1
|
Liu J, Lu J. The Characterization of the Purine Nucleoside Phosphorylase from Agaricus bisporus and Its Potential Application in Reducing Purine Content in Beer. J Fungi (Basel) 2025; 11:268. [PMID: 40278089 PMCID: PMC12028538 DOI: 10.3390/jof11040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Beer, the most popular alcoholic beverage, poses health risks for individuals with gout and hyperuricemia due to its high purine content. Herein, we identified a novel purine nucleoside phosphorylase (AbPNP) from the edible mushroom Agaricus bisporus and heterologously expressed it in Pichia pastoris. The recombinant AbPNP exhibited optimal activity at 60 °C and pH 7.0, retaining >80% activity at pH 6.0-9.0 and >85% activity after 3 h at ≤60 °C. Kinetic analysis revealed high catalytic efficiency (kcat/Km = 2.02 × 106 s-1⋅M-1) toward inosine, with strong resistance to metal ions except for Co2+ and Cu2+. The application of AbPNP (1.0-5.0 U/mL) during wort saccharification reduced purine nucleosides by 33.54% (from 151.53 to 100.65 mg/L) while increasing yeast utilization of free purine bases. The resulting beer showed improved fermentation performance (alcohol content increased by 3.6%) without compromising flavor profiles. This study provides the food-grade enzymatic strategy for low-purine beer production, leveraging the GRAS status of both A. bisporus and P. pastoris.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
- Sericultural and Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
- Key Laboratory for Prevention and Control of Avian Influenza and Other Major Poultry Diseases, Ministry of Agriculture and Rural Affairs, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jian Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China;
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Wang L, Tang P, Zhao Q, Shan Q, Qin L, Xiao D, Li C, Lu J, Guo X. Difference between traditional brewing technology and mechanized production technology of jiangxiangxing baijiu: Micro ecology of zaopei, physicochemical factors and volatile composition. Food Res Int 2024; 192:114748. [PMID: 39147555 DOI: 10.1016/j.foodres.2024.114748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024]
Abstract
Mechanized production of Jiangxiangxing Baijiu (JB) stands as a pivotal trend in today's Baijiu industry. This study, employing high-throughput sequencing and headspace solid phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) technology, comprehensively analyzed the micro ecology, physicochemical factors, and volatile components during pit fermentation, comparing traditional fermentation Zaopei (TZP) and mechanized fermentation Zaopei (MZP). According to the research findings, the dominant microorganisms in the fermentation process of ZP comprise Lactobacillus, Monascus, Issatchenkia, and Zygosaccharomyces. In addition, functional microorganisms like Zygosaccharomyces, Monascus, Issatchenkia, Leiothecium, Candida, Pichia, and others exhibited differences on day 0 and throughout the fermentation process. These differences are attributed to the effects of distinct fermentation environment and physicochemical factors. Furthermore, comprehensive analysis detected 87 volatile compounds in TZP and MZP, with 56 showing significant differences, primarily including alcohols, aldehydes, ketones, acids, esters, and aromatics. Additionally, fermentation can be classified into two phases based on ethanol and volatile compounds production: the initial phase (0-12 days, P1) primarily focuses on alcohols production, while the subsequent phase (12-30 days, P2) concentrates on volatile compounds generation. The subsequent correlation analysis indicates that variations in volatile compounds primarily arise from shifts in microbial composition, with notable differences observed in fungi, specifically Monascus, Zygosaccharomyces, and Issatchenkia, which drive the disparities in volatile compounds. This study provides an important theoretical basis and practical guidance for the realization of mechanized high-quality production of JB.
