1
|
Battur M, Aaqil M, Zheng J, Lin HX, Chuluunotgon B, Zorigtbaatar T, Zhao C, Tian Y. Exploring the effects of milk-enriched walnut soy sauce: Insights from GC-IMS and metagenomics approach to flavor and microbial shifts. Food Chem X 2025; 27:102364. [PMID: 40165815 PMCID: PMC11957490 DOI: 10.1016/j.fochx.2025.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/02/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
This study investigates the impact of milk addition on the fermentation of walnut soy sauce, using Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) and metagenomics to analyze flavor profiles and microbial dynamics. GC-IMS analysis showed significant increases in volatile compounds such as esters (ethyl acetate), aldehydes (hexanal), and alcohols (isoamyl alcohol), enhancing the aroma and taste. Metagenomic analysis revealed that milk increased microbial diversity, with Weissella and Lactobacillus dominating early fermentation. The milk-enriched soy sauce (SYM) exhibited higher amino acid nitrogen (2.67 g/L), and total nitrogen (7.18 g/L) compared to the control, indicating improved nutritional quality. Protease activity peaked at 2438.5 U/g for neutral protease, supporting efficient protein hydrolysis. Relative Odor Activity Value (ROAV) analysis identified 29 key flavor compounds, including 3-methyl butanol and ethyl 2-methyl butyrate, which contributed fruity and buttery notes to SYM. These results suggest that milk enhances microbial growth and improves both flavor and nutritional quality of walnut soy sauce.
Collapse
Affiliation(s)
- Munguntsetseg Battur
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Muhammad Aaqil
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Jingchuan Zheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Huang Xiao Lin
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | | | | | - Cunchao Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Plateau Characteristic Agricultural Industry Research Institute, Kunming 650201, China
| | - Yang Tian
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Pu 'er University, Pu 'er 665000, China
| |
Collapse
|
2
|
Chen S, Suo K, Kang Q, Zhu J, Shi Y, Yi J, Lu J. Active induction: a promising strategy for enhancing the bioactivity of lactic acid bacteria. Crit Rev Food Sci Nutr 2025:1-16. [PMID: 40114393 DOI: 10.1080/10408398.2025.2479069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Lactic acid bacteria (LAB), as key probiotic, play crucial roles in maintaining human health. However, their survival and functionality in diverse habitats depend on their ability to sense and respond to environmental stresses. Notably, active induction has emerged as a promising strategy for regulating the biological activity of LAB, potentially enhancing their health benefits. Therefore, this review summarizes the beneficial effects of active induction, including acid, bile, oxidation, ethanol, heat, cold, and radiation induction on the functional activities of LAB. In addition, omics methods, in silico analysis, and gene editing technologies have greatly facilitated the profound exploration of the stress regulatory network in LAB, thereby aiding the identification of active components and stress adaptors. Through these advancements, LAB provide health benefits by regulating stress-related genes and proteins, as well as inducing bioactive metabolite production. As a result, they could enhance stress tolerance, cross-protection, intestinal colonization, adhesion properties, and provide antialcohol and liver protection in vitro or in vivo. This study highlights the potential of active induction strategies in enhancing the functional role of LAB in food applications.
