1
|
Briel SCP, Feuser N, Moldenhauer EJ, Kabisch J, Neubauer P, Junne S. Digital holographic microscopy is suitable for lipid accumulation analysis in single cells of Yarrowia lipolytica. J Biotechnol 2025; 397:32-43. [PMID: 39551244 DOI: 10.1016/j.jbiotec.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
Digital holographic microscopy (DHM) is a label-free analytical technique for the determination of the cells' volume and their cytosolic refractive index. Here, we demonstrate the suitability of DHM for the quantification of total lipid accumulation in the oleaginous yeast Yarrowia lipolytica. Presently, microbial lipids are gaining increasing attention due to their nutritional value in feed and food applications. Their microbiological synthesis in algae and yeast is subject to optimization studies, which necessitates rapid quantification of total lipids for faster progress and the possibility of process control. So far, quantification of the total intracellular long-chain fatty acid concentration in yeast cells is time-consuming though when common chromatography for a volumetric analysis or staining and flow cytometry for a single-cell based analysis are used. This study, however, demonstrates that 3D-DHM facilitates a quasi-real-time measurement that allows for a rapid quantification of total intracellular lipid accumulation on a single-cell level without cell staining. Data from wild-type and lipid overproducing Y. lipolytica strains with specific yields of long-chain fatty acids in a range between 70 and 360 mg/gCDW show a good correlation with the optical volume determined by DHM, as the total lipid accumulation in the cell is typically well correlated with the long-chain fatty acid concentration. The results further correlate with data obtained from gas chromatography and flow cytometry of Nile Red-stained cells, which proves the reliability of DHM for lipid quantification in Y. lipolytica.
Collapse
Affiliation(s)
- Simon Carl-Philipp Briel
- Technische Universität Berlin, Department of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Nicolas Feuser
- Technische Universität Berlin, Department of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Eva Johanna Moldenhauer
- Technische Universität Darmstadt, Department of Biology, Computer-Aided Synthetic Biology, Darmstadt, Germany
| | - Johannes Kabisch
- NTNU Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Gløshaugen, Norway
| | - Peter Neubauer
- Technische Universität Berlin, Department of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany
| | - Stefan Junne
- Technische Universität Berlin, Department of Biotechnology, Chair of Bioprocess Engineering, Berlin, Germany; Aalborg University, Department of Chemistry and Bioscience, Esbjerg, Denmark.
| |
Collapse
|
2
|
Wang J, Singer SD, Chen G. Biotechnological advances in the production of unusual fatty acids in transgenic plants and recombinant microorganisms. Biotechnol Adv 2024; 76:108435. [PMID: 39214484 DOI: 10.1016/j.biotechadv.2024.108435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/28/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Certain plants and microorganisms can produce high amounts of unusual fatty acids (UFAs) such as hydroxy, conjugated, cyclic, and very long-chain polyunsaturated fatty acids, which have distinct physicochemical properties and significant applications in the food, feed, and oleochemical industries. Since many natural sources of UFAs are not ideal for large-scale agricultural production or fermentation, it is attractive to produce them through synthetic biology. Although several UFAs have been commercially or pre-commercially produced in transgenic plants and microorganisms, their contents in transgenic hosts are generally much lower than in natural sources. Moreover, reproducing this success for a wider spectrum of UFAs has remained challenging. This review discusses recent advancements in our understanding of the biosynthesis, accumulation, and heterologous production of UFAs, and addresses the challenges and potential strategies for achieving high UFA content in engineered plants and microorganisms.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 St and 85 Ave, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
3
|
Wang J, Haddis DZ, Xiao Q, Bressler DC, Chen G. Engineering Rhodosporidium toruloides for sustainable production of value-added punicic acid from glucose and wood residues. BIORESOURCE TECHNOLOGY 2024; 412:131422. [PMID: 39233183 DOI: 10.1016/j.biortech.2024.131422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Rhodosporidium toruloides has emerged as a prominent candidate for producing single-cell oil from cost-effective feedstocks. In this study, the capability of R. toruloides to produce punicic acid (PuA), a representative plant unusual fatty acid, was investigated. The introduction of acyl lipid desaturase and conjugase (PgFADX) allowed R. toruloides to accumulate 3.7 % of total fatty acids as PuA. Delta-12 acyl lipid desaturase (PgFAD2) and diacylglycerol acyltransferase 2 were shown to benefit PuA production. The strain with PgFADX and PgFAD2 coexpression accumulated 12 % of its lipids as PuA from glucose, which translated into a PuA titer of 451.6 mg/L in shake flask condition. Utilizing wood hydrolysate as the feedstock, this strain produced 6.4 % PuA with a titer of 310 mg/L. Taken together, the results demonstrated that R. toruloides could serve as an ideal platform for the production of plant-derived high-value conjugated fatty acid using agricultural and forestry waste as feedstock.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Dagem Z Haddis
