1
|
Paiva D, Fernandes L, Pereira E, Mesquita N, Tiago I, Trovão J, Portugal A. Unearthing limestone fungal diversity: Description of seven novel species from Portugal. Fungal Syst Evol 2025; 15:47-77. [PMID: 40161326 PMCID: PMC11952187 DOI: 10.3114/fuse.2025.15.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/22/2024] [Indexed: 04/02/2025] Open
Abstract
Stone-built heritages are found worldwide, and despite stony surfaces being considered a stressful environment with challenging conditions to overcome, research has demonstrated that it can support diverse fungal communities, fostering a unique array of peculiar yet crucial species. These species exhibit a dual nature, being both foe and friend. While these fungi play a considerable role in the deterioration of cultural heritage, their mechanisms of adaptation to unfavourable environments hold great promise for biotechnology. Despite their importance, there is limited information available about these stone dwellers in Portugal. During an experimental survey aimed at isolating fungal species thriving in a deteriorated limestone funerary art piece at the Lemos Pantheon, a national monument located in Águeda, Portugal, several fungal specimens were isolated that could not be identified as any currently known species. Through morphological characteristics and multilocus phylogenetic analyses, seven new species (Aspergillus albicolor sp. nov., Banksiophoma dissensa sp. nov., Knufia lusitanica sp. nov., Microascus lausatensis sp. nov., Neodevriesia saximollicula sp. nov., Paramicrodochium filiforme sp. nov. and Talaromyces benedictus sp. nov.) are here proposed, illustrated, and compared to closely related species. These newly discovered fungal taxa form distinct lineages independent of other previously described species and are classified into seven families across six orders within the phylum Ascomycota. This paper also provides additional evidence that stone heritages harbour a diverse range of new species, deserving additional focus in the future. Citation: Paiva DS, Fernandes L, Pereira E, Mesquita N, Tiago I, Trovão J, Portugal A (2025). Unearthing limestone fungal diversity: Description of seven novel species from Portugal Fungal Systematics and Evolution 15: 47-77. doi: 10.3114/fuse.2025.15.02.
Collapse
Affiliation(s)
- D.S. Paiva
- Centre for Functional Ecology (CFE) – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - L. Fernandes
- Centre for Functional Ecology (CFE) – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - E. Pereira
- Centre for Functional Ecology (CFE) – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - N. Mesquita
- Centre for Functional Ecology (CFE) – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - I. Tiago
- Centre for Functional Ecology (CFE) – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - J. Trovão
- Centre for Functional Ecology (CFE) – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- TERRA – Associate Laboratory for Sustainable Land Use and Ecosystem Services, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - A. Portugal
- Centre for Functional Ecology (CFE) – Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- TERRA – Associate Laboratory for Sustainable Land Use and Ecosystem Services, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
- FitoLab – Laboratory for Phytopathology, Instituto Pedro Nunes (IPN), Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| |
Collapse
|
2
|
Flores FJ, Mena E, Granda S, Duchicela J. Microbial Community Composition of Explosive-Contaminated Soils: A Metataxonomic Analysis. Microorganisms 2025; 13:453. [PMID: 40005819 PMCID: PMC11858405 DOI: 10.3390/microorganisms13020453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Munition disposal practices have significant effects on microbial composition and overall soil health. Explosive soil contamination can disrupt microbial communities, leading to microbial abundance and richness changes. This study investigates the microbial diversity of soils and roots from sites with a history of ammunition disposal, aiming to identify organisms that may play a role in bioremediation. Soil and root samples were collected from two types of ammunition disposal (through open burning and open detonation) and unpolluted sites in Machachi, Ecuador, over two years (2022 and 2023). High-throughput sequencing of the 16S rRNA gene (for bacteria) and the ITS region (for fungi and plants) was conducted to obtain taxonomic profiles. There were significant variations in the composition of bacteria, fungi, and plant communities between polluted and unpolluted sites. Bacterial genera such as Pseudarthrobacter, Pseudomonas, and Rhizobium were more abundant in roots, while Candidatus Udaeobacter dominated unpolluted soils. Fungal classes Dothideomycetes and Sordariomycetes were prevalent across most samples, while Leotiomycetes and Agaricomycetes were also highly abundant in unpolluted samples. Plant-associated reads showed a higher abundance of Poa and Trifolium in root samples, particularly at contaminated sites, and Alchemilla, Vaccinium, and Hypericum were abundant in unpolluted sites. Alpha diversity analysis indicated that bacterial diversity was significantly higher in unpolluted root and soil samples, whereas fungal diversity was not significantly different among sites. Redundancy analysis of beta diversity showed that site, year, and sample type significantly influenced microbial community structure, with the site being the most influential factor. Differentially abundant microbial taxa, including bacteria such as Pseudarthrobacter and fungi such as Paraleptosphaeria and Talaromyces, may contribute to natural attenuation processes in explosive-contaminated soils. This research highlights the potential of certain microbial taxa to restore environments contaminated by explosives.
Collapse
Affiliation(s)
- Francisco J. Flores
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito 170527, Ecuador
| | - Esteban Mena
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
| | - Silvana Granda
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
| | - Jéssica Duchicela
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí 171103, Ecuador; (E.M.); (S.G.)
| |
Collapse
|
3
|
Guo SQ, Norphanphoun C, Hyde KD, Fu SM, Sun JE, Wang XC, Wu JJ, Al-Otibi F, Wang Y. Three novel species and a new record of Pleosporales (Didymellaceae, Roussoellaceae) from China. MycoKeys 2025; 113:295-320. [PMID: 39980720 PMCID: PMC11840433 DOI: 10.3897/mycokeys.113.139934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/14/2025] [Indexed: 02/22/2025] Open
Abstract
We are investigating saprobic Ascomycota in Guizhou Province, China. Fungal specimens collected from dead wood were identified based on morphological characteristics and multi-gene phylogenetic analyses of ITS, SSU, LSU, β-tubulin, ef1-α, and rpb2 sequence data. Three novel species, Neoroussoellaguizhouensis, Roussoellaguizhouensis, and Xenodidymellaguizhouensis, are introduced, along with one new geographical record, Xenoroussoellatriseptata. This study contributes to our understanding of the diversity of Ascomycota in Guizhou Province and the classification in Roussoellaceae.
Collapse
Affiliation(s)
- Shi-Qi Guo
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Chada Norphanphoun
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Kevin D. Hyde
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi ArabiaKing Saud UniversityRiyadhSaudi Arabia
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandMae Fah Luang UniversityChiang RaiThailand
| | - Sha-Min Fu
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Jing-E Sun
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Xing-Chang Wang
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Jiao-Jiao Wu
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi ArabiaKing Saud UniversityRiyadhSaudi Arabia
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandMae Fah Luang UniversityChiang RaiThailand
| | - Yong Wang
- Department of Plant Pathology, Agricultural College, Guizhou University, Guiyang, 550025, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
4
|
Liu LL, Liu YX, Chen YY, Gou JL, Chi F, Liu Y, Gu XF, Wei QQ, Zhang M, Liu ZY, Zhou S. Freshwater fungi in the karst plateau wetlands from Guizhou Province, China: taxonomic novelties in Melanommataceae (Pleosporales). MycoKeys 2025; 113:209-236. [PMID: 39959309 PMCID: PMC11829198 DOI: 10.3897/mycokeys.113.140684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/27/2024] [Indexed: 02/18/2025] Open
Abstract
Three isolates of interest were collected during an investigation of freshwater fungi from wetlands in the karst regions of Guizhou Province, Southwest China. Phylogenetic analyses using ITS, LSU, SSU, and tef-1α gene regions have revealed the placements of these isolates in Melanommataceae (Pleosporales, Dothideomycetes). Based on the morphological and phylogenetic evidence, three new species are introduced: Byssosphaeriachishuiensis sp. nov., Camposporiumguizhouense sp. nov., and C.aquaticum sp. nov. Byssosphaeriachishuiensis is sister to B.villosa and forms a basal branch of Byssosphaeria within Melanommataceae. Byssosphaeriachishuiense is similar to B.villosa in ascal size but differs in the ascomata and ascospore sizes, and the ascospores lack appendages. Camposporiumaquaticum is sister to C.guizhouense, and they form a distinct lineage within the genus. Morphologically, C.aquaticum resembles C.guizhouense in its conidial shape but differs in conidial size. Additionally, PHI analysis is performed to further reveal that C.aquaticum and C.guizhouense have no significant recombination with related taxa. Neobyssosphaeria is synonymized under Byssosphaeria, and accordingly, Byssosphaeriaclematidis comb. nov. is proposed to accommodate Neobyssosphaeriaclematidis. The descriptions, illustrations, and notes of the novel taxa are provided along with an updated phylogenetic tree of Melanommataceae. Two synopses of the species in Byssosphaeria and Camposporium are also provided.