Collapse
Affiliation(s)
- Sisi Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Keke Suo
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Qiaozhen Kang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Jiaqing Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Yanling Shi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Juanjuan Yi
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| | - Jike Lu
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
- Food Laboratory of Zhongyuan Zhengzhou University, Luohe, China
| |
Collapse
|
3
|
Wang A, Du Q, Li X, Cui Y, Luo J, Li C, Peng C, Zhong X, Huang G. Intracellular and Extracellular Metabolic Response of the Lactic Acid Bacterium Weissella confusa Under Salt Stress. Metabolites 2024; 14:695. [PMID: 39728476 DOI: 10.3390/metabo14120695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Weissella confusa is a member of the lactic acid bacterium group commonly found in many salt-fermented foods. Strains of W. confusa isolated from high-salinity environments have been shown to tolerate salt stress to some extent. However, the specific responses and mechanisms of W. confusa under salt stress are not fully understood. METHODS To study the effect of NaCl stress on W. confusa, growth performance and metabolite profiles of the strains were compared between a NaCl-free group and a 35% NaCl-treated group. Growth performance was assessed by measuring viable cell counts and examining the cells using scanning electron microscopy (SEM). Intracellular and extracellular metabolites were analyzed by non-targeted metabolomics based on liquid chromatography-mass spectrometry (LC-MS). RESULTS It was found that the viable cell count of W. confusa decreased with increasing salinity, and cells could survive even in saturated saline (35%) medium for 24 h. When exposed to 35% NaCl, W. confusa cells exhibited surface pores and protein leakage. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, 42 different metabolites were identified in the cells and 18 different metabolites in the culture medium. These different metabolites were mainly involved in amino acid metabolism, carbohydrate metabolism, and nucleotide metabolism. In addition, salt-exposed cells exhibited higher levels of intracellular ectoine and lactose, whose precursors, such as aspartate, L-2,4-diaminobutanoate, and galactinol, were reduced in the culture medium. CONCLUSIONS This study provides insight into the metabolic responses of W. confusa under salt stress, revealing its ability to maintain viability and alter metabolism in response to high NaCl concentrations. Key metabolites such as ectoine and lactose, as well as changes in amino acid and nucleotide metabolism, may contribute to its tolerance to salt. These findings may improve our understanding of the bacterium's survival mechanisms and have potential applications in food fermentation and biotechnology.
Collapse
Affiliation(s)
- Ali Wang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
- Guangdong Engineering Research Center for Traditional Fermented Food, Guangdong Engineering Research Center for Safety Control of Food Circulation, Foshan Engineering Research Center for Brewing Technology, Foshan Engineering Research Center for Agricultural Biomanufacturing, Foshan 528231, China
| | - Qinqin Du
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Xiaomin Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Yimin Cui
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Jiahua Luo
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Cairong Li
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Chong Peng
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
| | - Xianfeng Zhong
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
- Guangdong Engineering Research Center for Traditional Fermented Food, Guangdong Engineering Research Center for Safety Control of Food Circulation, Foshan Engineering Research Center for Brewing Technology, Foshan Engineering Research Center for Agricultural Biomanufacturing, Foshan 528231, China
- School of Agricultural and Biological Engineering, Foshan University, Foshan 528231, China
| | - Guidong Huang
- School of Food Science and Engineering, Foshan University, Foshan 528231, China
- Guangdong Engineering Research Center for Traditional Fermented Food, Guangdong Engineering Research Center for Safety Control of Food Circulation, Foshan Engineering Research Center for Brewing Technology, Foshan Engineering Research Center for Agricultural Biomanufacturing, Foshan 528231, China
| |
Collapse
|
4
|
Indriani S, Srisakultiew N, Benjakul S, Boonchuen P, Pongsetkul J. Proteomic profiles revealed enzymatic activities associated with the flavor formation of salted shrimp paste influenced by Bacillus subtilis K-C3 inoculation. Food Funct 2024; 15:9100-9115. [PMID: 39210833 DOI: 10.1039/d4fo02645d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Enzymatic proteomic profiles were examined to comprehend the predominant enzymes involved in the flavor development of salted shrimp paste influenced by Bacillus subtilis K-C3 inoculation (Inoc), compared to those without inoculation (CON). Inoc showed greater proteolytic, lipolytic, and chitinolytic activities than CON (P < 0.05) throughout 30 days of fermentation, indicating B. subtilis's ability to accelerate the fermentation rate and render distinctive flavor profiles to shrimp paste. Among 50 differential abundance proteins (DAPs), 24 DAPs were identified as potential key regulating enzymes, with a P-value < 0.05 and |FC| > 0.50, indicating their significance and regulating capacity within specific metabolic pathways. Notably, 27 and 23 DAPs were up-regulated in Inoc and CON, respectively. Moreover, gene ontology (GO) enrichment analysis revealed that hydrolases, involved in carbohydrate metabolic processes and proteolysis, were the most differentiating pathways between Inoc and CON. Both samples exhibited different flavor profiles. A greater abundance of N-containing volatile compounds with a lower total abundance of aldehydes, ketones, alcohols, and acids could suggest a more favorable flavor in Inoc, compared to CON. Principal component analysis (PCA) revealed a positive correlation between L-ascorbate peroxidase, carboxypeptidase, and tripeptidyl peptidase sed2, with proteolytic and lipolytic activities in Inoc (P < 0.05). Meanwhile, acids and alcohols were positively correlated with CON. Therefore, B. subtilis inoculation could produce a distinctive flavor with a desirable sensory perception of shrimp paste regarding its ability to release extracellular enzymes/proteins. B. subtilis K-C3 inoculation could be suggested in the production of shrimp paste to improve its flavor characteristics.
