1
|
Barbato M, Vacchini V, Engelen AH, Patania G, Mapelli F, Borin S, Crotti E. What lies on macroalgal surface: diversity of polysaccharide degraders in culturable epiphytic bacteria. AMB Express 2022; 12:98. [PMID: 35895126 PMCID: PMC9329506 DOI: 10.1186/s13568-022-01440-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022] Open
Abstract
Macroalgal surface constitutes a peculiar ecological niche and an advantageous substratum for microorganisms able to degrade the wide diversity of algal glycans. The degrading enzymatic activities of macroalgal epiphytes are of paramount interest for the industrial by-product sector and biomass resource applications. We characterized the polysaccharide hydrolytic profile of bacterial isolates obtained from three macroalgal species: the red macroalgae Asparagopsis taxiformis and Sphaerococcus coronopifolius (Rhodophyceae) and the brown Halopteris scoparia (Phaeophyceae), sampled in South Portugal. Bacterial enrichment cultures supplemented with chlorinated aliphatic compounds, typically released by marine algae, were established using as inoculum the decaying biomass of the three macroalgae, obtaining a collection of 634 bacterial strains. Although collected from the same site and exposed to the same seawater seeding microbiota, macroalgal cultivable bacterial communities in terms of functional and phylogenetic diversity showed host specificity. Isolates were tested for the hydrolysis of starch, pectin, alginate and agar, exhibiting a different hydrolytic potential according to their host: A. taxiformis showed the highest percentage of active isolates (91%), followed by S. coronopifolius (54%) and H. scoparia (46%). Only 30% of the isolates were able to degrade starch, while the other polymers were degraded by 55-58% of the isolates. Interestingly, several isolates showed promiscuous capacities to hydrolyze more than one polysaccharide. The isolate functional fingerprint was statistically correlated to bacterial phylogeny, host species and enrichment medium. In conclusion, this work depicts macroalgae as holobionts with an associated microbiota of interest for blue biotechnologies, suggesting isolation strategies and bacterial targets for polysaccharidases' discovery.
Collapse
Affiliation(s)
- Marta Barbato
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy.,Department of Biology, Section for Microbiology, Aarhus University, Ny Munkegade 116, 8000, Aarhus, Denmark
| | - Violetta Vacchini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Aschwin H Engelen
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | - Giovanni Patania
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Francesca Mapelli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| | - Sara Borin
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy.
| | - Elena Crotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, via Celoria 2, 20133, Milano, Italy
| |
Collapse
|
2
|
Thomas FA, Mohan M, Krishnan KP. Bacterial diversity and their metabolic profiles in the sedimentary environments of Ny-Ålesund, Arctic. Antonie van Leeuwenhoek 2021; 114:1339-1360. [PMID: 34148162 DOI: 10.1007/s10482-021-01604-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/01/2021] [Indexed: 11/26/2022]
Abstract
Sedimentary environments in the Arctic are known to harbor diverse microbial communities playing a crucial role in the remineralization of organic matter and associated biogeochemical cycles. In this study, we used a combination of culture-dependent and culture-independent approaches to understanding the bacterial community composition associated with the sediments of a terrestrial versus fjord system in the Svalbard Arctic. Community-level metabolic profiling and growth response of retrieved bacterial isolates towards different carbon substrates at varying temperatures were also studied to assess the metabolic response of communities and isolates in the system. Bacterial species belonging to Cryobacterium and Psychrobacter dominated the terrestrial and fjord sediment retrievable fraction. Amplicon sequencing analysis revealed higher bacterial diversity in the terrestrial sediments (Shannon index; 8.135 and 7.935) as compared to the fjord sediments (4.5-5.37). Phylum Proteobacteria and Bacteroidetes dominated both terrestrial and fjord sediments. Phylum Verrucomicrobia and Cyanobacteria were abundant in terrestrial sediments while Epsilonbacteraeota and Fusobacteriia dominated the fjord sediments. Significant differences were observed in the carbon substrate utilization profiles between the terrestrial and fjord sediments at both 4 °C and 20 °C incubations (p < 0.005). Utilization of N-acetyl-D-glucosamine, D-mannitol and Tween-80 by the sediment communities and bacterial isolates from both systems, irrespective of their temperature incubations implies the affinity of bacteria for such substrates as energy sources and for their survival in cold environments. Our results suggest the ability of sediment bacterial communities to adjust their substrate utilization profiles according to condition changes in the ecosystems and are found to be less influenced by their phylogenetic relatedness.