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Qiong Xiao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
4
|
Singh S, Deepa N, Rastogi D, Chaturvedi S, Syed N, Singh A, Nannaware AD, Rout PK. Biotransformation of ricinoleic acid to γ-decalactone using novel yeast strains and process optimization by applying Taguchi model. J Biotechnol 2023; 377:34-42. [PMID: 37848135 DOI: 10.1016/j.jbiotec.2023.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Flavour molecules are generated now-a-days through microbial fermentation on a commercial scale. γ-Decalactone (GDL) is an important molecule due to its long-lasting flavouring impact as buttery, coconut and peach-type. In the current study, 33 microorganisms were isolated from different fruit sources, and their screening for target GDL production was performed. Using DNA sequencing, two potential strains yielding good amounts of GDL were identified from pineapple and strawberry fruits. The identified strains were Metschnikowia vanudenii (OP954735) and Candida parapsilosis (OP954733), and further optimized by Taguchi method. The effectiveness of lactone production is influenced by the rate of microbial growth under various operating conditions. The factors such as substrate concentration, pH, temperature, cell density and rotation (rpm) with 3 levels were applied for the GDL production using M. vanudenii (OP954735) and C. parapsilosis (OP954733) strains. The results revealed that the highest molar conversion of GDL was 24.69% (115.7 mg/g quantitative yield) and 52.69% (272.0 mg/g quantitative yield) at the optimal conditions using SB-62 and PA-19 strains, respectively. The two novel strains are reported for the first time for production of γ-decalactone and overall, this study opens up the possibility of using Taguchi design for large scale up process development for producing food flavours utilising environmentally friendly natural strains.
Collapse
Affiliation(s)
- Suman Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Nikky Deepa
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Dheerendra Rastogi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Shivani Chaturvedi
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India
| | - Naziya Syed
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Jawaharlal Nehru University, New Delhi, 110067, India
| | - Akanksha Singh
- Division of Crop Production and Protection, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashween Deepak Nannaware
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Prasant Kumar Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Villegas-Méndez MÁ, Montañez J, Contreras-Esquivel JC, Salmerón I, Koutinas AA, Morales-Oyervides L. Scale-up and fed-batch cultivation strategy for the enhanced co-production of microbial lipids and carotenoids using renewable waste feedstock. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117866. [PMID: 37030236 DOI: 10.1016/j.jenvman.2023.117866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
Agro-industrial by-product valorization as a feedstock for the bioproduction of high-value products has demonstrated a feasible alternative to handle the environmental impact of waste. Oleaginous yeasts are promising cell factories for the industrial production of lipids and carotenoids. Since oleaginous yeasts are aerobic microorganisms, studying the volumetric mass transfer (kLa) could facilitate the scale-up and operation of bioreactors to grant the industrial availability of biocompounds. Scale-up experiments were performed to assess the simultaneous production of lipids and carotenoids using the yeast Sporobolomyces roseus CFGU-S005 and comparing the yields in batch and fed-batch mode cultivation using agro-waste hydrolysate in a 7 L bench-top bioreactor. The results indicate that oxygen availability in the fermentation affected the simultaneous production of metabolites. The highest production of lipids (3.4 g/L) was attained using the kLa value of 22.44 h-1, while higher carotenoid accumulation of 2.58 mg/L resulted when agitation speed was increased to 350 rpm (kLa 32.16 h-1). The adapted fed-batch mode in the fermentation increased the production yields two times. The fatty acid profile was affected according to supplied aeration and after the fed-batch cultivation mode. This study showed the scale-up potential of the bioprocess using the strain S. roseus in the obtention of microbial oil and carotenoids by the valorization of agro-industrial byproducts as a carbon source.