Collapse
Affiliation(s)
- Sylvia Indriani
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Nattanan Srisakultiew
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Pakpoom Boonchuen
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Jaksuma Pongsetkul
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
5
|
Yang H, Hao L, Jin Y, Huang J, Zhou R, Wu C. Functional roles and engineering strategies to improve the industrial functionalities of lactic acid bacteria during food fermentation. Biotechnol Adv 2024; 74:108397. [PMID: 38909664 DOI: 10.1016/j.biotechadv.2024.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
In order to improve the flavor profiles, food security, probiotic effects and shorten the fermentation period of traditional fermented foods, lactic acid bacteria (LAB) were often considered as the ideal candidate to participate in the fermentation process. In general, LAB strains possessed the ability to develop flavor compounds via carbohydrate metabolism, protein hydrolysis and amino acid metabolism, lipid hydrolysis and fatty acid metabolism. Based on the functional properties to inhibit spoilage microbes, foodborne pathogens and fungi, those species could improve the safety properties and prolong the shelf life of fermented products. Meanwhile, influence of LAB on texture and functionality of fermented food were also involved in this review. As for the adverse effect carried by environmental challenges during fermentation process, engineering strategies based on exogenous addition, cross protection, and metabolic engineering to improve the robustness and of LAB were also discussed in this review. Besides, this review also summarized the potential strategies including microbial co-culture and metabolic engineering for improvement of fermentation performance in LAB strains. The authors hope this review could contribute to provide an understanding and insight into improving the industrial functionalities of LAB.
Collapse
Affiliation(s)
- Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yao Jin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Huang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rongqing Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Chen C, Wen LF, Yang LX, Li J, Kan QX, Xu T, Liu Z, Fu JY, Cao Y. Metagenomic and metaproteomic analyses of microbial amino acid metabolism during Cantonese soy sauce fermentation. Front Nutr 2023; 10:1271648. [PMID: 38024365 PMCID: PMC10657203 DOI: 10.3389/fnut.2023.1271648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/05/2023] [Indexed: 12/01/2023] Open
Abstract
Cantonese soy sauce is an important type of traditional Chinese brewed soy sauce that was developed in southern China, mainly in Guangdong. Due to the long fermentation period and complex microbiota in Cantonese soy sauce, there are few reports on the microbial metaproteomics of Cantonese soy sauce. In this study, integrative metagenomic and metaproteomic analyzes were used to identify the changes in the dominant microbiota and amino acid synthesis-related enzymes and metabolism during Cantonese soy sauce fermentation. Metagenomic analysis revealed that Tetragenococcus halophilus, Weissella confusa, Weissella paramesenteroides, Enterobacter hormaechei, and Aspergillus oryzae were the dominant microbiota. Using the Top 15 dominant microbiota identified by metagenomics as the database, LTQ Orbitrap Velos Pro ETD mass spectrometry was used to obtain metaproteomic information about the microbes in the soy sauce, and the results indicated that the active enzymes involved in the metabolism of amino acids were secreted by microorganisms such as A. oryzae, T. halophilus, and Zygosaccharomyces rouxii. During the Cantonese soy sauce fermentation process. Among them, early fermentation (0-15d) was dominated by A. oryzae and T. halophilus, mid-term fermentation (60-90d) was dominated by Z. rouxii, A. oryzae, and T. halophilus, and late fermentation (90-120d) was dominated by A. oryzae, Z. rouxii, and T. halophilus. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the main enzymes involved in the metabolism of umami amino acids were aspartate aminotransferase, citrate synthase, aconitase, and isocitrate dehydrogenase, which were produced by Z. rouxii and A. oryzae during early fermentation (0-15 d) and the middle fermentation stage (60-90 d). This study constructed a regulatory network of enzymes potentially involved in the metabolism of flavor amino acids, which provided a theoretical basis for studying the amino acid metabolism of Cantonese soy sauce.
