1
|
Yao S, Lai J, Sun C, Zhao M, Duan J, Liao X, Pan Z. The microbial communities of the rust layer were influenced by seawater microbial communities. BIOFOULING 2024; 40:754-771. [PMID: 39373126 DOI: 10.1080/08927014.2024.2411076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/12/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
To reveal the responsible microorganisms of microbiologically-influenced-corrosion (MIC), using 16S rRNA and ITS sequencing techniques, we investigated the bacterial and fungal communities in rust layer and seawater. Results show that the corrosion-related genera of Erythrobacter, norank_f__Rhodothermaceae, and Acinetobacter bacteria, as well as Aspergillus fungi, were overrepresented in the rust layer, along with the Pseudoalteromonas and Marinobacterium bacteria in seawater, and Ramlibacter, Aquimarina, and Williamsia bacteria were first detected in the rust layer. SourceTracker analysis revealed that approximately 23.08% of bacteria and 21.48% of fungi originated from seawater. Stochastic processes governed the rust layer and seawater microbial communities, and network analysis showed coexistence and interaction among bacterial and fungal communities. These results indicate that the composition of microbial communities in the rust layer was influenced by the marine environmental microbial communities, which can provide basic data support for the control of MIC in marine-related projects.
Collapse
Affiliation(s)
- Shengxun Yao
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Congtao Sun
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Maomi Zhao
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Jizhou Duan
- Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, P.R. China
| | - Xiufen Liao
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| | - Zihan Pan
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, P.R. China
| |
Collapse
|
2
|
|
3
|
Liu B, Li Z, Yang X, Du C, Li X. Microbiologically influenced corrosion of X80 pipeline steel by nitrate reducing bacteria in artificial Beijing soil. Bioelectrochemistry 2020; 135:107551. [DOI: 10.1016/j.bioelechem.2020.107551] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 10/24/2022]
|
4
|
Menolli N, Sánchez-García M. Brazilian fungal diversity represented by DNA markers generated over 20 years. Braz J Microbiol 2020; 51:729-749. [PMID: 31828716 PMCID: PMC7203393 DOI: 10.1007/s42770-019-00206-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/01/2019] [Indexed: 10/25/2022] Open
Abstract
Molecular techniques using fungal DNA barcoding (ITS) and other markers have been key to identifying the biodiversity of different geographic areas, mainly in megadiverse countries. Here, we provide an overview of the fungal diversity in Brazil based on DNA markers of phylogenetic importance generated since 1996. We retrieved fungal sequences of ITS, LSU, SSU, tef1-α, β-tubulin, rpb1, rpb2, actin, chitin synthase, and ATP6 from GenBank using different field keywords that indicated their origin in Brazil. A total of 19,440 sequences were recovered. ITS is the most representative marker (11,209 sequences), with 70.1% belonging to Ascomycota, 18.6% Basidiomycota, 10.2% unidentified, 1.1% Mucoromycota, two sequences of Olpidium bornovanus (Fungi incertae sedis), one sequence of Blastocladiomycota (Allomyces arbusculus), and one sequence of Chytridiomycota (Batrachochytrium dendrobatidis). Considering the sequences of all selected markers, only the phyla Cryptomycota and Entorrhizomycota were not represented. Based on ITS, using a cutoff of 98%, all sequences comprise 3047 OTUs, with the majority being Ascomycota (2088 OTUs) and Basidiomycota (681 OTUs). Previous numbers based mainly on morphological and bibliographical data revealed 5264 fungal species from Brazil, with a predominance of Basidiomycota (2741 spp.) and Ascomycota (1881 spp.). The unidentified ITS sequences not assigned to a higher taxonomic level represent 1.61% of all ITS sequences sampled and correspond to 38 unknown class-level lineages (75% cutoff). A maximum likelihood phylogeny based on LSU illustrates the fungal classes occurring in Brazil.
Collapse
Affiliation(s)
- Nelson Menolli
- Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), Câmpus São Paulo, Rua Pedro Vicente 625, São Paulo, SP, 01109-010, Brazil.
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, Av. Miguel Stefano 3687, Água Funda, São Paulo, SP, 04301-012, Brazil.
| | - Marisol Sánchez-García
- Biology Department, Clark University, Worcester, MA, 01610, USA
- Uppsala Biocentre, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, SE-75005, Sweden
| |
Collapse
|
5
|
Rajala P, Bomberg M, Vepsäläinen M, Carpén L. Microbial fouling and corrosion of carbon steel in deep anoxic alkaline groundwater. BIOFOULING 2017; 33:195-209. [PMID: 28198664 DOI: 10.1080/08927014.2017.1285914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Understanding the corrosion of carbon steel materials of low and intermediate level radioactive waste under repository conditions is crucial to ensure the safe storage of radioactive contaminated materials. The waste will be in contact with the concrete of repository silos and storage containers, and eventually with groundwater. In this study, the corrosion of carbon steel under repository conditions as well as the microbial community forming biofilm on the carbon steel samples, consisting of bacteria, archaea, and fungi, was studied over a period of three years in a groundwater environment with and without inserted concrete. The number of biofilm forming bacteria and archaea was 1,000-fold lower, with corrosion rates 620-times lower in the presence of concrete compared to the natural groundwater environment. However, localized corrosion was detected in the concrete-groundwater environment indicating the presence of local microenvironments where the conditions for pitting corrosion were favorable.