Collapse
Affiliation(s)
- Miguel Ángel Villegas-Méndez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico
| | - Julio Montañez
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico
| | | | - Iván Salmerón
- School of Chemical Science, Autonomous University of Chihuahua, Circuit 1, New University Campus, Chihuahua, Chihuahua, 31125, Mexico
| | - Apostolis A Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece
| | - Lourdes Morales-Oyervides
- Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Unidad Saltillo, Saltillo, 25280, Coahuila, Mexico.
| |
Collapse
|
6
|
Attenuating the triacylglycerol catabolism enhanced lipid production of Rhodotorula strain U13N3. Appl Microbiol Biotechnol 2023; 107:1491-1501. [PMID: 36633623 DOI: 10.1007/s00253-023-12368-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/29/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Enhancing the lipid production of oleaginous yeasts is conducive to cutting the cost of feedstock for biodiesel. To increase the lipid productivity of Rhodotorula sp. U13N3, genes involving lipid degradation were knocked out and fermentation conditions were investigated. Results of transcription analysis demonstrated that genes encoding the ATG15-like lipase (ATG15) and peroxisomal acyl-CoA oxidase (ACOX2) were upregulated significantly at the lipogenesis stage. When ATG15 and ACOX2 were knocked out separately from the genome by the CRISPR/Cas9 method, both ΔATG15 and ΔACOX2 mutants showed better lipid production ability than the parent strain. Flow cytometry and confocal microscopic analyses indicated that simultaneous the knockout of ATG15 and ACOX2 did not impact the cell viability, whereas the lipid production was enhanced markedly as the lipid yield increased by 67.03% in shake flasks. Afterward, the ΔATG15ΔACOX2 transformant (TO2) was cultivated in shake flasks in the fed-batch mode; the highest biomass and lipid yield reached 45.76 g/L and 27.14 g/L at 216 h, respectively. Better performance was achieved when TO2 was cultivated in the 1-L bioreactor. At the end of fermentation (180 h), lipid content, yield, yield coefficient, and productivity reached 65.53%, 27.35 g/L, 0.277 g/g glycerol, and 0.152 g/L/h, respectively. These values were at the high level in comparison with Rhodotorula strains cultivated in glycerol media. Besides, fermentation modes did not affect the fatty acid composition of TO2 significantly. In conclusion, blocking the lipid degradation was an applicable strategy to increase the lipid production of Rhodotorula strains without compromising their cell viability. KEY POINTS: • ATG15-like lipase and acyl-CoA oxidase (ACOX2) participated in lipid degradation. • Knockout of ATG15 and ACOX2 increased lipid productivity, and lipid yield coefficient. • Cell viability maintained at high level in the knockout mutants during fermentation.
Collapse
|
7
|
Gomes Souza F, Pal K, Ampah JD, Dantas MC, Araújo A, Maranhão F, Domingues P. Biofuels and Nanocatalysts: Python Boosting Visualization of Similarities. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1175. [PMID: 36770184 PMCID: PMC9921263 DOI: 10.3390/ma16031175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Among the most relevant themes of modernity, using renewable resources to produce biofuels attracts several countries' attention, constituting a vital part of the global geopolitical chessboard since humanity's energy needs will grow faster and faster. Fortunately, advances in personal computing associated with free and open-source software production facilitate this work of prospecting and understanding complex scenarios. Thus, for the development of this work, the keywords "biofuel" and "nanocatalyst" were delivered to the Scopus database, which returned 1071 scientific articles. The titles and abstracts of these papers were saved in Research Information Systems (RIS) format and submitted to automatic analysis via the Visualization of Similarities Method implemented in VOSviewer 1.6.18 software. Then, the data extracted from the VOSviewer were processed by software written in Python, which allowed the use of the network data generated by the Visualization of Similarities Method. Thus, it was possible to establish the relationships for the pair between the nodes of all clusters classified by Link Strength Between Items or Terms (LSBI) or by year. Indeed, other associations should arouse particular interest in the readers. However, here, the option was for a numerical criterion. However, all data are freely available, and stakeholders can infer other specific connections directly. Therefore, this innovative approach allowed inferring that the most recent pairs of terms associate the need to produce biofuels from microorganisms' oils besides cerium oxide nanoparticles to improve the performance of fuel mixtures by reducing the emission of hydrocarbons (HC) and oxides of nitrogen (NOx).