Collapse
Affiliation(s)
- Ling-Ling Liu
- Guizhou Provincial Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, ChinaGuizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural SciencesGuiyangChina
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, ChinaGuizhou Provincial Institute of Soil and Fertilizer, Guizhou Academy of Agricultural SciencesGuiyangChina
| | - Yong-Xiang Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, ChinaGuizhou Provincial Institute of Soil and Fertilizer, Guizhou Academy of Agricultural SciencesGuiyangChina
| | - Ya-Ya Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, ChinaGuizhou Provincial Institute of Soil and Fertilizer, Guizhou Academy of Agricultural SciencesGuiyangChina
- Guizhou Provincial Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, ChinaGuizhou Provincial Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural SciencesGuiyangChina
| | - Jiu-Lan Gou
- Guizhou Provincial Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, ChinaGuizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural SciencesGuiyangChina
| | - Feng Chi
- Guizhou Provincial Environmental Science Research and Design Institute, Guiyang, ChinaGuizhou Provincial Environmental Science Research and Design InstituteGuiyangChina
| | - Yi Liu
- Guizhou Caohai National Nature Reserve Management Committee, Bijie, ChinaGuizhou Caohai National Nature Reserve Management CommitteeBijieChina
| | - Xiao-Feng Gu
- Guizhou Provincial Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, ChinaGuizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural SciencesGuiyangChina
| | - Quan-Quan Wei
- Guizhou Provincial Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, ChinaGuizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural SciencesGuiyangChina
| | - Meng Zhang
- Guizhou Provincial Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang, ChinaGuizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural SciencesGuiyangChina
| | - Zuo-Yi Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang, ChinaGuizhou Provincial Institute of Soil and Fertilizer, Guizhou Academy of Agricultural SciencesGuiyangChina
| | - Si Zhou
- Guizhou Provincial Environmental Science Research and Design Institute, Guiyang, ChinaGuizhou Provincial Environmental Science Research and Design InstituteGuiyangChina
| |
Collapse
|
5
|
Cobos-Villagrán A, Pérez-Valdespino A, Valenzuela R, Martínez-González CR, Luna-Vega I, Villa-Tanaca L, Rodríguez-Tovar AV, Raymundo T. New Species of Byssosphaeria (Melanommataceae, Pleosporales) from the Mexican Tropical Montane Cloud Forest. J Fungi (Basel) 2025; 11:89. [PMID: 39997387 PMCID: PMC11857076 DOI: 10.3390/jof11020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/27/2024] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Byssosphaeria Cooke is a monophyletic genus of the family Melanommataceae. The genus is characterized by ascomata smaller than 1000 µm, globose, well-developed subiculum, with a flat ostiole, and yellow-orange or reddish-brown color around the ostiole. The peridium is composed of an external layer of irregular cells followed by an internal layer of thinner cells. Clavate asci have fusiform ascospores, a hyaline-to-brown color, with one or more septa. The genus Byssosphaeria is composed of 29 species: saprophytes, endophytes, and parasites of woody angiosperms, and they are found in wood, leaves, and other decaying substrates. The distribution of these species is cosmopolitan, and four species have been described in Mexico. This study describes, through morphological characteristics and the phylogenetic analysis of molecular markers (ITS, SSU, LSU, tef1-α), four new species of Byssosphaeria: B. bautistae, B. chrysostoma, B. neorhodomphala, and B. neoschiedermayriana. These species are saprophytes on wood rot and are distributed in mountainous mesophilic forests from the states of Hidalgo, Puebla, and Oaxaca. The significance of this study is in the diversity of this genus in Mexico since eight species have been described.
Collapse
Affiliation(s)
- Aurora Cobos-Villagrán
- Laboratorio de Micología, Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (A.C.-V.); (R.V.)
- Laboratorio de Ingeniería Genética, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Abigail Pérez-Valdespino
- Laboratorio de Ingeniería Genética, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Ricardo Valenzuela
- Laboratorio de Micología, Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (A.C.-V.); (R.V.)
| | - César Ramiro Martínez-González
- Herbario Micológico José Castillo Tovar, Instituto Tecnológico de Ciudad Victoria, Tecnológico Nacional de México, Boulevard Emilio Portes Gil No. 1301, Ciudad Victoria 87010, Tamaulipas, Mexico;
| | - Isolda Luna-Vega
- Laboratorio de Biogeografía y Sistemática, Departamento de Biología Evolutiva, Facultad de Ciencias UNAM, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Lourdes Villa-Tanaca
- Laboratorio de Biología Molecular de Bacterias y Levaduras, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Aída Verónica Rodríguez-Tovar
- Laboratorio de Microbiología Médica y Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Tania Raymundo
- Laboratorio de Micología, Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio and Plan de Ayala s.n., Col. Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; (A.C.-V.); (R.V.)
| |
Collapse
|
6
|
Zhang X, Tibpromma S, Karunarathna SC, Du TY, Han LS, Elgorban AM, Kumla J, Senwanna C, Dai DQ, Suwannarach N, Wang HH. Additions to the saprobic fungi (Ascomycota) associated with macadamia trees from the Greater Mekong Subregion. MycoKeys 2025; 113:1-29. [PMID: 39897715 PMCID: PMC11786193 DOI: 10.3897/mycokeys.113.140031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Macadamia trees, the most economically important Proteaceae perennial crop, are globally renowned for their edible nuts. During our surveys of microfungi associated with macadamia in China and Thailand, we isolated three saprobic fungi from dead macadamia branches. Our multigene phylogenetic analyses (ITS, LSU, SSU, tef1-α, TUB2, and ACT loci), genealogical concordance phylogenetic species recognition (GCPSR) with a pairwise homoplasy index (PHI) test, and morphological characteristics led to the discovery of two new species, Dothiorellamacadamiae and Phaeoacremoniumchiangmaiense, and one new record, Melomastiapuerensis. We provide morphological descriptions, photo plates, phylogenetic analysis results, and PHI test results of the two new species, along with comparisons with closely related taxa. These findings have global implications for understanding the diversity of microfungi associated with macadamia trees.
Collapse
Affiliation(s)
- Xian Zhang
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saowaluck Tibpromma
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Samantha C. Karunarathna
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tian-Ye Du
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Li-Su Han
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Abdallah M. Elgorban
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chanokned Senwanna
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Dong-Qin Dai
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Hao-Han Wang
- Key Laboratory of Yunnan Provincial Department of Education of the Deep-Time Evolution on Biodiversity from the Origin of the Pearl River, College of Biology and Food Engineering, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
7
|
Luo XX, Liao MG, Hu YF, Zhang XG, Xu ZH, Ma J. Identification of three novel species and one new record of Kirschsteiniothelia (Kirschsteiniotheliaceae, Kirschsteiniotheliales) from Jiangxi, China. MycoKeys 2025; 112:277-306. [PMID: 39897123 PMCID: PMC11783086 DOI: 10.3897/mycokeys.112.142028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 02/04/2025] Open
Abstract
Fungal diversity is rapidly expanding, with numerous species being discovered worldwide. While plant debris is a habitat favoring the survival and multiplication of various microbial species. In this study, several kirschsteiniothelia-like isolates were collected from dead branches of unidentified perennial dicotyledonous plants. Based on morphological examination and phylogenetic analyses of combined ITS, LSU, and SSU sequences data using maximum-likelihood and Bayesian inference, three new species of Kirschsteiniothelia, namely K.ganzhouensis, K.jiangxiensis, and K.jiulianshanensis, were introduced, and one known species, K.inthanonensis, was recorded for the first time from China. To improve our comprehensive knowledge of the species diversity of Kirschsteiniothelia, all accepted Kirschsteiniothelia species with morphological characteristics, sequence data, asexual morphs, habitat, host, and locality are listed.
Collapse
Affiliation(s)
- Xing-Xing Luo
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ming-Gen Liao
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ya-Fen Hu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xiu-Guo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhao-Huan Xu
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jian Ma
- College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| |
Collapse
|
8
|
Wang X, Zhang Y, Li J, Ding Y, Ma X, Zhang P, Liu H, Wei J, Bao Y. Diversity and Functional Insights into Endophytic Fungi in Halophytes from West Ordos Desert Ecosystems. J Fungi (Basel) 2025; 11:30. [PMID: 39852449 PMCID: PMC11766765 DOI: 10.3390/jof11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Arid desert regions are among the harshest ecological environments on Earth. Halophytes, with their unique physiological characteristics and adaptability, have become the dominant vegetation in these areas. Currently, research on halophytes in this region is relatively limited, particularly concerning studies related to their root endophytic fungi, which have been rarely reported on. Therefore, investigating the diversity and composition of endophytic fungi in halophytes is crucial for maintaining ecological balance in such an arid environment. This study focuses on eight representative angiosperm halophytes from the West Ordos Desert in China (including Nitraria tangutorum, Salsola passerina, Suaeda glauca, Reaumuria trigyna, Reaumuria kaschgarica, Limonium aureum, Apocynum venetum, and Tripolium vulgare), utilizing Illumina MiSeq high-throughput sequencing technology combined with soil physicochemical factor data to analyze the diversity, composition, and ecological functions of their root-associated fungal communities. Ascomycota dominated the fungal composition in most halophytes, particularly among the recretohalophytes, where it accounted for an average of 88.45%, while Basidiomycota was predominant in Suaeda glauca. A Circos analysis of the top 10 most abundant genera revealed Fusarium, Dipodascus, Curvularia, Penicillium, and other dominant genera. Co-occurrence network analysis showed significant differences in fungal networks across halophyte types, with the most complex network observed in excreting halophytes, characterized by the highest number of nodes and connections, indicating tighter fungal symbiotic relationships. In contrast, fungal networks in pseudohalophytes were relatively simple, reflecting lower community cohesiveness. Redundancy analysis (RDA) and Mantel tests demonstrated that soil factors such as organic matter, available sulfur, and urease significantly influenced fungal diversity, richness, and evenness, suggesting that soil physicochemical properties play a critical role in regulating fungal-plant symbiosis. Functional predictions indicated that endophytic fungi play important roles in metabolic pathways such as nucleotide biosynthesis, carbohydrate degradation, and lipid metabolism, which may enhance plant survival in saline-alkaline and arid environments. Furthermore, the high abundance of plant pathogens and saprotrophs in some fungal communities suggests their potential roles in plant defense and organic matter decomposition. The results of this study provide a reference for advancing the development and utilization of halophyte endophytic fungal resources, with applications in desert ecosystem restoration and halophyte cultivation.
Collapse
Affiliation(s)
- Xingzhe Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Jingpeng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yiteng Ding
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Xiaodan Ma
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Peng Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Jie Wei
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010010, China; (X.W.)
- State Key Laboratory of Reproductive Regulatory and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010010, China
| |
Collapse
|
9
|
Zhang L, Bao DF, Shen HW, Luo ZL. Diversity of Lignicolous Freshwater Fungi from Yuanjiang River in Yunnan (China), with the Description of Four New Species. J Fungi (Basel) 2024; 10:881. [PMID: 39728377 DOI: 10.3390/jof10120881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Yuanjiang River (Red River) is one of the six major water systems in Yunnan Province, which originates from western Yunnan Province. This river system features numerous tributaries, complex terrain, and abundant natural resources. During the investigation on the diversity of lignicolous freshwater fungi in the Yuanjiang River, nine species were collected and identified, five belonging to Dothideomycetes and four to Sordariomycetes. Based on morphology and multigene phylogenetic analyses, four species, namely, Aquadictyospora aquatica, Dictyosporium fluminicola, Myrmecridium submersum, and Neomyrmecridium fusiforme, are described as new species. Dictyocheirospora aquadulcis is reported as a new national record, and Myrmecridium hydei is reported as a new habitat record. Dictyocheirospora rotunda, Halobyssothecium aquifusiforme, and Pseudohalonectria lutea were known earlier from freshwater habitats, but we described them in detail in this paper. This study contributes significantly to the understanding of the diversity of lignicolous freshwater fungi in southwestern China.
