu Y, Wang Z, Lu X. Soil Bacterial Communities and Diversity in Alpine Grasslands on the Tibetan Plateau Based on 16S rRNA Gene Sequencing. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.630722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The Tibetan Plateau, widely known as the world’s “Third Pole,” has gained extensive attention due to its susceptibility to climate change. Alpine grasslands are the dominant ecosystem on the Tibetan Plateau, albeit little is known about the microbial community and diversity among different alpine grassland types. Here, soil bacterial composition and diversity in the upper soils of five alpine grassland ecosystems, alpine meadow (AM), alpine steppe (AS), alpine meadow steppe (AMS), alpine desert (AD), and alpine desert steppe (ADS), were investigated based on the 16S rRNA gene sequencing technology. Actinobacteria (46.12%) and Proteobacteria (29.67%) were the two dominant soil bacteria at the phylum level in alpine grasslands. There were significant differences in the relative abundance at the genus level among the five different grassland types, especially for the Rubrobacter, Solirubrobacter, Pseudonocardia, Gaiella, Haliangium, and Geodermatophilus. Six alpha diversity indices were calculated based on the operational taxonomic units (OTUs), including Good’s coverage index, phylogenetic diversity (PD) whole tree index, Chao1 index, observed species index, Shannon index, and Simpson index. The Good’s coverage index value was around 0.97 for all the grassland types in the study area, meaning the soil bacteria samplings sequenced sufficiently. No statistically significant difference was shown in other diversity indices’ value, indicating the similar richness and evenness of soil bacteria in these alpine grasslands. The beta diversity, represented by Bray–Curtis dissimilarity and the non-metric multidimensional scaling (NMDS), showed that OTUs were clustered within alpine grasslands, indicating a clear separation of soil bacterial communities. In addition, soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP), pH, and soil water content (SWC) were closely related to the variations in soil bacterial compositions. These results indicated that soil bacterial taxonomic compositions were similar, while soil bacterial community structures were different among the five alpine grassland types. The environmental conditions, including SOM, TN, TP, pH, and SWC, might influence the soil bacterial communities on the Tibetan Plateau.
Collapse
|
27
|
Del Moral Á, Garrido-Benavent I, Durán J, Lehmann JR, Rodríguez A, Heiðmarsson S, de Los Ríos A. Are recently deglaciated areas at both poles colonised by the same bacteria? FEMS Microbiol Lett 2021; 368:6122588. [PMID: 33507249 DOI: 10.1093/femsle/fnab011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Polar glacier forefields offer an unprecedented framework for studying community assembly processes in regions that are geographically and climatically isolated. Through amplicon sequence variant (ASV) inference, we compared the composition and structure of soil bacterial communities from glacier forefields in Iceland and Antarctica to assess overlap between communities and the impact of established cryptogamic covers on the uniqueness of their taxa. These pioneer microbial communities were found to share only 8% of ASVs and each taxonomic group's contribution to the shared ASV data subset was heterogeneous and independent of their relative abundance. Although the presence of ASVs specific to one glacier forefield and/or different cryptogam cover values confirms the existence of habitat specialist bacteria, our data show that the influence of cryptogams on the edaphic bacterial community structure also varied also depending on the taxonomic group. Hence, the establishment of distinct cryptogamic covers is probably not the only factor driving the uniqueness of bacterial communities at both poles. The structure of bacterial communities colonising deglaciated areas seems also conditioned by lineage-specific limitations in their dispersal capacity and/or their establishment and persistence in these isolated and hostile regions.