Collapse
Affiliation(s)
- Fernando Gomes Souza
- Biopolymers & Sensors Lab, Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Kaushik Pal
- University Center for Research and Development (UCRD), Department of Physics, Chandigarh University, Ludhiana–Chandigarh State Hwy, Mohali 140413, Punjab, India
| | | | - Maria Clara Dantas
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Aruzza Araújo
- LABPROBIO, Institute of Chemistry, Universidade Federal do Rio Grande do Norte, Natal 59078-970, RN, Brazil
| | - Fabíola Maranhão
- Biopolymers & Sensors Lab, Instituto de Macromoléculas Professora Eloisa Mano, Centro de Tecnologia-Cidade Universitária, Universidade Federal de Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| | - Priscila Domingues
- Biopolymers & Sensors Lab, Programa de Engenharia da Nanotecnologia, COPPE, Centro de Tecnologia-Cidade Universitária, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-914, RJ, Brazil
| |
Collapse
|
8
|
Carotenoid-Producing Yeasts: Selection of the Best-Performing Strain and the Total Carotenoid Extraction Procedure. Processes (Basel) 2022. [DOI: 10.3390/pr10091699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Yeasts are considered an extraordinary alternative source of natural carotenoids and pigmented terpenoids with multiple applications. Production of carotenoids by yeast fermentation technology has many benefits; it is cost-effective, easily scalable, and safe. The aim of this research is the isolation of yeasts from natural resources and selection of the most potent bioagent for carotenoid production. Additionally, an upgraded carotenoid extraction protocol we established, which implies the testing of four methods for cell lysis (hydrochloric acid treatment, ultrasound treatment, milling treatment, and osmotic pressure treatment), three extraction methods (conventional extraction, ultrasound extraction, and conventional + ultrasound extraction), and three extraction solvents (acetone, isopropanol/methanol (50:50), and ethanol). For the first time, the obtained results were further modeled by an artificial neural network (ANN). Based on the obtained maximal carotenoid yield (253.74 ± 9.74 mg/100 g d.w) for the best-performing Rhodotorula mucilaginosa, the optimized extraction procedure involving milling treatment (for cell lysis) and conventional extraction with acetone (for carotenoid extraction) convincingly stood out compared to the other 35 tested protocols. Therefore, the selected carotenoid extraction protocol was verified with respect to its universality for all other yeast isolates, demonstrating its simplicity and effectiveness.
Collapse
|
9
|
Qvirist L, Mierke F, Vazquez Juarez R, Andlid T. Screening of xylose utilizing and high lipid producing yeast strains as a potential candidate for industrial application. BMC Microbiol 2022; 22:173. [PMID: 35799117 PMCID: PMC9261059 DOI: 10.1186/s12866-022-02586-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/27/2022] [Indexed: 11/21/2022] Open
Abstract
Background Sustainable production of oil for food, feed, fuels and other lipid-based chemicals is essential to meet the demand of the increasing human population. Consequently, novel and sustainable resources such as lignocellulosic hydrolysates and processes involving these must be explored. In this paper we screened for naturally-occurring xylose utilizing oleaginous yeasts as cell factories for lipid production, since pentose sugar catabolism plays a major role in efficient utilization of lignocellulosic feedstocks. Glycerol utilization, which is also beneficial in yeast-based oil production as glycerol is a common by-product of biodiesel production, was investigated as well. Natural yeast isolates were studied for lipid accumulation on a variety of substrates, and the highest lipid accumulating strains were further investigated in shake flask cultivations and fermenter studies on xylose and hydrolysate. Results By collecting leaves from exotic plants in greenhouses and selective cultivation on xylose, a high frequency of oleaginous yeasts was obtained (> 40%). Different cultivation conditions lead to differences in fatty acid contents and compositions, resulting in a set of strains that can be used to select candidate production strains for different purposes. In this study, the most prominent strains were identified as Pseudozyma hubeiensis BOT-O and Rhodosporidium toruloides BOT-A2. The fatty acid levels per cell dry weight after cultivation in a nitrogen limited medium with either glucose, xylose or glycerol as carbon source, respectively, were 46.8, 43.2 and 38.9% for P. hubeiensis BOT-O, and 40.4, 27.3 and 42.1% for BOT-A2. Furthermore, BOT-A2 accumulated 45.1% fatty acids per cell dry weight in a natural plant hydrolysate, and P. hubeiensis BOT-O showed simultaneous glucose and xylose consumption with similar growth rates on both carbon sources. The fatty acid analysis demonstrated both long chain and poly-unsaturated fatty acids, depending on strain and medium. Conclusions We found various natural yeast isolates with high lipid production capabilities and the ability to grow not only on glucose, but also xylose, glycerol and natural plant hydrolysate. R. toruloides BOT-A2 and P. hubeiensis BOT-O specifically showed great potential as production strains with high levels of storage lipids and comparable growth to that on glucose on various other substrates, especially compared to currently used lipid production strains. In BOT-O, glucose repression was not detected, making it particularly desirable for utilization of plant waste hydrolysates. Furthermore, the isolated strains were shown to produce oils with fatty acid profiles similar to that of various plant oils, making them interesting for future applications in fuel, food or feed production. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02586-y.