Collapse
Affiliation(s)
- Pauliina Rajala
- a Materials Performance , Technical Research Centre of Finland (VTT) , Espoo , Finland
| | - Malin Bomberg
- b Material Processing and Geotechnology , Technical Research Centre of Finland (VTT) , Espoo , Finland
| | | | - Leena Carpén
- a Materials Performance , Technical Research Centre of Finland (VTT) , Espoo , Finland
| |
Collapse
|
6
|
Diverse deep-sea fungi from the South China Sea and their antimicrobial activity. Curr Microbiol 2013; 67:525-30. [PMID: 23736224 DOI: 10.1007/s00284-013-0394-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Accepted: 05/19/2013] [Indexed: 11/27/2022]
Abstract
We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.
Collapse
|
7
|
Zhang XY, Bao J, Wang GH, He F, Xu XY, Qi SH. Diversity and antimicrobial activity of culturable fungi isolated from six species of the South China Sea gorgonians. MICROBIAL ECOLOGY 2012; 64:617-627. [PMID: 22526402 DOI: 10.1007/s00248-012-0050-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/27/2012] [Indexed: 05/31/2023]
Abstract
Fungi in gorgonians are now known to cause gorgonian diseases, but little attention has been paid to the nature of fungal communities associated with gorgonians. The diversity of culturable fungi associated with six species of healthy South China Sea gorgonians were investigated using a culture-dependent method followed by analysis of fungal internal transcribed spacer sequences. A total of 121 fungal isolates were recovered and identified using the Basic Local Alignment Search Tool search program. These belonged to 41 fungal species from 20 genera. Of these, 30 species and 12 genera are new reports for gorgonians, and the genera Aspergillus and Penicillium were the most diverse and common in the six gorgonian species. Comparison of the fungal communities in the six gorgonian species, together with results from previous relevant studies, indicated that different gorgonian species and the same gorgonian species living in different geographic locations had different fungal communities. The gorgonian Dichotella gemmacea harbored the most fungal species and isolates, while Echinogorgia aurantiaca had the least fungal diversity. Among the six media used for fungal isolation, potato glucose agar yielded the highest isolates (27 isolates), while glucose peptone starch agar had the best recoverability of fungal species (15 species). The antimicrobial activity of the 121 fungal isolates was tested against three marine bacteria and two marine gorgonian pathogenic fungi. A relatively high proportion (38 %) of fungal isolates displayed distinct antibacterial and antifungal activity, suggesting that the gorgonian-associated fungi may aid their hosts in protection against pathogens. This is the first report comparing the diversity of fungal communities among the South China Sea gorgonians. It contributes to our knowledge of gorgonian-associated fungi and further increases the pool of fungi available for natural bioactive product screening.
Collapse
Affiliation(s)
- Xiao-Yong Zhang
- Key Laboratory of Marine Bio-resources Sustainable Utilization/RNAM Center for Marine Microbiology/Guangdong Key Laboratory of Marine Material Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | | | | | | | | |
Collapse
|
8
|
A novel ascosporogenous yeast species, Zygosaccharomyces siamensis, and the sugar tolerant yeasts associated with raw honey collected in Thailand. FUNGAL DIVERS 2011. [DOI: 10.1007/s13225-011-0115-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Ragon M, Restoux G, Moreira D, Møller AP, López-García P. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels. PLoS One 2011; 6:e21764. [PMID: 21765911 PMCID: PMC3135598 DOI: 10.1371/journal.pone.0021764] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/06/2011] [Indexed: 02/06/2023] Open
Abstract
Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single-OTU level. Therefore, biofilm communities growing in sunlight exposed substrates are capable of coping with increased mutation rates and appear pre-adapted to levels of ionizing radiation in Chernobyl due to their natural adaptation to periodical desiccation and ambient UV radiation.
Collapse
Affiliation(s)
- Marie Ragon
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud, Orsay, France
| | - Gwendal Restoux
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud, Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud, Orsay, France
| | - Anders Pape Møller
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
10
|
Oliveira VM, Lopes-Oliveira PF, Passarini MRZ, Menezes CBA, Oliveira WRC, Rocha AJ, Sette LD. Molecular analysis of microbial diversity in corrosion samples from energy transmission towers. BIOFOULING 2011; 27:435-447. [PMID: 21563009 DOI: 10.1080/08927014.2011.581751] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Microbial diversity in corrosion samples from energy transmission towers was investigated using molecular methods. Ribosomal DNA fragments were used to assemble gene libraries. Sequence analysis indicated 10 bacterial genera within the phyla Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes. In the two libraries generated from corroded screw-derived samples, the genus Acinetobacter was the most abundant. Acinetobacter and Clostridium spp. dominated, with similar percentages, in the libraries derived from corrosion scrapings. Fungal clones were affiliated with 14 genera belonging to the phyla Ascomycota and Basidiomycota; of these, Capnobotryella and Fellomyces were the most abundant fungi observed. Several of the microorganisms had not previously been associated with biofilms and corrosion, reinforcing the need to use molecular techniques to achieve a more comprehensive assessment of microbial diversity in environmental samples.
Collapse
Affiliation(s)
- Valéria M Oliveira
- Divisão de Recursos Microbianos, CPQBA/UNICAMP, CP 6171, Campinas, Brazil.
| | | | | | | | | | | | | |
Collapse
|