Collapse
Affiliation(s)
- Álvaro Del Moral
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, Serrano 115 dpdo, E-28006 Madrid, Spain.,AstrobiologyOU, School of Environment, Earth and Ecosystem Sciences, STEM Faculty, The Open University, Walton Hall, Kents Hill, MK7 6AA, Milton Keynes, UK
| | - Isaac Garrido-Benavent
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, Serrano 115 dpdo, E-28006 Madrid, Spain
| | - Jorge Durán
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calzada Martin de Freitas, 3000-456 Coimbra, Portugal
| | - Jan R Lehmann
- Remote Sensing and Spatial Modelling, Institute of Landscape Ecology, University of Münster, Heisenbergstrasse 2, 48149 Münster, Germany
| | - Alexandra Rodríguez
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calzada Martin de Freitas, 3000-456 Coimbra, Portugal
| | - Starri Heiðmarsson
- Icelandic Institute of Natural History, Borgir vio Noroursloo 600-Akureyri, Iceland
| | - Asunción de Los Ríos
- Department of Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences (MNCN), CSIC, Serrano 115 dpdo, E-28006 Madrid, Spain
| |
Collapse
|
28
|
Calvillo-Medina RP, Gunde-Cimerman N, Escudero-Leyva E, Barba-Escoto L, Fernández-Tellez EI, Medina-Tellez AA, Bautista-de Lucio V, Ramos-López MÁ, Campos-Guillén J. Richness and metallo-tolerance of cultivable fungi recovered from three high altitude glaciers from Citlaltépetl and Iztaccíhuatl volcanoes (Mexico). Extremophiles 2020; 24:625-636. [PMID: 32535716 DOI: 10.1007/s00792-020-01182-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/29/2020] [Indexed: 11/26/2022]
Abstract
In Mexico little is known about high-altitude glacial psychrotolerant or psychrophilic fungal species, with most glacial fungi isolated from polar environments or Alpine glaciers. It has been documented that some of these species may play an important role in bioremediation of contaminated environments with heavy metals. In the present study, 75 fungi were isolated from glaciers in Citlaltépetl (5675 masl) and Iztaccíhuatl (5286 masl) volcanoes. Combining morphological characteristics and molecular methods, based on ITS rDNA, 38 fungi were partially identified to genus level, 35 belonging to Ascomycota and three to Mucoromycota. The most abundant genera were Cladosporium, followed by Alternaria and Sordariomycetes order. All isolated fungi were psychrotolerant, pigmented and resistant to different concentrations of Cr(III) and Pb(II), while none tolerated Hg(II). Fungi most tolerant to Cr(III) and Pb(II) belong to the genera Stemphylium, Cladosporium and Penicillium and to a lesser extent Aureobasidium and Sordariomycetes. To our knowledge, this is the first report on cultivable mycobiota richness and their Cr and Pb tolerance. The results open new research possibilities about fungal diversity and heavy metals myco-remediation. Extremophilic fungal communities should be further investigated before global warming causes permanent changes and we miss the opportunity to describe these sites in Mexico.
Collapse
Affiliation(s)
| | - Nina Gunde-Cimerman
- Molecular Genetics and Biology of Microorganisms, Dept. Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Efraín Escudero-Leyva
- Centro de Investigaciones en Productos Naturales (CIPRONA) Y Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
- Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), Centro Nacional de Computación Avanzada (CNCA), CeNAT-CONARE, San José, Costa Rica
| | - Luis Barba-Escoto
- International Maize and Wheat Improvement Center (CIMMYT), Sustainable Intensification Program, Texcoco, Mexico
| | | | | | - Victor Bautista-de Lucio
- Laboratorio de Microbiología Y Proteómica, Instituto de Oftalmología "Fundación de Asistencia Privada Conde de Valenciana", Mexico City, Mexico
| | | | - Juan Campos-Guillén
- Facultad de Química, Universidad Autónoma de Querétaro, Santiago de Querétaro, Qro, Mexico
| |
Collapse
|
29
|