Collapse
Affiliation(s)
- Linnea Qvirist
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Friederike Mierke
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden. .,Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| | | | - Thomas Andlid
- Department of Biology and Biological Engineering, Food and Nutrition Science, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
10
|
Optimization of cis-9-Heptadecenoic Acid Production from the Oleaginous Yeast Yarrowia lipolytica. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Odd-chain fatty acids (OCFA) have been studied for their therapeutic and nutritional properties, as well as for their potential use in the chemical industry for the production of biofuel. Genetic modification strategies have demonstrated an improved production of OCFA by oleaginous microorganisms. In this study, the production of OCFA-enriched lipids by fermentation using a genetically engineered Yarrowia lipolytica strain was investigated. The major fatty acid produced by this strain was the cis-9-heptadecenoic acid (C17:1). Its biosynthesis was optimized using a design of experiment strategy involving a central composite design. The optimal responses maximizing the cell density (optical density at 600 nm) and the C17:1 content (%) in lipids were found using 52.4 g/L sucrose, 26.9 g/L glycerol, 10.4 g/L sodium acetate, 5 g/L sodium propionate, and 4 g/L yeast extract. Under these conditions, in a 5 L scale bioreactor, the respective contents of lipids and C17:1 in culture medium were 2.52 ± 0.05 and 0.82 ± 0.01 g/L after 96 h fermentation. The results obtained in this work pave the way toward the process upscale of C17:1 and encourage its industrial production.
Collapse
|
11
|
Wang J, Singer SD, Souto BA, Asomaning J, Ullah A, Bressler DC, Chen G. Current progress in lipid-based biofuels: Feedstocks and production technologies. BIORESOURCE TECHNOLOGY 2022; 351:127020. [PMID: 35307524 DOI: 10.1016/j.biortech.2022.127020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The expanding use of fossil fuels has caused concern in terms of both energy security and environmental issues. Therefore, attempts have been made worldwide to promote the development of renewable energy sources, among which biofuel is especially attractive. Compared to other biofuels, lipid-derived biofuels have a higher energy density and better compatibility with existing infrastructure, and their performance can be readily improved by adjusting the chemical composition of lipid feedstocks. This review thus addresses the intrinsic interactions between lipid feedstocks and lipid-based biofuels, including biodiesel, and renewable equivalents to conventional gasoline, diesel, and jet fuel. Advancements in lipid-associated biofuel technology, as well as the properties and applicability of various lipid sources in terms of biofuel production, are also discussed. Furthermore, current progress in lipid production and profile optimization in the context of plant lipids, microbial lipids, and animal fats are presented to provide a wider context of lipid-based biofuel technology.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, Alberta T1J 4B1, Canada
| | - Bernardo A Souto
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Justice Asomaning
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Aman Ullah
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - David C Bressler
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6G 2P5, Canada.