Collapse
Affiliation(s)
- Lianqing Wang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China
| | - Ping Tang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China; Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Qing Zhao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China
| | - Qimuge Shan
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Liqin Qin
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Dongguang Xiao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China
| | - Changwen Li
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China
| | - Jun Lu
- Guizhou Guotai Liquor Group Co., Ltd., Renhuai 564500, China.
| | - Xuewu Guo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin 300547, China.
| |
Collapse
|
3
|
Garge RK, Geck RC, Armstrong JO, Dunn B, Boutz DR, Battenhouse A, Leutert M, Dang V, Jiang P, Kwiatkowski D, Peiser T, McElroy H, Marcotte EM, Dunham MJ. Systematic profiling of ale yeast protein dynamics across fermentation and repitching. G3 (BETHESDA, MD.) 2024; 14:jkad293. [PMID: 38135291 PMCID: PMC10917522 DOI: 10.1093/g3journal/jkad293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is among the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout 2 fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.
Collapse
Affiliation(s)
- Riddhiman K Garge
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Joseph O Armstrong
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Barbara Dunn
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daniel R Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Antibody Discovery and Accelerated Protein Therapeutics, Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Anna Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich 8049, Switzerland
| | - Vy Dang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Pengyao Jiang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Yang Q, Liu S, Zhao Y, Han X, Chang R, Mao J. Enzymatic properties and inhibition tolerance analysis of key enzymes in β-phenylethanol anabolic pathway of Saccharomyces cerevisiae HJ. Synth Syst Biotechnol 2023; 8:772-783. [PMID: 38161995 PMCID: PMC10755794 DOI: 10.1016/j.synbio.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/03/2024] Open
Abstract
Huangjiu is known for its unique aroma, primarily attributed to its high concentration of β-phenylethanol (ranging from 40 to 130 mg/L). Phenylalanine aminotransferase Aro9p and phenylpyruvate decarboxylase Aro10p are key enzymes in the β-phenylethanol synthetic pathway of Saccharomyces cerevisiae HJ. This study examined the enzymatic properties of these two enzymes derived from S. cerevisiae HJ and S288C. After substrate docking, Aro9pHJ (-24.05 kJ/mol) and Aro10pHJ (-14.33 kJ/mol) exhibited lower binding free energies compared to Aro9pS288C (-21.93 kJ/mol) and Aro10pS288C (-12.84 kJ/mol). ARO9 and ARO10 genes were heterologously expressed in E. coli BL21. Aro9p, which was purified via affinity chromatography, showed inhibition by l-phenylalanine (L-PHE), but the reaction rate Vmax(Aro9pHJ: 23.89 μmol·(min∙g)-1) > Aro9pS288C: 21.3 μmol·(min∙g)-1) and inhibition constant Ki values (Aro9pHJ: 0.28 mol L-1>Aro9pS288C 0.26 mol L-1) indicated that Aro9p from S. cerevisiae HJ was more tolerant to substrate stress during Huangjiu fermentation. In the presence of the same substrate phenylpyruvate (PPY), Aro10pHJ exhibited a stronger affinity than Aro10pS288C. Furthermore, Aro9pHJ and Aro10pHJ were slightly more tolerant to the final metabolites β-phenylethanol and ethanol, respectively, compared to those from S288C. The study suggests that the mutations in Aro9pHJ and Aro10pHJ may contribute to the increased β-phenylethanol concentration in Huangjiu. This is the first study investigating enzyme tolerance mechanisms in terms of substrate and product, providing a theoretical basis for the regulation of the β-phenylethanol metabolic pathway.