Collapse
Affiliation(s)
- Cong Chen
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Natural Active Object Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
- Guangdong Eco-Engineering Polytechnic, Guangzhou, China
- Jonjee Hi-Tech Industrial and Commercial Holding Co., Ltd., Zhongshan, China
| | - Lin Feng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Natural Active Object Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Li Xin Yang
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Natural Active Object Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Jun Li
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Natural Active Object Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Qi Xin Kan
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Natural Active Object Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Ting Xu
- Guangdong Meiweixian Flavouring Foods Co., Ltd., Zhongshan, China
| | - Zhan Liu
- Guangdong Meiweixian Flavouring Foods Co., Ltd., Zhongshan, China
| | - Jiang Yan Fu
- Guangdong Meiweixian Flavouring Foods Co., Ltd., Zhongshan, China
| | - Yong Cao
- College of Food Science, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Natural Active Object Engineering Technology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Chen D, Chen C, Guo C, Zhang H, Liang Y, Cheng Y, Qu H, Wa Y, Zhang C, Guan C, Qian J, Gu R. The regulation of simulated artificial oro-gastrointestinal transit stress on the adhesion of Lactobacillus plantarum S7. Microb Cell Fact 2023; 22:170. [PMID: 37660047 PMCID: PMC10474686 DOI: 10.1186/s12934-023-02174-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/09/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Oro-gastrointestinal stress in the digestive tract is the main stress to which orally administered probiotics are exposed. The regulation of oro-gastrointestinal transit (OGT) stress on the adhesion and survival of probiotics under continuous exposure to simulated salivary-gastric juice-intestinal juice was researched in this study. RESULTS Lactobacillus plantarum S7 had a higher survival rate after exposure to simulated OGT1 (containing 0.15% bile salt) stress and OGT2 (containing 0.30% bile salt) stress. The adhesion ability of L. plantarum S7 was significantly increased by OGT1 stress (P < 0.05) but was not changed significantly by OGT2 stress (P > 0.05), and this trend was also observed in terms of the thickness of the surface material of L. plantarum S7 cells. The expression of surface proteins of L. plantarum S7, such as the 30 S ribosomal proteins, mucus-binding protein and S-layer protein, was significantly downregulated by OGT stress (P < 0.05); meanwhile, the expression of moonlight proteins, such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycorate kinase (PGK), beta-phosphoglucomutase (PGM1), GroEL and glucose-6-phosphate isomerase (PGI), was significantly upregulated (P < 0.05). However, the upregulation of GAPDH, PGK, PGM1 and PGI mediated by OGT1 stress was greater than those mediated by OGT2 stress. The quorum sensing pathway of L. plantarum S7 was changed significantly by OGT stress compared with no OGT stress cells (P < 0.05), and the expression of Luxs in the pathway was significantly upregulated by OGT1 stress (P < 0.05). The ABC transportation pathway was significantly altered by OGT1 stress (P < 0.05), of which the expression of the peptide ABC transporter substrate-binding protein and energy-coupling factor transporter ATP-binding protein EcfA was significantly upregulated by OGT stress (P < 0.05). The glycolide metabolism pathway was significantly altered by OGT1 stress compared with that in response to OGT2 stress (P < 0.05). CONCLUSION L. plantarum S7 had a strong ability to resist OGT stress, which was regulated by the proteins and pathways related to OGT stress. The adhesion ability of L. plantarum S7 was enhanced after continuous exposure to OGT1 stress, making it a potential probiotic with a promising future for application.