Ding Y, Jin Y, He K, Yi Z, Tan L, Liu L, Tang M, Du A, Fang Y, Zhao H. Low Nitrogen Fertilization Alter Rhizosphere Microorganism Community and Improve Sweetpotato Yield in a Nitrogen-Deficient Rocky Soil. Front Microbiol 2020; 11:678. [PMID: 32351491 PMCID: PMC7174733 DOI: 10.3389/fmicb.2020.00678] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Sweetpotato can be cultivated in the reclaimed rocky soil in Sichuan Basin, China, which benefits from the release of mineral nutrients in the rocky soil by microorganisms. Shortage of nitrogen (N) in the rocky soil limits sweetpotato yield, which can be compensated through N fertilization. Whereas high N fertilization inhibits biological N fixation and induces unintended environmental consequences. However, the effect of low N fertilization on microorganism community and sweetpotato yield in the N-deficient rocky soil is still unclear. We added a low level of 1.5 g urea/m2 to a rocky soil cultivated with sweetpotato, and measured rocky soil physiological and biochemical properties, rhizosphere microbial diversity, sweetpotato physiological properties and transcriptome. When cultivating sweetpotato in the rocky soil, low N fertilization (1.5 g urea/m2) not only improved total N (TN) and available N (AN) in the rocky soil, but also increased available phosphorus (AP), available potassium (AK), and nitrogenase and urease activity. Interestingly, although low N fertilization could reduce bacterial diversity through affecting sweetpotato root exudates and rocky soil properties, the relative abundance of P and K-solubilizing bacteria, N-fixing and urease-producing bacteria increased under low N fertilization, and the relative abundance of plant pathogens decreased. Furthermore, low N fertilization increased the phytohormones, such as zeatin riboside, abscisic acid, and methyl jasmonate contents in sweetpotato root. Those increases were consistent with our transcriptome findings: the inhibition of the lignin synthesis, the promotion of the starch synthesis, and the upregulated expression of Expansin, thus resulting in promoting the formation of tuberous roots and further increasing the sweetpotato yield by half, up to 3.3 kg/m2. This study indicated that low N fertilization in the N-deficient rocky soil improved this soil quality through affecting microorganism community, and further increased sweetpotato yield under regulation of phytohormones pathway.
Collapse
Affiliation(s)
- Yanqiang Ding
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Jin
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Kaize He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhuolin Yi
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Li Tan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Lisha Liu
- Sweetpotato Institute, Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Mingshuang Tang
- Sweetpotato Institute, Nanchong Academy of Agricultural Sciences, Nanchong, China
| | - Anping Du
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yang Fang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Hai Zhao
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
30
|
Hoham RW, Remias D. Snow and Glacial Algae: A Review 1. JOURNAL OF PHYCOLOGY 2020; 56:264-282. [PMID: 31825096 PMCID: PMC7232433 DOI: 10.1111/jpy.12952] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/20/2019] [Indexed: 05/03/2023]
Abstract
Snow or glacial algae are found on all continents, and most species are in the Chlamydomonadales (Chlorophyta) and Zygnematales (Streptophyta). Other algal groups include euglenoids, cryptomonads, chrysophytes, dinoflagellates, and cyanobacteria. They may live under extreme conditions of temperatures near 0°C, high irradiance levels in open exposures, low irradiance levels under tree canopies or deep in snow, acidic pH, low conductivity, and desiccation after snow melt. These primary producers may color snow green, golden-brown, red, pink, orange, or purple-grey, and they are part of communities that include other eukaryotes, bacteria, archaea, viruses, and fungi. They are an important component of the global biosphere and carbon and water cycles. Life cycles in the Chlamydomonas-Chloromonas-Chlainomonas complex include migration of flagellates in liquid water and formation of resistant cysts, many of which were identified previously as other algae. Species differentiation has been updated through the use of metagenomics, lipidomics, high-throughput sequencing (HTS), multi-gene analysis, and ITS. Secondary metabolites (astaxanthin in snow algae and purpurogallin in glacial algae) protect chloroplasts and nuclei from damaging PAR and UV, and ice binding proteins (IBPs) and polyunsaturated fatty acids (PUFAs) reduce cell damage in subfreezing temperatures. Molecular phylogenies reveal that snow algae in the Chlamydomonas-Chloromonas complex have invaded the snow habitat at least twice, and some species are polyphyletic. Snow and glacial algae reduce albedo, accelerate the melt of snowpacks and glaciers, and are used to monitor climate change. Selected strains of these algae have potential for producing food or fuel products.