Collapse
Affiliation(s)
- Liang Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
| | - Dan-Feng Bao
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang 550025, China
| | - Hong-Wei Shen
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Zong-Long Luo
- College of Agriculture and Biological Science, Dali University, Dali 671003, China
- Cangshan Forest Ecosystem Observation and Research Station of Yunnan Province, Dali University, Dali 671003, China
| |
Collapse
|
10
|
Bundhun D, Jones EBG, Jayawardena RS, Camporesi E, Wanasinghe DN, Senanayake IC, Thiyagaraja V, Hyde KD. Taxonomic novelty in Pleomonodictydaceae and new reports for Ampelomycesquisqualis (Phaeosphaeriaceae), Melomastiamaolanensis and M.oleae (Pleurotremataceae). MycoKeys 2024; 111:147-180. [PMID: 39723167 PMCID: PMC11669012 DOI: 10.3897/mycokeys.111.135456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/26/2024] [Indexed: 12/28/2024] Open
Abstract
This study introduces a novel genus Robiniigena, with its type R.hyalinospora. The specimen was collected on dead aerial branches of Robiniapseudoacacia in Italy. Based on the examination of morphology and the results of phylogenetic analyses involving nuclear 18S rDNA (SSU), nuclear 28S rDNA (LSU), nuclear rDNA ITS1-5.8S-ITS2 (ITS), translation elongation factor 1-alpha (tef1-α) and RNA polymerase II second largest subunit (rpb2) sequences, Robiniigena is referred to the family Pleomonodictydaceae (Pleosporales). It is characterized by immersed to erumpent, ostiolate ascomata, filiform, septate and cellular pseudoparaphyses, bitunicate, clavate to cylindric-clavate asci and fusiform, hyaline ascospores surrounded by a mucilaginous sheath. This research also establishes the taxonomic placement of the previously unclassified Inflatispora (Pleosporales genus incertae sedis) within the Pleomonodictydaceae. The sexual morph of Ampelomycesquisqualis (Phaeosphaeriaceae) is described for the first time and it is characterized by immersed, perithecial ascomata, a peridium comprising two layers, branched, septate and filiform pseudoparaphyses, short-pedicellate, bitunicate asci with an ocular chamber and sub-hyaline, fusiform, septate ascospores. This species, previously known only in its asexual morph, has been found as a saprobe on Sonchus sp. in Italy. Our identification of the sexual morph was based on LSU rDNA and ITS rDNA sequence data. Melomastiamaolanensis (Pleurotremataceae) is reported for the first time in Thailand, collected from Chromolaenaodorata, while M.oleae is documented as a new record from Durantaerecta in Thailand.
Collapse
Affiliation(s)
- Digvijayini Bundhun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - E. B. Gareth Jones
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | | | - Erio Camporesi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forli, Italy
| | - Dhanushka N. Wanasinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- A.M.B, Circolo Micologico “Giovanni carini”, C.P. 314, Brescia, Italy
| | - Indunil C. Senanayake
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe County 654400, China
| | - Vinodhini Thiyagaraja
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Kevin D. Hyde
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
11
|
Li D, Zhang M, Zhang J, Ma L, Zhang Z, Zhang J, Zhang X, Xia J. Three new microfungi (Ascomycota) species from southern China. MycoKeys 2024; 111:87-110. [PMID: 39703697 PMCID: PMC11656163 DOI: 10.3897/mycokeys.111.136483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 12/21/2024] Open
Abstract
Apiospora, Microdochium and Pestalotiopsis have been reported as plant pathogens, endophytes or saprotrophes worldwide. Combining multiple molecular markers with morphological characteristics, this study proposes three new species, viz. Apiosporabambusigena, Microdochiumjianfenglingense and Pestalotiopsissolicola from southern China. Apiosporabambusigena and M.jianfenglingense were collected from bamboo in Hainan Province and P.solicola was collected from soil in Yunnan Province. The morphologically similar and phylogenetically closely-related species were compared.
Collapse
Affiliation(s)
- Duhua Li
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Mengyuan Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Jinjia Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Liguo Ma
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, ChinaInstitute of Plant Protection, Shandong Academy of Agricultural SciencesJinanChina
| | - Zhaoxue Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Jie Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Xiuguo Zhang
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| | - Jiwen Xia
- Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Taian, 271018, ChinaShandong Agricultural UniversityTaianChina
| |
Collapse
|
12
|
Liu NG, Hyde KD, Sun YR, Bhat DJ, Jones EBG, Jumpathong J, Lin CG, Lu YZ, Yang J, Liu LL, Liu ZY, Liu JK. Notes, outline, taxonomy and phylogeny of brown-spored hyphomycetes. FUNGAL DIVERS 2024; 129:1-281. [DOI: 10.1007/s13225-024-00539-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/23/2024] [Indexed: 01/05/2025]
|
13
|
Liu Y, Shi L, Hong F, Wei G, Jiang Z, Wei X, Peng J, Zhang G, Dong L. Stochasticity-dominated rare fungal endophytes contribute to coexistence stability and saponin accumulation in Panax species. ENVIRONMENTAL MICROBIOME 2024; 19:93. [PMID: 39568076 PMCID: PMC11580563 DOI: 10.1186/s40793-024-00645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024]
Abstract
Fungal communities inhabiting plant tissues are complex systems of inter-species interactions, consisting of both the "abundant biosphere" and "rare biosphere". However, the composition, assembly, and stability of these subcommunities, as well as their contributions to productivity remain unclear. In this study, the taxonomic and functional composition, co-occurrence, and ecological assembly of abundant and rare fungal subcommunities in different tissues of three Panax species were investigated. Abundant subcommunities were dominated by potential plant pathogens belonging to Microbotryomycetes, while saprotrophic fungi like Agaricomycetes and Mortierellomycetes were more prevalent in rare subcommunities. The rare taxa played a central role in upholding the stability of the fungal networks as driven by Dothideomycetes and Sordariomycetes. Homogeneous selection played a larger role in the assembly of abundant fungal subcommunities compared to the rare counterparts, which was more dominated by stochastically ecological drift in all plant species. Rare biospheres played a larger role in the accumulation of saponin compared to their abundant counterparts, especially in the leaf endosphere, which was mainly affected by environmental factors (Mg, pH, OC, and etc.). Furthermore, we found that rare species belonging to unidentified saprotrophs were associated with saponin formation. This study provides hypotheses for future experiments to understand mechanisms accounting for the variations in the composition and function of rare fungal subcommunities across different Panax species.
Collapse
Affiliation(s)
- Ye Liu
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interaction, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liping Shi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Fei Hong
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Fujian, 363000, China
| | - Guangfei Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhenzhen Jiang
- Zhangzhou Pien Tze Huang Pharmaceutical Co., Ltd., Fujian, 363000, China
| | - Xiuye Wei
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingjing Peng
- College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interaction, Ministry of Education, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China
| | - Guozhuang Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Linlin Dong
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
14
|
Le Renard L, Strullu-Derrien C, Berbee M, Coiro M. A new leaf inhabiting ascomycete from the Jurassic (ca 170 Mya) of Yorkshire, UK, and insights into the appearance and diversification of filamentous Ascomycota. IMA Fungus 2024; 15:34. [PMID: 39501407 PMCID: PMC11536623 DOI: 10.1186/s43008-024-00162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/15/2024] [Indexed: 11/09/2024] Open
Abstract
Leaf-associated fungi, the fungi that depend on leaves to sporulate, have a rich Cenozoic record, however their earlier diversity is poorly characterized. Here we describe Harristroma eboracense gen. et sp. nov., a Middle Jurassic leaf-associated fungus colonizing the leaf cuticle of Nilssonia tenuicaulis (cycadophyte). To place our newly described species into a picture of the diversification of Mesozoic fungi, we reassess fossils with leaf-associated stromata in the context of fungal molecular phylogeny. Being melanized, with radiate stromata, and on leaves, H. eboracense and other fossils from the Jurassic and earlier periods are probably related to filamentous Ascomycota in the superclass Leotiomyceta. Characters needed for further resolution of leaf-associated fungal biology and classification, such as the presence of an ostiole for spore discharge and appressoria for entry into leaf tissue first appear in the Mesozoic fossil record. Among Early Cretaceous fossils, Spataporthe taylorii represents the oldest unambiguous evidence of perithecial Sordariomycetes while Protographum luttrellii and Bleximothyrium ostiolatum are the oldest Dothideomycetes thyriothecia. Environmental observations show that broad leaved gymnosperms (especially cycadophytes) growing in warm temperate wet forests might have been the first environment for the radiation of Leotiomyceta.
Collapse
Affiliation(s)
- Ludovic Le Renard
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Christine Strullu-Derrien
- Science Group, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
- Institut de Systématique, Évolution, Biodiversité (ISYEB), UMR7205, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, 75005, Paris, France.
| | - Mary Berbee
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Mario Coiro
- Department of Paleontology, University of Vienna, 1090, Vienna, Austria.
- Ronin Institute for Independent Scholarship, Montclair, NJ, 07043, USA.
| |
Collapse
|
15
|
Absalan S, Armand A, Jayawardena RS, McKenzie EHC, Hyde KD, Lumyong S. Diversity of Pleosporalean Fungi Isolated from Rice ( Oryza sativa L.) in Northern Thailand and Descriptions of Five New Species. J Fungi (Basel) 2024; 10:763. [PMID: 39590682 PMCID: PMC11595767 DOI: 10.3390/jof10110763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Pleosporales represents the largest order within the class Dothideomycetes (Fungi), comprising phytopathogenic, saprobic, and endophytic taxa with a widespread presence in terrestrial and aquatic environments. Rice (Oryza sativa) is a primary economic crop in numerous tropical countries, particularly in Thailand. Studying fungal species associated with rice holds the potential to enhance our understanding of fungal diversity, lifestyles, and biology of rice, offering valuable insights for future research aimed at disease management and yield improvement. Thirty-nine pleosporalean isolates were obtained from various parts of rice plants collected across diverse regions in Chiang Rai Province, Thailand. Species identification involved a combination of morphology and molecular phylogeny, utilizing multi-locus sequence analyses of the ITS, LSU, SSU, gapdh, rpb2, tef1, and tub2 genes. The isolates were identified in 18 taxa distributed across five families and ten genera, including five new species (Bipolaris chiangraiensis, Ophiosphaerella oryzae, Paraphaeosphaeria oryzae, Pyrenochaetopsis oryzicola, and Setophoma oryzicola). Additionally, six new host records and two new geographical records are documented. Photoplates, detailed morphological descriptions, and phylogenetic trees are provided to elucidate the placement of both known and novel taxa.