Collapse
Affiliation(s)
- Dawei Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
- Jiangsu Yuhang Food Technology Co., Ltd, Yancheng, 224000, Jiangsu, China
| | - Chunmeng Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Congcong Guo
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Hui Zhang
- Yangzhou Hospital of Traditional Chinese Medicine, Yangzhou, 225127, Jiangsu, China
| | - Yating Liang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Yue Cheng
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Hengxian Qu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Yunchao Wa
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Chenchen Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Chengran Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Jianya Qian
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China
| | - Ruixia Gu
- College of Food Science and Engineering, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
- Jiangsu Key Laboratory of Dairy Biotechnology and Safety Control, Yangzhou, 225127, Jiangsu, China.
| |
Collapse
|
8
|
Wu Y, Ma J, Shi J, Cao S, Luo J, Zheng T, Wang M. iTRAQ-Based Quantitative Proteomic Analysis of Arthrobacter simplex in Response to Cortisone Acetate and Its Mutants with Improved Δ 1-Dehydrogenation Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6376-6388. [PMID: 37043686 DOI: 10.1021/acs.jafc.3c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Arthrobacter simplex is extensively used for cortisone acetate (CA) biotransformation in industry, but the Δ1-dehydrogenation molecular fundamental remains unclear. Herein, the comparative proteome revealed several proteins with the potential role in this reaction, which were mainly involved in lipid or amino acid transport and metabolism, energy production and conversion, steroid degradation, and transporter. The influences of six proteins were further confirmed, where pps, MceGA, yrbE4AA, yrbE4BA, and hyp2 showed positive impacts, while hyp1 exhibited a negative effect. Additionally, KsdD5 behaved as the best catalytic enzyme. By the combined manipulation in multiple genes under the control of a stronger promoter, an optimal strain with better catalytic enzyme activity, substrate transportation, and cell stress tolerance was created. After biotechnology optimization, the production peak and productivity were, respectively, boosted by 4.1- and 4.0-fold relative to the initial level. Our work broadens the understanding of the Δ1-dehydrogenation mechanism, also providing effective strategies for excellent steroid-transforming strains.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianan Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jinghui Shi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Shuting Cao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Jianmei Luo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Tingting Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| |
Collapse
|
9
|
Papadopoulou E, Rodriguez de Evgrafov MC, Kalea A, Tsapekos P, Angelidaki I. Adaptive laboratory evolution to hypersaline conditions of lactic acid bacteria isolated from seaweed. N Biotechnol 2023; 75:21-30. [PMID: 36870677 DOI: 10.1016/j.nbt.2023.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Seaweed biomass has been proposed as a promising alternative carbon source for fermentation processes using microbial factories. However, the high salinity content of seaweed biomass is a limiting factor in large scale fermentation processes. To address this shortcoming, three bacterial species (Pediococcus pentosaceus, Lactobacillus plantarum, and Enterococcus faecium) were isolated from seaweed biomass and evolved to increasing concentrations of NaCl. Following the evolution period, P. pentosaceus reached a plateau at the initial NaCl concentration, whereas L. plantarum, and E. faecium showed a 1.29 and 1.75-fold increase in their salt tolerance, respectively. The impact that salt evolution had on lactic acid production using hypersaline seaweed hydrolysate was investigated. Salinity evolved L. plantarum produced 1.18-fold more lactic acid than the wild type, and salinity evolved E. faecium was able to produce lactic acid, while the wild type could not. No differences in lactic acid production were observed between the P. pentosaceus salinity evolved and wild type strains. Evolved lineages were analyzed for the molecular mechanisms underlying the observed phenotypes. Mutations were observed in genes affecting the ion balance in the cell, the composition of the cell membrane and proteins acting as regulators. This study demonstrates that bacterial isolates from saline niches are promising microbial factories for the fermentation of saline substrates, without the requirement of previous desalination steps, while preserving high final product yields.