Collapse
Affiliation(s)
- Ronald W. Hoham
- Department of BiologyColgate UniversityHamiltonNew York13346USA
| | - Daniel Remias
- School of EngineeringUniversity of Applied Sciences Upper AustriaWels4600Austria
| |
Collapse
|
31
|
Sannino C, Borruso L, Smiraglia C, Bani A, Mezzasoma A, Brusetti L, Turchetti B, Buzzini P. Dynamics of in situ growth and taxonomic structure of fungal communities in Alpine supraglacial debris. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Li Q, Liu Y, Gu Y, Guo L, Huang Y, Zhang J, Xu Z, Tan B, Zhang L, Chen L, Xiao J, Zhu P. Ecoenzymatic stoichiometry and microbial nutrient limitations in rhizosphere soil along the Hailuogou Glacier forefield chronosequence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135413. [PMID: 31896227 DOI: 10.1016/j.scitotenv.2019.135413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 05/23/2023]
Abstract
Mountain glaciers retreat at an increased rate under global warming, resulting in exposed barren surfaces for primary succession. Soil microbes are an important driver of ecosystem processes. Although variations in soil microbes after deglaciation have been studied extensively, the roles of rhizosphere soil microbes in the biogeochemistry cycle during primary succession are less understood. In this study, Populus purdomii was present throughout the 123-year chronosequence as a representative tree species. We therefore investigated variations in the rhizosphere enzyme activity, microbial community structure, and ecoenzymatic stoichiometry of P. purdomii along Hailuogou Glacier chronosequences. The objective was to determinechanges in rhizosphere enzyme activities and microbial communities, as well as the effects of nutrient limitation on rhizosphere microbes. According to the results, the enzyme activities and microbial group biomass in rhizosphere soil all showed a bimodal trend and were highest at the 43rd or 123rd year, and enzyme activity varied with succession time but not microbial community structure. The rhizosphere soil bacterial community was the dominant community during the 123-year chronosequence. Ecoenzymatic stoichiometry indicated nitrogen restrictions on microbial activity throughout primary succession, with early succession stages (5-15 years) showing greater carbon restriction than late succession stages. Moreover, redundancy and correlation analyses demonstrated that soil microbial phospholipid fatty acid biomass was an important factor for increases in enzyme activities and that enzyme activities in turn played important roles in carbon, nitrogen and phosphorus cycling in rhizosphere soil. Additionally, rhizosphere soil microbial development significantly affected soil organic carbon, total nitrogen and dissolved organic carbon accumulation. Overall, our study links the rhizosphere microbial community and activity to successional chronosequences, providing a deeper understanding of the dynamics of ecosystem succession.
Collapse
Affiliation(s)
- Qianwei Li
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forests, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forests, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yunfu Gu
- Department of Microbiology, College of Resource Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Li Guo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu 611130, China
| | - Youyou Huang
- Key Laboratory of Southwest China Wildlife Resources Conservation, Ministry of Education, Nanchong, Sichuan 637009, China
| | - Jian Zhang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forests, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhenfeng Xu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forests, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Tan
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forests, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhang
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forests, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianghua Chen
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forests, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiujin Xiao
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forests, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Zhu
- Key Laboratory of Ecological Forestry Engineering of Sichuan Province, Institute of Ecology & Forests, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
33
|
Ortiz‐Álvarez R, Cáliz J, Camarero L, Casamayor EO. Regional community assembly drivers and microbial environmental sources shaping bacterioplankton in an alpine lacustrine district (Pyrenees, Spain). Environ Microbiol 2019; 22:297-309. [DOI: 10.1111/1462-2920.14848] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/29/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Rüdiger Ortiz‐Álvarez
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB ‐ CSIC). C/Accés cala St Francesc n°14, E‐17300 Blanes Catalonia Spain
| | - Joan Cáliz
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB ‐ CSIC). C/Accés cala St Francesc n°14, E‐17300 Blanes Catalonia Spain
| | - Lluís Camarero
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB ‐ CSIC). C/Accés cala St Francesc n°14, E‐17300 Blanes Catalonia Spain
| | - Emilio O. Casamayor
- Integrative Freshwater Ecology Group, Center for Advanced Studies of Blanes (CEAB ‐ CSIC). C/Accés cala St Francesc n°14, E‐17300 Blanes Catalonia Spain
| |
Collapse
|
34
|
Colin Y, Goberna M, Verdú M, Navarro-Cano JA. Successional trajectories of soil bacterial communities in mine tailings: The role of plant functional traits. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 241:284-292. [PMID: 31009816 DOI: 10.1016/j.jenvman.2019.04.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/20/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Plant species identity is assumed to be a major driver of belowground microbial diversity and composition. However, diagnosing which plant functional traits are responsible for shaping microbial communities remains elusive. Primary succession on barren metalliferous mining substrates was selected as the framework to study above-belowground interactions, and plant functional traits that lead the successional trajectories of soil bacterial communities were identified. The impact of the plant functional group (i.e. trees, shrubs, dwarf shrubs, perennial grasses), a trait integrating the life span and morphological structure, on the bacterial primary succession was monitored. Bacterial diversity and composition was estimated along plant size gradients including over 90 scattered patches ranging from seedlings to mature multispecific patches. Soil bacterial diversity was affected by heavy metals levels and increased towards higher resource availability underneath mature patches, with stress-tolerant heterotrophs and phototrophs being replaced by competitive heterotrophs. The plant functional group modulated these general patterns and shrubs had the greatest impact belowground by inducing the largest increase in soil fertility. Functional traits related to leaf decomposability and root architecture further determined the composition and structure of bacterial communities. These results underline the importance of plant functional traits in the assembly of soil bacterial communities, and can help guiding restoration of degraded lands.