Collapse
Affiliation(s)
- Femi Anna Thomas
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa, 403804, India
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau Goa, 403206, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala, 686560, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, Vasco da Gama, Goa, 403804, India.
| |
Collapse
|
3
|
Gui Y, Gu X, Fu L, Zhang Q, Zhang P, Li J. Expression and Characterization of a Thermostable Carrageenase From an Antarctic Polaribacter sp. NJDZ03 Strain. Front Microbiol 2021; 12:631039. [PMID: 33776960 PMCID: PMC7994522 DOI: 10.3389/fmicb.2021.631039] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/22/2021] [Indexed: 11/18/2022] Open
Abstract
The complete genome of Polaribacter sp. NJDZ03, which was isolated from the surface of Antarctic macroalgae, was analyzed by next-generation sequencing, and a putative carrageenase gene Car3206 was obtained. Car3206 was cloned and expressed in Escherichia coli BL21(DE3). After purification by Ni-NTA chromatography, the recombinant Car3206 protein was characterized and the antioxidant activity of the degraded product was investigated. The results showed that the recombinant plasmid pet-30a-car3206 was highly efficiently expressed in E. coli BL21(DE3). The purified recombinant Car3206 showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, with an apparent molecular weight of 45 kDa. The optimum temperature of the recombinant Car3206 was 55°C, and it maintain 60-94% of its initial activity for 4-12 h at 55°C. It also kept almost 70% of the initial activity at 30°C, and more than 40% of the initial activity at 10°C. These results show that recombinant Car3206 had good low temperature resistance and thermal stability properties. The optimum pH of recombinant Car3206 was 7.0. Car3206 was activated by Na+, K+, and Ca2+, but was significantly inhibited by Cu2+ and Cr2+. Thin-layer chromatographic analysis indicated that Car3206 degraded carrageenan generating disaccharides as the only products. The antioxidant capacity of the degraded disaccharides in vitro was investigated and the results showed that different concentrations of the disaccharides had similar scavenging effects as vitamin C on O 2 • - , •OH, and DPPH•. To our knowledge, this is the first report about details of the biochemical characteristics of a carrageenase isolated from an Antarctic Polaribacter strain. The unique characteristics of Car3206, including its low temperature resistance, thermal stability, and product unity, suggest that this enzyme may be an interesting candidate for industrial processes.
Collapse
Affiliation(s)
- Yuanyuan Gui
- College of Environmental Science and Engineering Qingdao University, Qingdao, China
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xiaoqian Gu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Liping Fu
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Qian Zhang
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Peiyu Zhang
- College of Environmental Science and Engineering Qingdao University, Qingdao, China
| | - Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
- Key Laboratory of Ecological Environment Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| |
Collapse
|
4
|
Tisserand L, Dadaglio L, Intertaglia L, Catala P, Panagiotopoulos C, Obernosterer I, Joux F. Use of organic exudates from two polar diatoms by bacterial isolates from the Arctic Ocean. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190356. [PMID: 32862822 PMCID: PMC7481660 DOI: 10.1098/rsta.2019.0356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/12/2020] [Indexed: 05/12/2023]
Abstract
Global warming affects primary producers in the Arctic, with potential consequences for the bacterial community composition through the consumption of microalgae-derived dissolved organic matter (DOM). To determine the degree of specificity in the use of an exudate by bacterial taxa, we used simple microalgae-bacteria model systems. We isolated 92 bacterial strains from the sea ice bottom and the water column in spring-summer in the Baffin Bay (Arctic Ocean). The isolates were grouped into 42 species belonging to Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. Forty strains were tested for their capacity to grow on the exudate from two Arctic diatoms. Most of the strains tested (78%) were able to grow on the exudate from the pelagic diatom Chaetoceros neogracilis, and 33% were able to use the exudate from the sea ice diatom Fragilariopsis cylindrus. 17.5% of the strains were not able to grow with any exudate, while 27.5% of the strains were able to use both types of exudates. All strains belonging to Flavobacteriia (n = 10) were able to use the DOM provided by C. neogracilis, and this exudate sustained a growth capacity of up to 100 times higher than diluted Marine Broth medium, of two Pseudomonas sp. strains and one Sulfitobacter strain. The variable bioavailability of exudates to bacterial strains highlights the potential role of microalgae in shaping the bacterial community composition. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.