Collapse
Affiliation(s)
- Eleftheria Papadopoulou
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | | - Argyro Kalea
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Panagiotis Tsapekos
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| |
Collapse
|
10
|
|
11
|
Dong J, Ping L, Xie Q, Liu D, Zhao L, Evivie SE, Wang Z, Li B, Huo G. Lactobacillus plantarum KLDS1.0386 with antioxidant capacity ameliorates the lipopolysaccharide-induced acute liver injury in mice by NF-κB and Nrf2 pathway. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Le TS, Nguyen PT, Nguyen-Ho SH, Nguyen TP, Nguyen TT, Thai MN, Nguyen-Thi TU, Nguyen MC, Hoang QK, Nguyen HT. Expression of genes involved in exopolysaccharide synthesis in Lactiplantibacillus plantarum VAL6 under environmental stresses. Arch Microbiol 2021; 203:4941-4950. [PMID: 34255124 DOI: 10.1007/s00203-021-02479-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 10/20/2022]
Abstract
Environmental factors can alter exopolysaccharide biosynthesis in lactic acid bacteria (LAB). To further clarify this potential relationship, the mRNA expression of genes involved in exopolysaccharide synthesis such as glmU, pgmB1, cps4E, cps4F, cps4J, and cps4H in Lactiplantibacillus plantarum VAL6 under different conditions including temperature, pH, sodium chloride (NaCl), and carbon dioxide (CO2) intensification culture was studied. The transcriptomic data revealed that the exposure of L. plantarum VAL6 at pH 3 increased the expression level of cps4H but decreased the expression levels of pgmB1 and cps4E. Under pH 8, cps4F and cps4E were significantly upregulated, whereas pgmB1 was downregulated. Similarly, the expression levels of cps4F, cps4E, and cps4J increased sharply under stresses at 42 or 47 °C. In the case of NaCl stress, glmU, pgmB1, cps4J, and cps4H were downregulated in exposure to NaCl at 7 and 10% concentrations while cps4E and cps4F were upregulated at 1 h of 10%-NaCl treatment and at 5 h of 4%-NaCl treatment. Remarkably, CO2 intensification culture stimulated the expression of all tested genes. In addition, simultaneous changes in expression of cps4E and cps4F under environmental challenges may elicit the possibility of an association between the two genes. These findings indicated that the expression level of eps genes is responsible for changes in the yield and monosaccharide composition of exopolysaccharides under environmental stresses.
Collapse
Affiliation(s)
- Trung-Son Le
- Biotechnology Research and Development Institute, Can Tho University, Can Tho City, Vietnam
| | - Phu-Tho Nguyen
- Graduate University of Sciences and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam. .,Department of Biotechnology, An Giang University, An Giang, Vietnam. .,Vietnam National University, Ho Chi Minh City, Vietnam.