Collapse
Affiliation(s)
- Yannick Colin
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Carretera Moncada ‒ Náquera, km 4.5, Moncada, Valencia, 46113, Spain.
| | - Marta Goberna
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Carretera Moncada ‒ Náquera, km 4.5, Moncada, Valencia, 46113, Spain; Department of Environment and Agronomy, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. de la Coruña, km 7.5, E-28040, Madrid, Spain
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Carretera Moncada ‒ Náquera, km 4.5, Moncada, Valencia, 46113, Spain
| | - Jose A Navarro-Cano
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Carretera Moncada ‒ Náquera, km 4.5, Moncada, Valencia, 46113, Spain
| |
Collapse
|
35
|
Dresch P, Falbesoner J, Ennemoser C, Hittorf M, Kuhnert R, Peintner U. Emerging from the ice-fungal communities are diverse and dynamic in earliest soil developmental stages of a receding glacier. Environ Microbiol 2019; 21:1864-1880. [PMID: 30888722 PMCID: PMC6849718 DOI: 10.1111/1462-2920.14598] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 11/30/2022]
Abstract
We used amplicon sequencing and isolation of fungi from in-growth mesh bags to identify active fungi in three earliest stages of soil development (SSD) at a glacier forefield (0-3, 9-14, 18-25 years after retreat of glacial ice). Soil organic matter and nutrient concentrations were extremely low, but the fungal diversity was high [220 operational taxonomic units (OTUs)/138 cultivated OTUs]. A clear successional trend was observed along SSDs, and species richness increased with time. Distinct changes in fungal community composition occurred with the advent of vascular plants. Fungal communities of recently deglaciated soil are most distinctive and rather similar to communities typical for cryoconite or ice. This indicates melting water as an important inoculum for native soil. Moreover, distinct seasonal differences were detected in fungal communities. Some fungal taxa, especially of the class Microbotryomycetes, showed a clear preference for winter and early SSD. Our results provide insight into new facets regarding the ecology of fungal taxa, for example, by showing that many fungal taxa might have an alternative, saprobial lifestyle in snow-covered, as supposed for a few biotrophic plant pathogens of class Pucciniomycetes. The isolated fungi include a high proportion of unknown species, which can be formally described and used for experimental approaches.