Collapse
Affiliation(s)
- Lucas Tisserand
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, 66650 Banyuls/mer, France
| | - Laëtitia Dadaglio
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, 66650 Banyuls/mer, France
| | - Laurent Intertaglia
- Sorbonne Université, CNRS, FR3724, Observatoire Océanologique, 66650 Banyuls/Mer, France
| | - Philippe Catala
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, 66650 Banyuls/mer, France
| | | | - Ingrid Obernosterer
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, 66650 Banyuls/mer, France
| | - Fabien Joux
- Sorbonne Université, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique de Banyuls, 66650 Banyuls/mer, France
| |
Collapse
|
5
|
Thomas FA, Sinha RK, Krishnan KP. Bacterial community structure of a glacio-marine system in the Arctic (Ny-Ålesund, Svalbard). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:135264. [PMID: 31848061 DOI: 10.1016/j.scitotenv.2019.135264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
The bacterial community composition of a valley glacier in Svalbard, its pro-glacial channels, and the associated downstream fjord ecosystem was investigated so as to figure out the degree to which downslope transport of microbes from the glacier systems along a hydrological continuum impose an effect on the patterns of diversity in the fjord system. A combination of culture based and high-throughput amplicon sequencing approach was followed which resulted in significant variation (R = 0.873, p = 0.001) in the bacterial community structure between these ecosystems. Dominance of sequences belonging to class β-Proteobacteria was seen in the glacier snow, ice and melt waters (MW) while a relatively higher abundance of OTUs belonging to α-Proteobacteria and Verrucomicrobiae demarcated the fjord waters. Similarity percentage (SIMPER) analysis of the Operational Taxonomic Units (OTUs) showed that OTU 1,105,280 (9.15%) and OTU 331 (6.5%) belonging to Burkholderiaceae (β-proteobacteria) and OTU 101,660 (5.76%) and OTU 520 (5.07%) belonging to Rhodobacteraceae (α-proteobacteria) contributed maximum to the overall dissimilarity between the sampling sites. The bacterial community from the MWs were found to be true signatures of the glacier ecosystem while the Kongsfjorden bacterial fraction mostly represented heterotrophic marine taxa influenced by warm Atlantic waters and presence of organic matter. Significant presence of unknown taxa in the MWs suggests the need to study such unexplored, transient niches for a better understanding of the associated microbial processes. Among the various environmental parameters measured, nutrients (NO3- and SiO42-) were found to exhibit strong association with the MW bacterial community while temperature, trace metals, Cl- and SO42- ions were found to influence the fjord bacterial community. The significant differences in the bacterial community composition between the glacier and the fjord ecosystem suggest the unique nature of these systems which in turn is influenced by the associated environmental parameters.
Collapse
Affiliation(s)
- Femi Anna Thomas
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India; School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau Goa 403206, India
| | - Rupesh Kumar Sinha
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India
| | - K P Krishnan
- National Centre for Polar and Ocean Research, Headland Sada, Vasco da Gama, Goa 403804, India.
| |
Collapse
|
6
|
Jain A, Krishnan KP, Begum N, Singh A, Thomas FA, Gopinath A. Response of bacterial communities from Kongsfjorden (Svalbard, Arctic Ocean) to macroalgal polysaccharide amendments. MARINE ENVIRONMENTAL RESEARCH 2020; 155:104874. [PMID: 31975691 DOI: 10.1016/j.marenvres.2020.104874] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Macroalgae are abundant in coastal Arctic habitats and contain a large amount of polysaccharides. Increased macroalgal productivity due to warmer temperatures and reduced sea-ice cover contribute a significant amount of polysaccharide-rich detritus in the region. To study bacterial degradation of macroalgal polysaccharides and their potential impact on biogeochemical processes we studied the response of bacterial communities from Kongsfjorden, Svalbard (Arctic Ocean) to alginate (AL) and agarose (AG) amendments, using an ex-situ microcosm experiment. Our results show that bacterial communities responded to the increased availability of macroalgal polysaccharides and community shift was congruent with a significant decline in nutrient concentrations. Initially-rare bacterial taxa affiliated with Gammaproteobacteria and Bacteroidia responded to the polysaccharide addition. Each polysaccharide addition incited the growth of certain distinct bacteria taxa. Compared to the un-amended control microcosms (CM), Polaribacter, Colwellia, Pseudoalteromonas, and unclassified Gammaproteobacteria responded to AL addition, whereas Paraglaciecola, Lentimonas, Colwellia, unclassified Gammaproteobacteria, unclassified Alteromonadales, and unclassified Alteromonadaceae responded to the AG addition. These results suggest that polysaccharides shift bacterial community composition towards copiotrophic bacterial taxa, with implications for carbon and nutrient cycling in coastal Svalbard.