| |
Collapse
|
12
|
Osman ME, Abdel-Razik AB, Zaki KI, Mamdouh N, El-Sayed H. Isolation, molecular identification of lipid-producing Rhodotorula diobovata: optimization of lipid accumulation for biodiesel production. J Genet Eng Biotechnol 2022; 20:32. [PMID: 35190920 PMCID: PMC8861238 DOI: 10.1186/s43141-022-00304-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/18/2022] [Indexed: 01/29/2023]
Abstract
Background The increased demand for oil and fats to satisfy the ever-increasing human needs has enhanced the research in this field. Single-cell oils or microbial lipids produced by oleaginous microorganisms are being utilized as an alternative to traditional oil sources. Oleaginous yeasts can accumulate lipids above 20% of their biomass when they are grown under controlled conditions. Results In the present study, sixty-five yeasts were isolated from different sources. Using Sudan Black B staining technique, five yeast isolates were selected. Under nitrogen-limited cultivation conditions, the Co1 isolate was the best lipid accumulation potential of 39.79%. Isolate (Co1) was characterized morphologically and identified using the ribosomal DNA internal transcribed spacers regions (rDNA-ITS) from their genomic DNA. The sequence alignment revealed a 99.2% similarity with Rhodotorula diobovata. Under the optimized conditions, Rhodotorula diobovata accumulated lipids up to 45.85% on a dry biomass basis. R. diobovata, when grown on different raw materials, accumulated lipid up to 46.68% on sugar beet molasses medium, and the lipid had a high degree of monounsaturated fatty acids which gives biodiesel better quality. Conclusions The data suggest that the potent oleaginous yeast, R. diobovata, together with the use of cheap feedstock raw materials such as sugar beet molasses, can be considered as a promising feedstock for biodiesel production.
Collapse
|
13
|
Zhao Y, Song B, Li J, Zhang J. Rhodotorula toruloides: an ideal microbial cell factory to produce oleochemicals, carotenoids, and other products. World J Microbiol Biotechnol 2021; 38:13. [PMID: 34873661 DOI: 10.1007/s11274-021-03201-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
Requirement of clean energy sources urges us to find substitutes for fossil fuels. Microorganisms provide an option to produce feedstock for biofuel production by utilizing inexpensive, renewable biomass. Rhodotorula toruloides (Rhodosporidium toruloides), a non-conventional oleaginous yeast, can accumulate intracellular lipids (single cell oil, SCO) more than 70% of its cell dry weight. At present, the SCO-based biodiesel is not a price-competitive fuel to the petroleum diesel. Many efforts are made to cut the cost of SCO by strengthening the performance of genetically modified R. toruloides strains and by valorization of low-cost biomass, including crude glycerol, lignocellulosic hydrolysates, food and agro waste, wastewater, and volatile fatty acids. Besides, optimization of fermentation and SCO recovery processes are carefully studied as well. Recently, new R. toruloides strains are developed via metabolic engineering and synthetic biology methods to produce value-added chemicals, such as sesquiterpenes, fatty acid esters, fatty alcohols, carotenoids, and building block chemicals. This review summarizes recent advances in the main aspects of R. toruloides studies, namely, construction of strains with new traits, valorization of low-cost biomass, process detection and optimization, and product recovery. In general, R. toruloides is a promising microbial cell factory for production of biochemicals.
Collapse
Affiliation(s)
- Yu Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Baocai Song
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| | - Jing Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China. .,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing, 210094, China.,Key Laboratory of Metabolic Engineering and Biosynthesis Technology of Ministry of Industry and Information Technology, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing, 210094, China
| |
Collapse
|
14
|
Deeba F, Kumar KK, Rajacharya GH, Gaur NA. Metabolomic Profiling Revealed Diversion of Cytidinediphosphate-Diacylglycerol and Glycerol Pathway towards Denovo Triacylglycerol Synthesis in Rhodosporidium toruloides. J Fungi (Basel) 2021; 7:jof7110967. [PMID: 34829254 PMCID: PMC8625802 DOI: 10.3390/jof7110967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/29/2022] Open
Abstract
Oleaginous yeast Rhodosporidium toruloides has great biotechnological potential and scientific interest, yet the molecular rationale of its cellular behavior to carbon and nitrogen ratios with concurrent lipid agglomeration remains elusive. Here, metabolomics adaptations of the R. toruloides in response to varying glucose and nitrogen concentrations have been investigated. In preliminary screening we found that 5% glucose (w/v) was optimal for further analysis in Rhodosporidium toruloides 3641. Hereafter, the effect of complementation to increase lipid agglomeration was evaluated with different nitrogen sources and their concentration. The results obtained illustrated that the biomass (13 g/L) and lipid (9.1 g/L) production were maximum on 5% (w/v) glucose and 0.12% (NH4)2SO4. Furthermore, to shed lights on lipid accumulation induced by nitrogen-limitation, we performed metabolomic analysis of the oleaginous yeast R. toruloides 3641. Significant changes were observed in metabolite concentrations by qualitative metabolomics through gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS), which were mapped onto the governing metabolic pathways. Notable finding in this strain concerns glycerol and CDP-DAG metabolism wherein reduced production of glycerol and phospholipids induced a bypass leading to enhanced de-novo triacylglyceride synthesis. Collectively, our findings help in understanding the central carbon metabolism of R. toruloides which may assist in developing rationale metabolic models and engineering efforts in this organism.