| | - Song-Hao Nguyen-Ho
- Biotechnology Research and Development Institute, Can Tho University, Can Tho City, Vietnam
| | - Tang-Phu Nguyen
- Biotechnology Research and Development Institute, Can Tho University, Can Tho City, Vietnam
| | - Thi-Tho Nguyen
- Ho Chi Minh City University of Tecnology (Hutech), Ho Chi Minh City, Vietnam
| | - My-Ngan Thai
- Department of Biotechnology, An Giang University, An Giang, Vietnam.,Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Minh-Chon Nguyen
- Biotechnology Research and Development Institute, Can Tho University, Can Tho City, Vietnam
| | - Quoc-Khanh Hoang
- Institute of Tropical Biology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, An Giang, Vietnam. .,Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
13
|
Chen C, Huang K, Li X, Tian H, Yu H, Huang J, Yuan H, Zhao S, Shao L. Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis. Appl Microbiol Biotechnol 2021; 105:3691-3704. [PMID: 33852024 DOI: 10.1007/s00253-021-11276-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Lactiplantibacillus plantarum is frequently exposed to salt stress during industrial applications. Catabolite control protein (CcpA) controls the transcription of many genes, but its role in the response to salt stress remains unclear. In this study, we used transcriptome analyses to investigate differences in the logarithmic growth phases of Lactiplantibacillus plantarum ST-III and its ccpA-knockout mutant when grown with or without salt and glycine betaine (GB). The deletion of ccpA significantly affected bacterial growth under different conditions. Among the comparisons, the highest proportion of differentially expressed genes (64%) was observed in the comparison between the wild-type and ccpA mutant grown with NaCl, whereas the lowest proportion (6%) was observed in the comparison between the ccpA mutant strain cultures grown with NaCl alone or with GB together. Transcriptomic analyses showed that CcpA could regulate GB uptake, activate iron uptake, produce acetyl-CoA, and affect fatty acid composition to maintain membrane lipid homeostasis in the adaptation of high-salinity conditions. Conclusively, these results demonstrate the importance of CcpA as a master regulator of these processes in response to salt stress, and provide new insights into the complex regulatory network of lactic acid bacteria. KEY POINTS: • The absence of CcpA significantly affected growth of L. plantarum and its response to salt stress. • CcpA regulates compatible solutes absorption and ions transport to resist salt stress. • CcpA alters fatty acids composition to maintain membrane lipid homeostasis towards salt stress.
Collapse
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Ke Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Xiaohong Li
- Shanghai Customs P. R. China Technical Center For Animal, Plant And Food Inspection And Quarantine, Shanghai, People's Republic of China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Juan Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Haibin Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Shanshan Zhao
- College of Agriculture, Hebei University of Engineering, Handan, People's Republic of China
| | - Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.
| |
Collapse
|
14
|
Ma J, Xu C, Liu F, Hou J, Shao H, Yu W. Stress adaptation and cross-protection of Lactobacillus plantarum KLDS 1.0628. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2020.1859619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jiage Ma
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Cong Xu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Hong Shao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| | - Wei Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, P. R. China
| |
Collapse
|
15
|
Yang L, Fan W, Xu Y. Metaproteomics insights into traditional fermented foods and beverages. Compr Rev Food Sci Food Saf 2020; 19:2506-2529. [PMID: 33336970 DOI: 10.1111/1541-4337.12601] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
Traditional fermented foods and beverages (TFFB) are important dietary components. Multi-omics techniques have been applied to all aspects of TFFB research to clarify the composition and nutritional value of TFFB, and to reveal the microbial community, microbial interactions, fermentative kinetics, and metabolic profiles during the fermentation process of TFFB. Because of the advantages of metaproteomics in providing functional information, this technology has increasingly been used in research to assess the functional diversity of microbial communities. Metaproteomics is gradually gaining attention in the field of TFFB research because it can reveal the nature of microorganism function at the protein level. This paper reviews the common methods of metaproteomics applied in TFFB research; systematically summarizes the results of metaproteomics research on TFFB, such as sauces, wines, fermented tea, cheese, and fermented fish; and compares the differences in conclusions reached through metaproteomics versus other omics methods. Metaproteomics has great advantages in revealing the microbial functions in TFFB and the interaction between the materials and microbial community. In the future, metaproteomics should be further applied to the study of functional protein markers and protein interaction in TFFB; multi-omics technology requires further integration to reveal the molecular nature of TFFB fermentation.