Collapse
Affiliation(s)
- Sahar Absalan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
| | - Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Eric H. C. McKenzie
- Landcare Research-Manaaki Whenua, Private Bag 92170, Auckland 1072, New Zealand;
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (A.A.); (R.S.J.)
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
16
|
Vohník M, Josefiová J. Novel epiphytic root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum from the Red Sea. MYCORRHIZA 2024; 34:447-461. [PMID: 39073598 PMCID: PMC11604718 DOI: 10.1007/s00572-024-01161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Symbioses with fungi are important and ubiquitous on dry land but underexplored in the sea. As yet only one seagrass has been shown to form a specific root-fungus symbiosis that resembles those occurring in terrestrial plants, namely the dominant long-lived Mediterranean species Posidonia oceanica (Alismatales: Posidoniaceae) forming a dark septate (DS) endophytic association with the ascomycete Posidoniomyces atricolor (Pleosporales: Aigialaceae). Using stereomicroscopy, light and scanning electron microscopy, and DNA cloning, here we describe a novel root-fungus symbiosis in the Indo-Pacific seagrass Thalassodendron ciliatum (Alismatales: Cymodoceaceae) from a site in the Gulf of Aqaba in the Red Sea. Similarly to P. oceanica, the mycobiont of T. ciliatum occurs more frequently in thinner roots that engage in nutrient uptake from the seabed and forms extensive hyphal mantles composed of DS hyphae on the root surface. Contrary to P. oceanica, the mycobiont occurs on the roots with root hairs and does not colonize its host intraradically. While the cloning revealed a relatively rich spectrum of fungi, they were mostly parasites or saprobes of uncertain origin and the identity of the mycobiont thus remains unknown. Symbioses of seagrasses with fungi are probably more frequent than previously thought, but their functioning and significance are unknown. Melanin present in DS hyphae slows down their decomposition and so is true for the colonized roots. DS fungi may in this way conserve organic detritus in the seagrasses' rhizosphere, thus contributing to blue carbon sequestration in seagrass meadows.
Collapse
Affiliation(s)
- Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czechia.
- KROKODIVE.CZ, Údolní 219/47, Prague, 14700, Czechia.
| | - Jiřina Josefiová
- Laboratory of Molecular Biology and Bioinformatics, Institute of Botany, Czech Academy of Sciences, Lesní 322, Průhonice, 25243, Czechia
| |
Collapse
|
17
|
Tang X, Jeewon R, Jayawardena RS, Gomdola D, Lu YZ, Xu RJ, Alrefaei AF, Alotibi F, Hyde KD, Kang JC. Additions to the genus Kirschsteiniothelia (Dothideomycetes); Three novel species and a new host record, based on morphology and phylogeny. MycoKeys 2024; 110:35-66. [PMID: 39502522 PMCID: PMC11535726 DOI: 10.3897/mycokeys.110.133450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024] Open
Abstract
During a survey of microfungi associated with forest plants, four specimens related to Kirschsteiniothelia were collected from decaying wood in Guizhou, Hainan and Yunnan Provinces, China. Kirschsteiniothelia species have sexual and asexual forms. They are commonly found as saprophytes on decaying wood and have been reported as disease-causing pathogens in humans as well. In this study, we introduce three novel Kirschsteiniothelia species (K.bulbosapicalis, K.dendryphioides and K.longirostrata) and describe a new host record for K.atra, based on morphology and multi-gene phylogenetic analyses of a concatenated ITS, LSU and SSU rDNA sequence data. These taxa produced a dendryphiopsis- or sporidesmium-like asexual morph and detailed descriptions and micromorphological illustrations are provided. Furthermore, we provide a checklist for the accepted Kirschsteiniothelia species, including detailed host information, habitat preferences, molecular data, existing morphological type, country of origin and corresponding references.
Collapse
Affiliation(s)
- Xia Tang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Rajesh Jeewon
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | - Deecksha Gomdola
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Yong-Zhong Lu
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Abdulwahed Fahad Alrefaei
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province 550003, China
| | - Fatimah Alotibi
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province 550003, China
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province 550003, China
| | - Ji-Chuan Kang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
18
|
Wijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, et alWijayawardene NN, Hyde KD, Mikhailov KV, Péter G, Aptroot A, Pires-Zottarelli CLA, Goto BT, Tokarev YS, Haelewaters D, Karunarathna SC, Kirk PM, de A. Santiago ALCM, Saxena RK, Schoutteten N, Wimalasena MK, Aleoshin VV, Al-Hatmi AMS, Ariyawansa KGSU, Assunção AR, Bamunuarachchige TC, Baral HO, Bhat DJ, Błaszkowski J, Boekhout T, Boonyuen N, Brysch-Herzberg M, Cao B, Cazabonne J, Chen XM, Coleine C, Dai DQ, Daniel HM, da Silva SBG, de Souza FA, Dolatabadi S, Dubey MK, Dutta AK, Ediriweera A, Egidi E, Elshahed MS, Fan X, Felix JRB, Galappaththi MCA, Groenewald M, Han LS, Huang B, Hurdeal VG, Ignatieva AN, Jerônimo GH, de Jesus AL, Kondratyuk S, Kumla J, Kukwa M, Li Q, Lima JLR, Liu XY, Lu W, Lumbsch HT, Madrid H, Magurno F, Marson G, McKenzie EHC, Menkis A, Mešić A, Nascimento ECR, Nassonova ES, Nie Y, Oliveira NVL, Ossowska EA, Pawłowska J, Peintner U, Pozdnyakov IR, Premarathne BM, Priyashantha AKH, Quandt CA, Queiroz MB, Rajeshkumar KC, Raza M, Roy N, Samarakoon MC, Santos AA, Santos LA, Schumm F, Selbmann L, Selçuk F, Simmons DR, Simakova AV, Smith MT, Sruthi OP, Suwannarach N, Tanaka K, Tibpromma S, Tomás EO, Ulukapı M, Van Vooren N, Wanasinghe DN, Weber E, Wu Q, Yang EF, Yoshioka R, Youssef NH, Zandijk A, Zhang GQ, Zhang JY, Zhao H, Zhao R, Zverkov OA, Thines M, Karpov SA. Classes and phyla of the kingdom Fungi. FUNGAL DIVERS 2024; 128:1-165. [DOI: 10.1007/s13225-024-00540-z] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/03/2024] [Indexed: 01/05/2025]
Abstract
AbstractFungi are one of the most diverse groups of organisms with an estimated number of species in the range of 2–3 million. The higher-level ranking of fungi has been discussed in the framework of molecular phylogenetics since Hibbett et al., and the definition and the higher ranks (e.g., phyla) of the ‘true fungi’ have been revised in several subsequent publications. Rapid accumulation of novel genomic data and the advancements in phylogenetics now facilitate a robust and precise foundation for the higher-level classification within the kingdom. This study provides an updated classification of the kingdom Fungi, drawing upon a comprehensive phylogenomic analysis of Holomycota, with which we outline well-supported nodes of the fungal tree and explore more contentious groupings. We accept 19 phyla of Fungi, viz. Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota, Sanchytriomycota, and Zoopagomycota. In the phylogenies, Caulochytriomycota resides in Chytridiomycota; thus, the former is regarded as a synonym of the latter, while Caulochytriomycetes is viewed as a class in Chytridiomycota. We provide a description of each phylum followed by its classes. A new subphylum, Sanchytriomycotina Karpov is introduced as the only subphylum in Sanchytriomycota. The subclass Pneumocystomycetidae Kirk et al. in Pneumocystomycetes, Ascomycota is invalid and thus validated. Placements of fossil fungi in phyla and classes are also discussed, providing examples.
Collapse
|
19
|
Kumar R, Choudhary JS, Naik SK, Mishra JS, Banra S, Poonia SP, Mondal S, Das A, Rao KK, Kumar V, Bhatt BP, Chaudhari SK, Malik RK, McDonald A. Effect of conservation agriculture on soil fungal diversity in rice-wheat-greengram cropping system in eastern Indo-Gangetic plains of South Asia. Front Microbiol 2024; 15:1441837. [PMID: 39479212 PMCID: PMC11523130 DOI: 10.3389/fmicb.2024.1441837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Conservation agriculture (CA) is emerging as an eco-friendly and sustainable approach to food production in South Asia. CA, characterized by reduced tillage, soil surface cover through retaining crop residue or raising cover crops, and crop diversification, enhances crop production and soil fertility. Fungal communities in the soil play a crucial role in nutrient recycling, crop growth, and agro-ecosystem stability, particularly in agricultural crop fields. Methods This study investigates the impact of seven combinations of tillage and crop residue management practices of agricultural production systems, including various tillage and crop residue management practices, on soil fungal diversity. Using the Illumina MiSeq platform, fungal diversity associated with soil was analysed. Results and discussion The results show that the partial CA-based (pCA) production systems had the highest number of unique operational taxonomic units (OTUs) (948 OTUs) while the conventional production system had the lowest number (665 OTUs). The major fungal phyla identified in the topsoil (0-15 cm) were Ascomycota, Basidiomycota, and Mortierellomycota, with their abundance varying across different tillage-cum-crop establishment (TCE) methods. Phylum Ascomycota was dominant in CA-based management treatments (94.9±0.62), followed by the partial CA (pCA)-based treatments (91.0 ± 0.37). Therefore, CA-based production systems play a crucial role in shaping soil fungal diversity, highlighting their significance for sustainable agricultural production.