Collapse
Affiliation(s)
- Farha Deeba
- Correspondence: (F.D.); (N.A.G.); Tel.: +91-112-674-1358 (ext. 452) (N.A.G.)
| | | | | | - Naseem A. Gaur
- Correspondence: (F.D.); (N.A.G.); Tel.: +91-112-674-1358 (ext. 452) (N.A.G.)
| |
Collapse
|
15
|
Martín-Hernández GC, Müller B, Chmielarz M, Brandt C, Hölzer M, Viehweger A, Passoth V. Chromosome-level genome assembly and transcriptome-based annotation of the oleaginous yeast Rhodotorula toruloides CBS 14. Genomics 2021; 113:4022-4027. [PMID: 34648882 DOI: 10.1016/j.ygeno.2021.10.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/26/2021] [Accepted: 10/07/2021] [Indexed: 11/30/2022]
Abstract
Rhodotorula toruloides is an oleaginous yeast with high biotechnological potential. In order to understand the molecular physiology of lipid synthesis in R. toruloides and to advance metabolic engineering, a high-resolution genome is required. We constructed a genome draft of R. toruloides CBS 14, using a hybrid assembly approach, consisting of short and long reads generated by Illumina and Nanopore sequencing, respectively. The genome draft consists of 23 contigs and 3 scaffolds, with a N50 length of 1,529,952 bp, thus largely representing chromosomal organization. The total size of the genome is 20,534,857 bp and the overall GC content is 61.83%. Transcriptomic data from different growth conditions was used to aid species-specific gene annotation. We annotated 9464 genes and identified 11,691 transcripts. Furthermore, we demonstrated the presence of a potential plasmid, an extrachromosomal circular structure of about 11 kb with a copy number about three times as high as the other chromosomes.
Collapse
Affiliation(s)
| | - Bettina Müller
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mikołaj Chmielarz
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christian Brandt
- nanozoo GmbH, Leipzig, Germany; Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Martin Hölzer
- nanozoo GmbH, Leipzig, Germany; RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
| | - Adrian Viehweger
- nanozoo GmbH, Leipzig, Germany; Department of Medical Microbiology, University Hospital Leipzig, Germany
| | - Volkmar Passoth
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
16
|
Enhancing Astaxanthin Biosynthesis by Rhodosporidium toruloides Mutants and Optimization of Medium Compositions Using Response Surface Methodology. Processes (Basel) 2020. [DOI: 10.3390/pr8040497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Astaxanthin is a valuable carotenoid, which has been approved as a food coloring by the US Food and Drug Administration and is considered as a food dye by the European Union (European Commission). This work aimed to attain Rhodosporidium toruloides mutants for enhanced astaxanthin accumulation using ultraviolet (UV) and gamma irradiation mutagenesis. Gamma irradiation was shown to be more efficient than UV for producing astaxanthin-overproducer. Among the screened mutants, G17, a gamma-induced mutant, exhibited the highest astaxanthin production, which was significantly higher than that of the wild strain. Response surface methodology was then applied to optimize the medium compositions for maximizing astaxanthin production by the mutant G17. The optimal medium compositions for the cultivation of G17 were determined as a peptone concentration of 19.75 g/L, malt extract concentration of 13.56 g/L, and glucose concentration of 19.92 g/L, with the maximum astaxanthin yield of 3021.34 µg/L ± 16.49 µg/L. This study suggests that the R. toruloides mutant (G17) is a potential candidate for astaxanthin production.