Collapse
Affiliation(s)
- Liang Yang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenlai Fan
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
16
|
Lin JC, Wang XZ, Shen T, Zhang JY. iTRAQ-based quantitative analysis reveals the mechanism underlying the changes in physiological activity in a glutamate racemase mutant strain of Streptococcus mutans UA159. Mol Biol Rep 2020; 47:3719-3733. [PMID: 32338332 DOI: 10.1007/s11033-020-05463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
Streptococcus mutans UA159 is responsible for human dental caries with robust cariogenic potential. Our previous study noted that a glutamate racemase (MurI) mutant strain (designated S. mutans FW1718), with the hereditary background of UA159, displayed alterations of morphogenesis, attenuated stress tolerance, and weakened biofilm-forming capabilities, accompanying with unclear mechanisms. In this study, we applied isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics to characterize the proteome profiles of the murI mutant strain vs. the wild-type strain in chemically defined media to elucidate the mechanisms by which S. mutans copes with MurI deficiency. Whole-cell proteins of S. mutans FW1718 and UA159 were assessed by iTRAQ-coupled LC-ESI-MS/MS. Furthermore, differentially expressed proteins (DEPs) were identified by Mascot, Gene Ontology (GO) annotation, Cluster of Orthologous Groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, a protein-protein interaction (PPI) network was established using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Among 1173 total bacterial proteins identified, 112 DEPs exhibited altered expression patterns in S. mutans UA159 with or without the murI mutation. The ΔmurI cells displayed an increase in the relative expression of 93 proteins (fold change ≥ 1.2, p < 0.05) and a decrease in 29 proteins (fold change ≤ 0.833, p < 0.05) compared with the wild-type cells. PPI analysis revealed a complex network of DEPs containing 191 edges and 122 nodes. The DEPs significantly upregulated after murI knockout had roles in diverse functional processes spanning cell-wall biosynthesis, energy production, and DNA replication and repair. We identified distinct variations and diverse modulators caused by murI mutation in the proteome of S. mutans, indicating that the modification of cell membrane structure, redistribution of energy metabolism and enhanced nucleic acid machinery contributed to the S. mutans response to specific environmental contexts.
Collapse
Affiliation(s)
- Jia-Cheng Lin
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiang-Zhu Wang
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Ting Shen
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Ying Zhang
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Mbye M, Baig MA, AbuQamar SF, El-Tarabily KA, Obaid RS, Osaili TM, Al-Nabulsi AA, Turner MS, Shah NP, Ayyash MM. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr Rev Food Sci Food Saf 2020; 19:1110-1124. [PMID: 33331686 DOI: 10.1111/1541-4337.12554] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
Probiotics are defined as live microorganisms that improve the health of the host when administered in adequate quantities. Nonetheless, probiotics encounter extreme environmental conditions during food processing or along the gastrointestinal tract. This review discusses different environmental stresses that affect probiotics during food preparation, storage, and along the alimentary canal, including high temperature, low temperature, low and alkaline pH, oxidative stress, high hydrostatic pressure, osmotic pressure, and starvation. The understanding of how probiotics deal with environmental stress and thrive provides useful information to guide the selection of the strains with enhanced performance in specific situations, in food processing or during gastrointestinal transit. In most cases, multiple biological functions are affected upon exposure of the cell to environmental stress. Sensing of sublethal environmental stress can allow for adaptation processes to occur, which can include alterations in the expression of specific proteins.
Collapse
Affiliation(s)
- Mustapha Mbye
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| | - Mohd Affan Baig
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE.,Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University (UAEU), Al-Ain, UAE.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Reyad S Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, UAE.,Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Mark S Turner
- School of Agriculture and Food Sciences, the University of Queensland (UQ), Brisbane, Queensland, Australia
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mutamed M Ayyash
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| |
Collapse
|