Collapse
Affiliation(s)
- Rakesh Kumar
- ICAR Research Complex for Eastern Region, Patana, India
| | - Jaipal Singh Choudhary
- ICAR Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, India
| | - Sushanta Kumar Naik
- ICAR Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi, India
| | | | - Sushmita Banra
- University Department of Zoology, Ranchi University, Morabadi, Ranchi, India
| | - Shish Pal Poonia
- Cereal Systems Initiative for South Asia (CSISA)-CIMMYT, Patna, India
| | | | - Anup Das
- ICAR Research Complex for Eastern Region, Patana, India
| | | | - Virender Kumar
- International Rice Research Institute, Los Banos, Philippines
| | - Bhagwati Prasad Bhatt
- Natural Resource Management Division, ICAR Krishi Anusandhan Bhawan-II, New Delhi, India
| | - Suresh Kumar Chaudhari
- Natural Resource Management Division, ICAR Krishi Anusandhan Bhawan-II, New Delhi, India
| | - Ram Kanwar Malik
- Cereal Systems Initiative for South Asia (CSISA)-CIMMYT, Patna, India
| | - Andrew McDonald
- Soil and Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
20
|
Tian WH, Jin Y, Liao YC, Faraj TK, Guo XY, Maharachchikumbura SSN. New and Interesting Pine-Associated Hyphomycetes from China. J Fungi (Basel) 2024; 10:546. [PMID: 39194872 DOI: 10.3390/jof10080546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Pine trees play a crucial role in the forests of Sichuan Province, boasting rich species diversity and a lengthy evolutionary history. However, research and investigation on fungi associated with pine trees are insufficient. This study investigated the diversity of hyphomycetes fungi associated with pine trees in Sichuan Province, China. During the survey, we collected five specimens of hyphomycetes from branches and bark of species of Pinus. Five barcodes were selected for study and sequenced, including ITS, SSU, LSU, TEF1, and RPB2. Morphological examination and multi-locus phylogenetic analyses revealed three new species, viz. Catenulostroma pini sp. nov. within Teratosphaeriaceae, Kirschsteiniothelia longisporum sp. nov. within Kirschsteiniotheliaceae, Sporidesmiella sichuanensis sp. nov. within Junewangiaceae, and two known species, Paradictyoarthrinium diffractum and P. hydei within Paradictyoarthriniaceae, which are the new host records from Pinus species. Catenulostroma pini, distinguished from other species in the genus by its unique morphology, has three conidial morphologies: small terminal helicoconidia, scolecoconidia with many septa, and phragmoconidia conidia. Kirschsteiniothelia longisporum has longer spores when compared to the other species in the genus. According to phylogenetic analysis, Sporidesmiella sichuanensis formed an independent clade sister to S. aquatica and S. juncicola, distinguished by differences in conidial size.
Collapse
Affiliation(s)
- Wen-Hui Tian
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Jin
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yue-Chi Liao
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Turki Kh Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 145111, Riyadh 11362, Saudi Arabia
| | - Xin-Yong Guo
- College of Life Science, Shihezi University, Shihezi 832000, China
| | - Sajeewa S N Maharachchikumbura
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
21
|
Tian WH, Jin Y, Liao YC, Faraj TK, Guo XY, Maharachchikumbura SSN. Phylogenetic Insights Reveal New Taxa in Thyridariaceae and Massarinaceae. J Fungi (Basel) 2024; 10:542. [PMID: 39194868 DOI: 10.3390/jof10080542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Pleosporales is a highly diverse (and the largest) order in Dothideomycetes, and it is widespread in decaying plants in various environments around the world. During a survey of fungal diversity in Sichuan Province, China, specimens of hyphomycetous and Thyridaria-like fungi were collected from dead branches of pine trees and cherry trees. These taxa were initially identified as members of Massarinaceae and Thyridariaceae through morphological examination. Phylogenetic analyses of the Thyridariaceae, combining ITS, SSU, LSU, RPB2, and TEF1 sequence data, indicated a distinct clade sister to Pseudothyridariella and Thyridariella, distinct from any genus in the family. Thus, a new genus, Vaginospora, is proposed to accommodate the type species Vaginospora sichuanensis, which is characterized by semi-immersed globose to oblong ascomata with an ostiolar neck, cylindrical to clavate asci with an ocular chamber, and hyaline to dark brown, fusiform, 3-5-transversely septate ascospores with an inconspicuous mucilaginous sheath. Based on the morphological comparisons and multi-locus phylogenetic analyses (ITS, SSU, LSU, RPB2, and TEF1) of the Massarinaceae, we have identified three collections belonging to the genus Helminthosporium, leading us to propose H. filamentosa sp. nov., H. pini sp. nov., and H. velutinum as a new host record. According to Phylogenetic analysis, H. pini formed an independent clade sister to H. austriacum and H. yunnanense, and H. filamentosa represents the closest sister clade to H. quercinum. Helminthosporium pini is distinct from H. austriacum by the shorter conidiophores and H. yunnanense by the longer and wider conidia. The H. filamentosa differs from H. quercinum in having longer conidiophores and smaller conidia. This study extends our understanding of diversity within Thyridariaceae and Helminthosporium. Our findings underscore the rich biodiversity and potential for discovering novel fungal taxa within these groups.
Collapse
Affiliation(s)
- Wen-Hui Tian
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yan Jin
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yue-Chi Liao
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Turki Kh Faraj
- Department of Soil Science, College of Food and Agriculture Sciences, King Saud University, P.O. Box 145111, Riyadh 11362, Saudi Arabia
| | - Xin-Yong Guo
- College of Life Science, Shihezi University, Shihezi 832000, China
| | - Sajeewa S N Maharachchikumbura
- Center for Informational Biology, College of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
22
|
Fu S, Sun JE, Tarafder E, Wijayawardene NN, Hu Y, Wang Y, Li Y. Pezizomycotina species associated with rotten plant materials in Guizhou Province, China. MycoKeys 2024; 106:265-285. [PMID: 38974463 PMCID: PMC11224676 DOI: 10.3897/mycokeys.106.125920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024] Open
Abstract
Nine Pezizomycotina strains were isolated from rotten dead branches and leaves collected from Guizhou Province. To obtain their accurate taxonomic placement, we provided the morphological characteristics of conidiophore cells and conidia. Phylogenetic relationships, based on ITS, rpb2, SSU, LSU and tub2 gene sequences, confirmed our strains represented three novel species, Peglioniafalcata, Neoascochytapseudofusiformis and Neomicrosphaeropsiscylindrica. Peglioniafalcata produced falcate conidia and Neoa.pseudofusiformis generated fusiform conidia, while Neom.cylindrica possessed cylindrical conidia. The phylogenetic results also supported them as novel taxa. All the new species in the present study were found as saprophytic on forest litter with high rainfall, which suggest they may have a certain effect on nutrient decomposition and redistribution in forest ecosystems. Thus, it opened a way for further research on related ecological roles and their application production.
Collapse
Affiliation(s)
- Shamin Fu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Jing-E Sun
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Entaj Tarafder
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Nalin N. Wijayawardene
- Guizhou Zhunongjia Agricultural Science and Technology Service Co., Ltd, Guiyang, Guizhou 550025, China
| | - Yan Hu
- Institute of Plant Health and Medicine, College of Agriculture, Guizhou University, Guiyang Guizhou 550025, China
| | - Yong Wang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Yan Li
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
23
|
Tennakoon DS, Thambugala KM, de Silva NI, Song HY, Suwannarach N, Chen FS, Hu DM. An overview of Melanommataceae (Pleosporales, Dothideomycetes): Current insight into the host associations and geographical distribution with some interesting novel additions from plant litter. MycoKeys 2024; 106:43-96. [PMID: 38919541 PMCID: PMC11196893 DOI: 10.3897/mycokeys.106.125044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Melanommataceous species exhibit high diversity with a cosmopolitan distribution worldwide and show a prominent saprobic lifestyle. In this study, we explored five saprobic species collected from plant litter substrates from terrestrial habitats in China and Thailand. A combination of morphological characteristics and multi-locus phylogenetic analyses was used to determine their taxonomic classifications. Maximum Likelihood and Bayesian Inference analyses of combined LSU, SSU, ITS and tef1-α sequence data were used to clarify the phylogenetic affinities of the species. Byssosphaeriapoaceicola and Herpotrichiazingiberacearum are introduced as new species, while three new host records, Bertiellafici, By.siamensis and Melanommapopulicola are also reported from litter of Cinnamomumverum, Citrustrifoliata and Fagussylvatica, respectively. Yet, despite the rising interest in the melanommataceous species, there is a considerable gap in knowledge on their host associations and geographical distributions. Consequently, we compiled the host-species associations and geographical distributions of all the so far known melanommataceous species.
Collapse
Affiliation(s)
- Danushka S. Tennakoon
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Kasun M. Thambugala
- Nanchang Key Laboratory of Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nimali I. de Silva
- Jiangxi Provincial Key Laboratory of Subtropical Forest Resource Cultivation, Jiangxi Agricultural University, Nanchang 330045, China
| | - Hai-Yan Song
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Nakarin Suwannarach
- Jiangxi Provincial Key Laboratory of Subtropical Forest Resource Cultivation, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fu-Sheng Chen
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| | - Dian-Ming Hu
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
24
|
Wang Y, Tu Y, Chen X, Jiang H, Ren H, Lu Q, Wei C, Lv W. Didymellaceae species associated with tea plant ( Camelliasinensis) in China. MycoKeys 2024; 105:217-251. [PMID: 38846425 PMCID: PMC11153891 DOI: 10.3897/mycokeys.105.119536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Tea plant is one of the most important commercial crops worldwide. The Didymellaceae fungi can cause leaf blight disease of tea plant. In this study, 240 isolates were isolated from tea plant leaves of 10 provinces in China. Combined with multi-locus (ITS, LSU, RPB2 and TUB2) phylogenetic analysis and morphological characteristics, these isolates were identified as 25 species of six genera in Didymellaceae, including 19 known species Didymellacoffeae-arabicae, D.pomorum, D.segeticola, D.sinensis, Epicoccumcatenisporum, E.dendrobii, E.draconis, E.italicum, E.latusicollum, E.mackenziei, E.oryzae, E.poaceicola, E.rosae, E.sorghinum, E.tobaicum, Neoascochytamortariensis, Paraboeremialitseae, Remotididymellaanemophila and Stagonosporopsiscaricae, of which 15 species were new record species and six novel species, named D.yunnanensis, E.anhuiense, E.jingdongense, E.puerense, N.yunnanensis and N.zhejiangensis. Amongst all isolates, D.segeticola was the most dominant species. Pathogenicity tests on tea plant leaves showed that E.anhuiense had the strongest virulence, while E.puerense had the weakest virulence. Besides, D.pomorum, D.yunnanensis, E.dendrobii, E.italicum, E.jingdongense, E.mackenziei, E.oryzae, E.rosae, E.tobaicum, N.mortariensis, N.yunnanensis, N.zhejiangensis and R.anemophila were non-pathogenic to the tea plant.