Collapse
Affiliation(s)
- Anand Jain
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India.
| | | | - Nazira Begum
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India
| | - Archana Singh
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India
| | - Femi Anna Thomas
- Cryobiology Laboratory, National Centre for Polar and Ocean Research, Vasco da Gama, Goa, India
| | - Anu Gopinath
- Department of Aquatic Environment Management, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| |
Collapse
|
7
|
Boucherba N, Gagaoua M, Bouanane-Darenfed A, Bouiche C, Bouacem K, Kerbous MY, Maafa Y, Benallaoua S. Biochemical properties of a new thermo- and solvent-stable xylanase recovered using three phase partitioning from the extract of Bacillus oceanisediminis strain SJ3. BIORESOUR BIOPROCESS 2017; 4:29. [PMID: 28736694 PMCID: PMC5498614 DOI: 10.1186/s40643-017-0161-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/01/2017] [Indexed: 11/29/2022] Open
Abstract
The present study investigates the production and partial biochemical characterization of an extracellular thermostable xylanase from the Bacillus oceanisediminis strain SJ3 newly recovered from Algerian soil using three phase partitioning (TPP). The maximum xylanase activity recorded after 2 days of incubation at 37 °C was 20.24 U/ml in the presence of oat spelt xylan. The results indicated that the enzyme recovered in the middle phase of TPP system using the optimum parameters were determined as 50% ammonium sulfate saturation with 1.0:1.5 ratio of crude extract: t-butanol at pH and temperature of 8.0 and 10 °C, respectively. The xylanase was recovered with 3.48 purification fold and 107% activity recovery. The enzyme was optimally active at pH 7.0 and was stable over a broad pH range of 5.0–10. The optimum temperature for xylanase activity was 55 °C and the half-life time at this temperature was of 6 h. At this time point the enzyme retained 50% of its activity after incubation for 2 h at 95 °C. The crude enzyme resist to sodium dodecyl sulfate and β-mercaptoethanol, while all the tested ions do not affect the activity of the enzyme. The recovered enzyme is, at least, stable in tested organic solvents except in propanol where a reduction of 46.5% was observed. Further, the stability of the xylanase was higher in hydrophobic solvents where a maximum stability was observed with cyclohexane. These properties make this enzyme to be highly thermostable and may be suggested as a potential candidate for application in some industrial processes. To the best of our knowledge, this is the first report of xylanase activity and recoverey using three phase partitioning from B. oceanisediminis.
Collapse
Affiliation(s)
- Nawel Boucherba
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Mohammed Gagaoua
- INATAA, Université des Frères Mentouri Constantine 1, Route de Ain El-Bey, 25000 Constantine, Algeria.,UMR1213 Herbivores, INRA, VetAgro Sup, Clermont Université, Université de Lyon, 63122 Saint-Genès-Champanelle, France
| | - Amel Bouanane-Darenfed
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences, Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Cilia Bouiche
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Khelifa Bouacem
- Laboratory of Cellular and Molecular Biology, Microbiology Team, Faculty of Biological Sciences, University of Sciences, Technology of Houari Boumediene (USTHB), PO Box 32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Mohamed Yacine Kerbous
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Yacine Maafa
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| | - Said Benallaoua
- Laboratory of Applied Microbiology, Faculty of Nature Science and Life, University of Bejaia, 06000 Bejaia, Algeria
| |
Collapse
|