Collapse
Affiliation(s)
- Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yuzong Zhao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao Han
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Rui Chang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang, 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang, 312000, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
5
|
Garge RK, Geck RC, Armstrong JO, Dunn B, Boutz DR, Battenhouse A, Leutert M, Dang V, Jiang P, Kwiatkowski D, Peiser T, McElroy H, Marcotte EM, Dunham MJ. Systematic Profiling of Ale Yeast Protein Dynamics across Fermentation and Repitching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558736. [PMID: 37790497 PMCID: PMC10543003 DOI: 10.1101/2023.09.21.558736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Studying the genetic and molecular characteristics of brewing yeast strains is crucial for understanding their domestication history and adaptations accumulated over time in fermentation environments, and for guiding optimizations to the brewing process itself. Saccharomyces cerevisiae (brewing yeast) is amongst the most profiled organisms on the planet, yet the temporal molecular changes that underlie industrial fermentation and beer brewing remain understudied. Here, we characterized the genomic makeup of a Saccharomyces cerevisiae ale yeast widely used in the production of Hefeweizen beers, and applied shotgun mass spectrometry to systematically measure the proteomic changes throughout two fermentation cycles which were separated by 14 rounds of serial repitching. The resulting brewing yeast proteomics resource includes 64,740 protein abundance measurements. We found that this strain possesses typical genetic characteristics of Saccharomyces cerevisiae ale strains and displayed progressive shifts in molecular processes during fermentation based on protein abundance changes. We observed protein abundance differences between early fermentation batches compared to those separated by 14 rounds of serial repitching. The observed abundance differences occurred mainly in proteins involved in the metabolism of ergosterol and isobutyraldehyde. Our systematic profiling serves as a starting point for deeper characterization of how the yeast proteome changes during commercial fermentations and additionally serves as a resource to guide fermentation protocols, strain handling, and engineering practices in commercial brewing and fermentation environments. Finally, we created a web interface (https://brewing-yeast-proteomics.ccbb.utexas.edu/) to serve as a valuable resource for yeast geneticists, brewers, and biochemists to provide insights into the global trends underlying commercial beer production.
Collapse
Affiliation(s)
- Riddhiman K. Garge
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Renee C. Geck
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Joseph O. Armstrong
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Barbara Dunn
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Daniel R. Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
- Houston Methodist Research Institute, Houston, Texas, USA
| | - Anna Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Mario Leutert
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, Switzerland
| | - Vy Dang
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Pengyao Jiang
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | | | | | - Edward M. Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Maitreya J. Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Liu L, Zhao PT, Hu CY, Tian D, Deng H, Meng YH. Screening low-methanol and high-aroma produced yeasts for cider fermentation by transcriptive characterization. Front Microbiol 2022; 13:1042613. [PMID: 36439849 PMCID: PMC9691974 DOI: 10.3389/fmicb.2022.1042613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 11/12/2022] Open
Abstract
The commercial active dry yeast strains used for cider production in China are far behind the requirements of the cider industry development in recent decades. In this study, eight yeasts, including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Pichia bruneiensis, and Pichia kudriavzevii, were screened and assessed by growth performance, methanol production, aroma analysis, and their transcriptive characterization. Saccharomyces cerevisiae strains WFC-SC-071 and WFC-SC-072 were identified as promising alternatives for cider production. Strains WFC-SC-071 and WFC-SC-072 showed an excellent growth capacity characterized by 91.6 and 88.8% sugar utilization, respectively. Methanol production by both strains was below 200 mg/L. Key aroma compounds imparting cider appreciably characteristic aroma increased in cider fermented by strains WFC-SC-071 and WFC-SC-072. RT-qPCR analysis suggested that most genes associated with growth capacity, carbohydrate uptake, and aroma production were upregulated in WFC-SC-071 and WFC-SC-072. Overall, two Saccharomyces cerevisiae strains are the optimal starters for cider production to enable the diversification of cider, satisfy the differences in consumer demand, and promote cider industry development.
Collapse
Affiliation(s)
- Liang Liu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Peng Tao Zhao
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Ching Yuan Hu
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, Honolulu, HI, United States
| | - Dan Tian
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
| | - Hong Deng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- *Correspondence: Hong Deng,
| | - Yong Hong Meng
- The Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education, National Research and Development Center of Apple Processing Technology, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xian, China
- Yong Hong Meng,
| |
Collapse
|
7
|
Liu S, Bai M, Zhou J, Jin Z, Xu Y, Yang Q, Zhou J, Zhang S, Mao J. Analysis of genes from Saccharomyces cerevisiae HJ01 participating in aromatic alcohols biosynthesis during huangjiu fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr 2020; 61:3160-3196. [PMID: 32715740 DOI: 10.1080/10408398.2020.1793726] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Collapse
Affiliation(s)
- Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parisa Etedali
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Samaneh Mahmoudi-Gom Yek
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| |
Collapse
|