Collapse
Affiliation(s)
- Yuchun Wang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Yiyi Tu
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Xueling Chen
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Hong Jiang
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Hengze Ren
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| | - Qinhua Lu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, ChinaInstitute of Sericulture and Tea, Zhejiang Academy of Agricultural SciencesHangzhouChina
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, ChinaAnhui Agricultural UniversityHefeiChina
| | - Wuyun Lv
- College of Tea Science and Tea Culture, Zhejiang A & F University, Hangzhou 311300, Zhejiang, ChinaZhejiang A & F UniversityHangzhouChina
| |
Collapse
|
25
|
Kundu S, Bianchinotti MV, Khan MA. The first evidence of saprophytic Tetraploa on Siwalik (Late Miocene) monocot leaf from western Himalaya and its role in palaeoecology reconstruction. Fungal Biol 2024; 128:1742-1750. [PMID: 38796258 DOI: 10.1016/j.funbio.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/09/2024] [Accepted: 03/11/2024] [Indexed: 05/28/2024]
Abstract
Even though the records of Tetraploa spores from Mesozoic and Cenozoic sedimentary strata along with spore-pollen assemblages are numerous and well documented, no foliicolus Tetraploa macroconidia have been reported to date. Here, we report the first occurrence of conidia assignable to modern Tetraploa Berk. & Broome (Tetraplosphaeriaceae: Pleosporales: Dothideomycetes) on cuticular fragments of compressed monocot leaf recovered from the middle Siwalik sediments (Late Miocene; 12-8 Ma) of Himachal Himalaya, India. We determine their taxonomic position based on detailed macromorphological comparison with similar modern and fossil taxa and discuss their palaeoecological significance in terms of the present-day ecological conditions of modern analogues. This finding also represents an essential data source for understanding Tetraploa's evolution and diversification in deep time.
Collapse
Affiliation(s)
- Sampa Kundu
- Palaeobotany, Palynology and Evolution Laboratory, Department of Botany, Sidho-Kanho-Birsha University, Ranchi Road, Purulia, 723104, India
| | - Maria Virginia Bianchinotti
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, CERZOS-UNS, CONICET-CCT Bahía Blanca, Buenos Aires, B8000FWB, Argentina
| | - Mahasin Ali Khan
- Palaeobotany, Palynology and Evolution Laboratory, Department of Botany, Sidho-Kanho-Birsha University, Ranchi Road, Purulia, 723104, India.
| |
Collapse
|
26
|
Zhao HJ, Doilom M, Mapook A, Wang G, Hyde KD, Dong W. New Insights into Tetraplosphaeriaceae Based on Taxonomic Investigations of Bambusicolous Fungi and Freshwater Fungi. J Fungi (Basel) 2024; 10:319. [PMID: 38786674 PMCID: PMC11121975 DOI: 10.3390/jof10050319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Species within Tetraplosphaeriaceae have been frequently documented in recent years with the extensive investigations of microfungi along a latitudinal gradient from north to south in the Asian/Australian region. Both bamboo substrates and freshwater habitats serve as extensive reservoirs, hosting a rich diversity of fungi that exhibit broad geographical distributions. The most common fungi in these two environments are generally distributed in distinct families. However, our statistics have revealed an intriguingly distinct preference of Tetraplosphaeriaceae species for inhabiting both bamboo substrates and freshwater habitats. The genera Pseudotetraploa (100%) and Triplosphaeria (100%) exhibit a strong preference, followed by Shrungabeeja (71%) and Quadricrura (67%). Our taxonomic and phylogenetic study of microfungi in southern China have identified four additional novel species, viz., Aquatisphaeria bambusae sp. nov., Pseudotetraploa phyllostachydis sp. nov., Pseudotetraploa yangjiangensis sp. nov., and Tetraploa submersa sp. nov. from bamboo substrates and freshwater habitats. In addition, Aquatisphaeria thailandica has previously been documented from freshwater habitats in Thailand; however, we have once again isolated this species from decaying bamboo substrates in Guangdong, China. The new findings substantiate our hypothesis that the preference of Tetraplosphaeriaceae species for colonizing bamboo substrates and freshwater habitats will be more evident through more extensive investigations conducted in such environments.
Collapse
Affiliation(s)
- Hai-Jun Zhao
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Mingkwan Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Gennuo Wang
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, 37073 Göttingen, Germany;
| | - Kevin D. Hyde
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (H.-J.Z.); (K.D.H.)
| |
Collapse
|
27
|
Phookamsak R, Hongsanan S, Bhat DJ, Wanasinghe DN, Promputtha I, Suwannarach N, Kumla J, Xie N, Dawoud TM, Mortimer PE, Xu J, Lumyong S. Exploring ascomycete diversity in Yunnan II: Introducing three novel species in the suborder Massarineae (Dothideomycetes, Pleosporales) from fern and grasses. MycoKeys 2024; 104:9-50. [PMID: 38665970 PMCID: PMC11040200 DOI: 10.3897/mycokeys.104.112149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 04/28/2024] Open
Abstract
This article presents the results of an ongoing inventory of Ascomycota in Yunnan, China, carried out as part of the research project series "Exploring ascomycete diversity in Yunnan". From over 100 samples collected from diverse host substrates, microfungi have been isolated, identified and are currently being documented. The primary objective of this research is to promote the discovery of novel taxa and explore the ascomycete diversity in the region, utilising a morphology-phylogeny approach. This article represents the second series of species descriptions for the project and introduces three undocumented species found in the families Bambusicolaceae, Dictyosporiaceae and Periconiaceae, belonging to the suborder Massarineae (Pleosporales, Dothideomycetes). These novel taxa exhibit typical morphological characteristics of Bambusicola, Periconia and Trichobotrys, leading to their designation as Bambusicolahongheensis, Periconiakunmingensis and Trichobotryssinensis. Comprehensive multigene phylogenetic analyses were conducted to validate the novelty of these species. The results revealed well-defined clades that are clearly distinct from other related species, providing robust support for their placement within their respective families. Notably, this study unveils the phylogenetic affinity of Trichobotrys within Dictyosporiaceae for the first time. Additionally, the synanamorphism for the genus Trichobotrys is also reported for the first time. Detailed descriptions, illustrations and updated phylogenies of the novel species are provided, and thus presenting a valuable resource for researchers and mycologists interested in the diversity of ascomycetes in Yunnan. By enhancing our understanding of the Ascomycota diversity in this region, this research contributes to the broader field of fungal taxonomy and their phylogenetic understanding.
Collapse
Affiliation(s)
- Rungtiwa Phookamsak
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
| | - Sinang Hongsanan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Darbhe Jayarama Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Vishnugupta Vishwavidyapeetam, Ashoke, Gokarna 581326, India
| | - Dhanushka N. Wanasinghe
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan Province, China
- Center for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
| | - Itthayakorn Promputtha
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Turki M. Dawoud
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Peter E. Mortimer
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan Province, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, 654400, Yunnan Province, China
- CIFOR-ICRAF China Program, World Agroforestry (ICRAF), Kunming 650201, Yunnan Province, China
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
28
|
Bermúdez-Cova MA, Hofmann TA, Yorou NS, Piepenbring M. Systematic revision of species of Atractilina and Spiropes hyperparasitic on Meliolales (Ascomycota) in the tropics. MycoKeys 2024; 103:167-213. [PMID: 38645977 PMCID: PMC11031638 DOI: 10.3897/mycokeys.103.115799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/08/2024] [Indexed: 04/23/2024] Open
Abstract
Atractilina Dearn. & Barthol. and Spiropes Cif. are genera of asexual fungi that comprise species mainly hyperparasitic on black mildews (Meliolales, Ascomycota). Although a common group of anamorphic fungi, they have been described up to now only by morphology and their systematic position is unknown. The present study provides a morphological treatise of all known species of Atractilina and Spiropes hyperparasitic on Meliolales, including insights into their systematic position, based on DNA sequences generated here for the first time. The study was conducted, based on 33 herbarium specimens and 23 specimens recently collected in Benin and Panama. The obtained DNA sequence data (28S rDNA and ITS rDNA) of A.parasitica and of two species of Spiropes show systematic placements in the Dothideomycetes and Leotiomycetes, respectively. The sequence data of the two Spiropes spp. do not group together. Moreover, the anamorph-teleomorph connection between Atractilinaparasitica and Malacariameliolicola, a pseudothecioid fungus, is confirmed. Three species in the genus Spiropes are proposed as new to science, namely S.angylocalycis, S.carpolobiae and S.croissantiformis. Four species are reported for Benin for the first time, three species for Panama and one species for mainland America. Atractilina and Spiropes are currently two genera with highly heterogeneous species and they might have to be split in the future, once the taxonomic concepts are validated by morphology and molecular sequence data.