Collapse
|
17
|
Kamineni A, Shaw J. Engineering triacylglycerol production from sugars in oleaginous yeasts. Curr Opin Biotechnol 2020; 62:239-247. [DOI: 10.1016/j.copbio.2019.12.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/06/2023]
|
18
|
Guo M, Cheng S, Chen G, Chen J. Improvement of lipid production in oleaginous yeast Rhodosporidium toruloides by ultraviolet mutagenesis. Eng Life Sci 2019; 19:548-556. [PMID: 32625031 DOI: 10.1002/elsc.201800203] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/04/2019] [Accepted: 05/22/2019] [Indexed: 11/10/2022] Open
Abstract
The oleaginous yeast Rhodosporidium toruloides AS 2.1389 is viewed as desirable industrial microorganisms that can accumulate a high content of lipids for biodiesel production. In this study, we attempted to improve lipid accumulation in the yeast Rhodosporidium toruloides by UV irradiation mutagenesis and selection based on lithium chloride tolerance or ethanol-H2O2 tolerance. The biomass concentration, lipid yield and glucose consumption of mutant R. toruloides were determined. The transcription levels of lipid accumulation-related genes in the wild-type and mutant strains were also determined. The lithium chloride-tolerant strain R-ZL2 and the ethanol-H2O2-resistant strain R-ZY13 were generated by UV mutagenesis. The two mutant strains showed greater lipid productivity and lipid yield compared to the wild type. Transcriptional analysis revealed that IDP1, GPD1 and GND were expressed at significantly higher levels in the two high-lipid-producing mutants. In conclusion, lipid productivity and lipid yield in R. toruloides were successfully improved via UV mutagenesis and selection. We also identified some lipid accumulation-related genes for improving lipid productivity through genetic engineering.
Collapse
Affiliation(s)
- Minrui Guo
- College of Food Shihezi University Shihezi P. R. China
| | - Shaobo Cheng
- College of Food Shihezi University Shihezi P. R. China
| | - Guogang Chen
- College of Food Shihezi University Shihezi P. R. China
| | - Jiluan Chen
- College of Food Shihezi University Shihezi P. R. China
| |
Collapse
|
19
|
Using the Juice of Water Lettuce (Pistia stratiotes) as Culture Medium to Increase the Cell Density and the Production of Microbial Lipid. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0404-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Hassanpour M, Cai G, Gebbie LK, Speight RE, Junior Te'o VS, O'Hara IM, Zhang Z. Co-utilization of acidified glycerol pretreated-sugarcane bagasse for microbial oil production by a novel Rhodosporidium strain. Eng Life Sci 2019; 19:217-228. [PMID: 32625004 DOI: 10.1002/elsc.201800127] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 12/02/2018] [Accepted: 01/18/2019] [Indexed: 11/06/2022] Open
Abstract
Acidified glycerol pretreatment is very effective to deconstruct lignocellulosics for producing glucose. Co-utilization of pretreated biomass and residual glycerol to bioproducts could reduce the costs associated with biomass wash and solvent recovery. In this study, a novel strain Rhodosporidium toruloides RP 15, isolated from sugarcane bagasse, was selected and tested for coconversion of pretreated biomass and residual glycerol to microbial oils. In the screening trails, Rh. toruloides RP 15 demonstrated the highest oil production capacity on glucose, xylose, and glycerol among the 10 strains. At the optimal C:N molar ratio of 140:1, this strain accumulated 56.7, 38.3, and 54.7% microbial oils based on dry cell biomass with 30 g/L glucose, xylose, and glycerol, respectively. Furthermore, sugarcane bagasse medium containing 32.6 g/L glucose from glycerol-pretreated bagasse and 23.4 g/L glycerol from pretreatment hydrolysate were used to produce microbial oils by Rh. toruloides RP 15. Under the preliminary conditions without pH control, this strain produced 7.7 g/L oil with an oil content of 59.8%, which was comparable or better than those achieved with a synthetic medium. In addition, this strain also produced 3.5 mg/L carotenoid as a by-product. It is expected that microbial oil production can be significantly improved through process optimization.
Collapse
Affiliation(s)
- Morteza Hassanpour
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Guiqin Cai
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Leigh K Gebbie
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology Brisbane QLD Australia
| | - Robert E Speight
- School of Chemistry, Physics and Mechanical Engineering Queensland University of Technology Brisbane QLD Australia
| | - Valentino S Junior Te'o
- School of Earth Environmental and Biological Sciences Queensland University of Technology Brisbane QLD Australia
| | - Ian M O'Hara
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| | - Zhanying Zhang
- Centre for Tropical Crops and Biocommodities Queensland University of Technology Brisbane QLD Australia
| |
Collapse
|