Collapse
Affiliation(s)
- Philipp Dresch
- Institute of MicrobiologyUniversity InnsbruckInnsbruckAustria
| | | | | | | | - Regina Kuhnert
- Institute of MicrobiologyUniversity InnsbruckInnsbruckAustria
| | - Ursula Peintner
- Institute of MicrobiologyUniversity InnsbruckInnsbruckAustria
| |
Collapse
|
36
|
Zhelezova A, Chernov T, Tkhakakhova A, Xenofontova N, Semenov M, Kutovaya O. Prokaryotic community shifts during soil formation on sands in the tundra zone. PLoS One 2019; 14:e0206777. [PMID: 30939175 PMCID: PMC6445424 DOI: 10.1371/journal.pone.0206777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 03/18/2019] [Indexed: 12/03/2022] Open
Abstract
A chronosequence approach, i.e., a comparison of spatially distinct plots with different stages of succession, is commonly used for studying microbial community dynamics during paedogenesis. The successional traits of prokaryotic communities following sand fixation processes have previously been characterized for arid and semi-arid regions, but they have not been considered for the tundra zone, where the environmental conditions are unfavourable for the establishment of complicated biocoenoses. In this research, we characterized the prokaryotic diversity and abundance of microbial genes found in a typical tundra and wooded tundra along a gradient of increasing vegetation—unfixed aeolian sand, semi-fixed surfaces with mosses and lichens, and mature soil under fully developed plant cover. Microbial communities from typical tundra and wooded tundra plots at three stages of sand fixation were compared using quantitative polymerase chain reaction (qPCR) and high-throughput sequencing of 16S rRNA gene libraries. The abundances of ribosomal genes increased gradually in both chronosequences, and a similar trend was observed for the functional genes related to the nitrogen cycle (nifH, bacterial amoA, nirK and nirS). The relative abundance of Planctomycetes increased, while those of Thaumarchaeota, Cyanobacteria and Chloroflexi decreased from unfixed sands to mature soils. According to β-diversity analysis, prokaryotic communities of unfixed sands were more heterogeneous compared to those of mature soils. Despite the differences in the plant cover of the two mature soils, the structural compositions of the prokaryotic communities were shaped in the same way. Thus, sand fixation in the tundra zone increases archaeal, bacterial and fungal abundances, shifts and unifies prokaryotic communities structure.
Collapse
Affiliation(s)
- Alena Zhelezova
- V.V. Dokuchaev Soil Science Institute, Department of Soil Biology and Biochemistry, Moscow, Russia
- * E-mail:
| | - Timofey Chernov
- V.V. Dokuchaev Soil Science Institute, Department of Soil Biology and Biochemistry, Moscow, Russia
| | - Azida Tkhakakhova
- V.V. Dokuchaev Soil Science Institute, Department of Soil Biology and Biochemistry, Moscow, Russia
| | - Natalya Xenofontova
- V.V. Dokuchaev Soil Science Institute, Department of Soil Biology and Biochemistry, Moscow, Russia
- Lomonosov Moscow State University, Department of Soil Science, Moscow, Russia
| | - Mikhail Semenov
- V.V. Dokuchaev Soil Science Institute, Department of Soil Biology and Biochemistry, Moscow, Russia
| | - Olga Kutovaya
- V.V. Dokuchaev Soil Science Institute, Department of Soil Biology and Biochemistry, Moscow, Russia
| |
Collapse
|
37
|
Pandey A, Yarzábal LA. Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Appl Microbiol Biotechnol 2018; 103:643-657. [PMID: 30465306 DOI: 10.1007/s00253-018-9515-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Mountain soils are challenging environments for all kinds of living things, including plants and microorganisms. Many cold-adapted microorganisms colonizing these extreme soils play important roles as promoters of plant growth and development; for that reason, they are called collectively plant growth-promoting microorganisms (PGPM). Even though there is seldom doubt concerning the usefulness of PGPM to develop eco-friendly bioinoculants, including biofertilizers and biocontrollers, a series of aspects need to be addressed in order to make this technology field-applicable. Among these aspects, the ecological and rhizosphere competences of PGPM are of paramount importance, particularly when considering the development of bioinoculants, well suited for the intensification of mountainous agricultural production. Studies on native, cold-adapted PGPM conducted in the Indian Himalayan region (IHR) and the Tropical Andes (TA) lead nowadays the research in this field. Noticeably, some common themes are emerging. For instance, soils in these mountain environments are colonized by many cold-adapted PGPM able to mobilize soil nutrients and to inhibit growth of plant pathogens. Studies aimed at deeply characterizing the abilities of such PGPM is likely to substantially contribute towards a better crop productivity in mountainous environments. The present review focuses on the importance of this microbial resource to improve crop productivity in IHR and TA. We also present a number of successful examples, which emphasize the effectiveness of some bioinoculants-developed from naturally occurring PGPM-when applied in the field.
Collapse
Affiliation(s)
- Anita Pandey
- Centre for Environmental Assessment and Climate Change, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263643, India.
| | - Luis Andrés Yarzábal
- Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas y Humboldt, Cuenca, Ecuador.,Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Av. Alberto Carnevalli, Mérida, Venezuela
| |
Collapse
|
38
|
Microbial succession dynamics along glacier forefield chronosequences in Tierra del Fuego (Chile). Polar Biol 2017. [DOI: 10.1007/s00300-017-2110-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|