Collapse
Affiliation(s)
- Miguel A. Bermúdez-Cova
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt Am Main, Frankfurt Am Main, GermanyGoethe University Frankfurt Am MainFrankfurt am MainGermany
- Departamento de Biología de Organismos, División de Ciencias Biológicas, Universidad Simón Bolívar, Caracas, VenezuelaUniversidad Simón BolívarCaracasVenezuela
| | - Tina A. Hofmann
- Centro de Investigaciones Micológicas (CIMi), Herbario UCH, Universidad Autónoma de Chiriquí, David, PanamaUniversidad Autónoma de ChiriquíDavidPanama
| | - Nourou S. Yorou
- Research Unit Tropical Mycology and Plants-Soil Fungi Interactions (MyTIPS), Faculty of Agronomy, University of Parakou, BP 123, Parakou, BeninUniversity of ParakouParakouBenin
| | - Meike Piepenbring
- Mycology Research Group, Faculty of Biological Sciences, Goethe University Frankfurt Am Main, Frankfurt Am Main, GermanyGoethe University Frankfurt Am MainFrankfurt am MainGermany
| |
Collapse
|
29
|
Xu RF, Karunarathna SC, Phukhamsakda C, Dai DQ, Elgorban AM, Suwannarach N, Kumla J, Wang XY, Tibpromma S. Four new species of Dothideomycetes (Ascomycota) from Pará Rubber ( Heveabrasiliensis) in Yunnan Province, China. MycoKeys 2024; 103:71-95. [PMID: 38560534 PMCID: PMC10980880 DOI: 10.3897/mycokeys.103.117580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/29/2024] [Indexed: 04/04/2024] Open
Abstract
The tropical areas in southern and south-western Yunnan are rich in fungal diversity. Additionally, the diversity of seed flora in Yunnan Province is higher than in other regions in China and the abundant endemic species of woody plants provide favourable substrates for fungi. Rubber plantations in Yunnan Province are distributed over a large area, especially in Xishuangbanna. During a survey of rubber-associated fungi in Yunnan Province, China, dead rubber branches with fungal fruiting bodies were collected. Morphological characteristics and multigene phylogenetic analyses (ITS, LSU, SSU, rpb2 and tef1-α) revealed four distinct new species, described herein as Melomastiapuerensis, Nigrogranalincangensis, Pseudochaetosphaeronemalincangensis and Pseudochaetosphaeronemaxishuangbannaensis. Detailed descriptions, illustrations and phylogenetic trees are provided to show the taxonomic placements of these new species.
Collapse
Affiliation(s)
- Rui-Fang Xu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | | | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| | | | - Nakarin Suwannarach
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jaturong Kumla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Xiao-Yan Wang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, China
| |
Collapse
|
30
|
Caldara M, Gullì M, Graziano S, Riboni N, Maestri E, Mattarozzi M, Bianchi F, Careri M, Marmiroli N. Microbial consortia and biochar as sustainable biofertilisers: Analysis of their impact on wheat growth and production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170168. [PMID: 38244628 DOI: 10.1016/j.scitotenv.2024.170168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
The European Union is among the top wheat producers in the world, but its productivity relies on adequate soil fertilisation. Biofertilisers, either alone or in combination with biochar, can be a preferable alternative to chemical fertilisers. However, the addition of biofertilisers, specifically plant growth promoting microbes (PGPM), could modify grain composition, and/or deteriorate the soil composition. In this study, the two wheat cultivars Triticum aestivum (Bramante) and T. durum (Svevo) were cultivated in open fields for two consecutive years in the presence of a commercial PGPM mix supplied alone or in combination with biochar. An in-depth analysis was conducted by collecting physiological and agronomic data throughout the growth period. The effects of PGPM and biochar were investigated in detail; specifically, soil chemistry and rhizosphere microbial composition were characterized, along with the treatment effects on seed storage proteins. The results demonstrated that the addition of commercial microbial consortia and biochar, alone or in combination, did not modify the rhizospheric microbial community; however, it increased grain yield, especially in the cultivar Svevo (increase of 6.8 %-13.6 %), even though the factors driving the most variations were associated with both climate and cultivar. The total gluten content of the flours was not affected, whereas the main effect of the treatments was a variation in gliadins and low-molecular-weight-glutenin subunits in both cultivars when treated with PGPM and biochar. This suggested improved grain quality, especially regarding the viscoelastic properties of the dough, when the filling period occurred in a dry climate. The results indicate that the application of biofertilisers and biochar may aid the effective management of sustainable wheat cultivation, to support environmental health without altering the biodiversity of the resident microbiome.
Collapse
Affiliation(s)
- Marina Caldara
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Mariolina Gullì
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Nicolò Riboni
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Elena Maestri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Federica Bianchi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center CIDEA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Maria Careri
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parco Area delle Scienze, 43124 Parma, Italy.
| |
Collapse
|
31
|
Sugita R, Yoshioka R, Tanaka K. Anthostomella-like fungi on bamboo: four new genera belonging to a new family Pallidoperidiaceae ( Xylariales). MYCOSCIENCE 2024; 65:28-46. [PMID: 39301436 PMCID: PMC11412755 DOI: 10.47371/mycosci.2023.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 09/22/2024]
Abstract
This study investigates the phylogeny and taxonomy of Anthostomella-like fungi (Xylariales, Sordariomycetes) found in association with bamboo in Japan. Four new genera, Amphigermslita (including three new species, i.e., A. deformis, A. fusiformis, and A. pseudofusiformis), monotypic Crassipseudostroma (C. phyllostachydis) and Minuticlypeus (M. discosporus), and Pallidoperidium (two new species, P. exasperatum and P. paraexasperatum), and one known genus, Nigropunctata (one new species, N. complanata) are recognized and described. These five genera were found to constitute a distinct monophyletic lineage based on molecular phylogenetic analyses utilizing sequences of ITS and LSU nrDNA, rpb2, and tef1-α sequences. A new family, Pallidoperidiaceae, is proposed to accommodate these bambusicolous Anthostomella-like fungi. The identification of this lineage contributes to our understanding of the evolutionary relationships and classification of these bambusicolous fungi. It suggests that these five genera share a unique evolutionary history and possess shared morphological and ecological characteristics.
Collapse
Affiliation(s)
- Ryosuke Sugita
- a Faculty of Agriculture and Life Science, Hirosaki University
- b The United Graduate School of Agricultural Sciences, Iwate University
| | | | - Kazuaki Tanaka
- a Faculty of Agriculture and Life Science, Hirosaki University
| |
Collapse
|
32
|
Luo L, Zhang X, Wu X, Liu W, Liu J. Identification of Gonatophragmium mori Causing Mulberry Zonate Leaf Spot Disease and Characterization of Their Biological Enemies in Guangxi, China. PLANT DISEASE 2024; 108:162-174. [PMID: 37552161 DOI: 10.1094/pdis-04-23-0738-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Mulberry zonate leaf spot disease (MZLSD) is an important fungal disease of mulberry trees, which seriously affects the productivity and quality of mulberry leaves. MZLSD has been widely reported in sericultural production areas in Guangxi, China, in recent years. In this study, the causal agent of MZLSD was isolated from symptomatic samples and identified as Gonatophragmium mori (Acrospermaceae) based on morphological characterization and molecular analyses using nucleotide sequences of the internal transcribed spacer (ITS) and large subunit ribosomal DNA (LSU rDNA). Pathogenicity tests confirmed that G. mori is the pathogen responsible for MZLSD. Furthermore, we isolated antagonistic endophytic bacteria (AEB) from healthy mulberry leaves. Plate confrontation experiments showed that the lipopeptide crude extracts (LPCE) of three endophytic bacteria can inhibit the growth of G. mori, and the diameter of the antibacterial circle reaches more than 60 mm when their concentration of LPCE is 200 mg/ml. Light microscopy and scanning electron microscopy revealed that LPCE caused drastic changes in mycelial morphology. Fluorescence microscopy and transmission electron microscopy showed that the LPCE-induced apoptosis-like cell death in G. mori hyphae. Finally, based on morphological and molecular features, we identified the three isolates as Bacillus subtilis DS07, B. subtilis DS32, and B. velezensis Q6, respectively. To our knowledge, this is the first time to identify G. mori by combining characterization and molecular analyses, and we provide timely information about the use of biocontrol agents for suppression of G. mori.
Collapse
Affiliation(s)
- Longhui Luo
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong 510642, China
- Integrative Microbiology Research Center, College of Plant Protection, South China Agriculture University, Guangzhou, Guangdong 510642, China
| | - Xingnan Zhang
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong 510642, China
| | - Xiaomei Wu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong 510642, China
| | - Weifu Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong 510642, China
| | - Jiping Liu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agriculture University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
33
|
Kim JS, Lee M, Heo J, Kwon SW, Yun BS, Kim Y. Neodothiora pruni sp. nov., a Biosurfactant-Producing Ascomycetous Yeast Species Isolated from Flower of Prunus mume. MYCOBIOLOGY 2023; 51:388-392. [PMID: 38179118 PMCID: PMC10763881 DOI: 10.1080/12298093.2023.2282257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/07/2023] [Indexed: 01/06/2024]
Abstract
A yeast strain, designated as JAF-11T, was isolated from flower of Prunus mume Sieb. et Zucc. in Gwangyang, Republic of Korea. Phylogenetic analysis showed that strain JAF-11T was closely related to Neodothiora populina CPC 39399T with 2.07 % sequence divergence (12 nucleotide substitutions and three gaps in 581 nucleotides) in the D1/D2 domain of the large subunit (LSU) rRNA gene, and Rhizosphaera macrospora CBS 208.79T with 4.66 % sequence divergence (25 nucleotide substitutions and five gaps in 535 nucleotides) in the internal transcribed spacer (ITS) region. Further analysis based on the concatenated sequences of the D1/D2 domain of the LSU rRNA gene and the ITS region confirmed that strain JAF-11T was well-separated from Neodothiora populina CPC 39399T. In addition to the phylogenetic differences, strain JAF-11T was distinguished from its closest species, Neodothiora populina CPC 39399T and Rhizosphaera macrospora CBS 208.79T belonging to the family Dothioraceae by its phenotypic characteristics, such as assimilation of carbon sources. Hence, the name Neodothiora pruni sp. nov. is proposed with type strain JAF-11T (KACC 48808T; MB 850034).
Collapse
Affiliation(s)
- Jeong-Seon Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Miran Lee
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Jun Heo
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Soon-Wo Kwon
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced institute of Environmental and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Republic of Korea
| | - Yiseul Kim
- Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, Republic of Korea
| |
Collapse
|
34
|
Tang X, Jeewon R, Lu YZ, Alrefaei AF, Jayawardena RS, Xu RJ, Ma J, Chen XM, Kang JC. Morphophylogenetic evidence reveals four new fungal species within Tetraplosphaeriaceae (Pleosporales, Ascomycota) from tropical and subtropical forest in China. MycoKeys 2023; 100:171-204. [PMID: 38098977 PMCID: PMC10719940 DOI: 10.3897/mycokeys.100.113141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Tetraplosphaeriaceae (Pleosporales, Ascomycota) is a family with many saprobes recorded from various hosts, especially bamboo and grasses. During a taxonomic investigation of microfungi in tropical and subtropical forest regions of Guizhou, Hainan and Yunnan provinces, China, several plant samples were collected and examined for fungi. Four newly discovered species are described based on morphology and evolutionary relationships with their allies inferred from phylogenetic analyses derived from a combined dataset of LSU, ITS, SSU, and tub2 DNA sequence data. Detailed illustrations, descriptions and taxonomic notes are provided for each species. The four new species of Tetraplosphaeriaceae reported herein are Polyplosphaeriaguizhouensis, Polyplosphaeriahainanensis, Pseudotetraploayunnanensis, and Tetraploahainanensis. A checklist of Tetraplosphaeriaceae species with available details on their ecology is also provided.
Collapse
Affiliation(s)
- Xia Tang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Rajesh Jeewon
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | - Yong-Zhong Lu
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025, Guizhou Province, China
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulwahed Fahad Alrefaei
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit, Mauritius
| | | | - Rong-Ju Xu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Jian Ma
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Xue-Mei Chen
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou Province550003, China
| | - Ji-Chuan Kang
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025, Guizhou Province, China
| |
Collapse
|
35
|
He C, Meng D, Li W, Li X, He X. Dynamics of Endophytic Fungal Communities Associated with Cultivated Medicinal Plants in Farmland Ecosystem. J Fungi (Basel) 2023; 9:1165. [PMID: 38132766 PMCID: PMC10744690 DOI: 10.3390/jof9121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Microorganisms are an important component of global biodiversity and play an important role in plant growth and development and the protection of host plants from various biotic and abiotic stresses. However, little is known about the identities and communities of endophytic fungi inhabiting cultivated medicinal plants in the farmland ecosystem. The diversity and community composition of the endophytic fungi of cultivated medicinal plants in different hosts, tissue niches, and seasonal effects in the farmland of Northern China were examined using the next-generation sequencing technique. In addition, the ecological functions of the endophytic fungal communities were investigated by combining the sequence classification information and fungal taxonomic function annotation. A total of 1025 operational taxonomic units (OTUs) of endophytic fungi were obtained at a 97% sequence similarity level; they were dominated by Dothideomycetes and Pleosporales. Host factors (species identities and tissue niches) and season had significant effects on the community composition of endophytic fungi, and endophytic fungi assembly was shaped more strongly by host than by season. In summer, endophytic fungal diversity was higher in the root than in the leaf, whereas opposite trends were observed in winter. Network analysis showed that network connectivity was more complex in the leaf than in the root, and the interspecific relationship between endophytic fungal OTUs in the network structure was mainly positive rather than negative. The functional predications of fungi revealed that the pathotrophic types of endophytic fungi decreased and the saprotrophic types increased from summer to winter in the root, while both pathotrophic and saprotrophic types of endophytic fungi increased in the leaf. This study improves our understanding of the community composition and ecological distribution of endophytic fungi inhabiting scattered niches in the farmland ecosystem. In addition, the study provides insight into the biodiversity assessment and management of cultivated medicinal plants.
Collapse
Affiliation(s)
- Chao He
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China;
| | - Deyao Meng
- College of Life Sciences, Hebei University, Baoding 071002, China; (D.M.); (W.L.)
| | - Wanyun Li
- College of Life Sciences, Hebei University, Baoding 071002, China; (D.M.); (W.L.)
| | - Xianen Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China;
| | - Xueli He
- College of Life Sciences, Hebei University, Baoding 071002, China; (D.M.); (W.L.)
| |
Collapse
|
36
|
Rocha VDD, Dal'Sasso TCDS, Dal-Bianco M, Oliveira LOD. Genome-wide survey and evolutionary history of the pectin methylesterase (PME) gene family in the Dothideomycetes class of fungi. Fungal Genet Biol 2023; 169:103841. [PMID: 37797717 DOI: 10.1016/j.fgb.2023.103841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023]
Abstract
Once deposited in the plant cell wall, pectin undergoes demethylesterification by endogenous pectin methylesterases (PMEs), which play various roles in growth and development, including defense against pathogen attacks. Pathogen PMEs can alter pectin's methylesterification pattern, increasing its susceptibility to degradation by other fungal pectinases and thus playing a critical role as virulence factors during early infection stages. To investigate the evolutionary history of PMEs in the Dothideomycetes class of fungi, we obtained genomic data from 15 orders (79 species) and added genomic data from 61 isolates of Corynespora cassiicola. Our analyses involved maximum likelihood phylogenies, gene genealogies, and selection analyses. Additionally, we measured PME gene expression levels of C. cassiicola using soybean as a host through RT-qPCR assays. We recovered 145 putative effector PMEs and 57 putative non-effector PMEs from across the Dothideomycetes. The PME gene family exhibits a small size (up to 5 members per genome) and comprises three major clades. The evolutionary patterns of the PME1 and PME2 clades were largely shaped by duplications and recurring gene retention events, while biased gene loss characterized the small-sized PME3 clade. The presence of five members in the PME gene family of C. cassiicola suggests that the family may play a key role in the evolutionary success of C. cassiicola as a polyphagous plant pathogen. The haplogroups Cc_PME1.1 and Cc_PME1.2 exhibited an accelerated rate of evolution, whereas Cc_PME2.1, Cc_PME2.2, and Cc_PME2.3 seem to be under strong purifying selective constraints. All five PME genes were expressed during infection of soybean leaves, with the highest levels during from six to eight days post-inoculation. The highest relative expression level was measured for CC_29_g7533, a member of the Cc_PME2.3 clade, while the remaining four genes had relatively lower levels of expression.
Collapse
Affiliation(s)
| | | | - Maximiller Dal-Bianco
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Luiz Orlando de Oliveira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil.
| |
Collapse
|
37
|
Pereira DS, Phillips AJL. Palm Fungi and Their Key Role in Biodiversity Surveys: A Review. J Fungi (Basel) 2023; 9:1121. [PMID: 37998926 PMCID: PMC10672035 DOI: 10.3390/jof9111121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Over the past three decades, a wealth of studies has shown that palm trees (Arecaceae) are a diverse habitat with intense fungal colonisation, making them an important substratum to explore fungal diversity. Palm trees are perennial, monocotyledonous plants mainly restricted to the tropics that include economically important crops and highly valued ornamental plants worldwide. The extensive research conducted in Southeast Asia and Australasia indicates that palm fungi are undoubtedly a taxonomically diverse assemblage from which a remarkable number of new species is continuously being reported. Despite this wealth of data, no recent comprehensive review on palm fungi exists to date. In this regard, we present here a historical account and discussion of the research on the palm fungi to reflect on their importance as a diverse and understudied assemblage. The taxonomic structure of palm fungi is also outlined, along with comments on the need for further studies to place them within modern DNA sequence-based classifications. Palm trees can be considered model plants for studying fungal biodiversity and, therefore, the key role of palm fungi in biodiversity surveys is discussed. The close association and intrinsic relationship between palm hosts and palm fungi, coupled with a high fungal diversity, suggest that the diversity of palm fungi is still far from being fully understood. The figures suggested in the literature for the diversity of palm fungi have been revisited and updated here. As a result, it is estimated that there are about 76,000 species of palm fungi worldwide, of which more than 2500 are currently known. This review emphasises that research on palm fungi may provide answers to a number of current fungal biodiversity challenges.
Collapse
Affiliation(s)
- Diana S. Pereira
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alan J. L. Phillips
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
38
|
Mirabile G, Ferraro V, Mancuso FP, Pecoraro L, Cirlincione F. Biodiversity of Fungi in Freshwater Ecosystems of Italy. J Fungi (Basel) 2023; 9:993. [PMID: 37888249 PMCID: PMC10607542 DOI: 10.3390/jof9100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
Fungal biodiversity is still mostly unknown and their presence in particular ecosystems such as freshwater habitats is often underestimated. The ecological role that these fungi play in freshwater environments mainly concerns their activity as decomposers of litter and plant material. At present, it is estimated that 3870 species belong to the ecological group of freshwater fungi (13 phyla and 45 classes). In this survey, we provide an overview of the Italian freshwater fungal diversity on the basis of the field and literature data. In the literature, data on freshwater fungi are fragmentary and not updated, focusing mainly on northern Italy where the most important lakes and rivers are present, while data from central and southern Italy (including Sicily and Sardinia) are almost completely ineffective. In particular, Ascomycota are reported in only 14 publications, most of which concern the freshwater environments of Lombardia, Piemonte, and Veneto. Only one publication explores the biodiversity of freshwater Basidiomycota in the wetlands of the Cansiglio forest (Veneto). The field observation allowed for us to identify 38 species of Basidiomycota growing in riparian forest of Italy. However, the number of fungi in freshwater habitats of Italy is strongly underestimated and many species are still completely unknown.
Collapse
Affiliation(s)
- Giulia Mirabile
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy; (G.M.); (F.C.)
- NBFC, National Biodiversity Future Center, Piazza Marina 61 (c/o Palazzo Steri), 90133 Palermo, Italy
| | - Valeria Ferraro
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari “Aldo Moro”, University Campus “Ernesto Quagliariello”, Via E. Orabona 4, 70125 Bari, Italy
| | - Francesco Paolo Mancuso
- Department of Earth and Sea Sciences, University of Palermo, Viale delle Scienze, Bldg. 16, 90128 Palermo, Italy
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China;
| | - Fortunato Cirlincione
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Bldg. 5, 90128 Palermo, Italy; (G.M.); (F.C.)
| |
Collapse
|
39
|
Shen HW, Bao DF, Boonmee S, Su XJ, Tian XG, Hyde KD, Luo ZL. Lignicolous Freshwater Fungi from Plateau Lakes in China (I): Morphological and Phylogenetic Analyses Reveal Eight Species of Lentitheciaceae, Including New Genus, New Species and New Records. J Fungi (Basel) 2023; 9:962. [PMID: 37888219 PMCID: PMC10607872 DOI: 10.3390/jof9100962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/03/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
During the investigation of lignicolous freshwater fungi in plateau lakes in Yunnan Province, China, eight Lentitheciaceae species were collected from five lakes viz. Luguhu, Qiluhu, Xingyunhu, Cibihu, and Xihu lake. Based on morphological characters and phylogenetic analysis of combined ITS, LSU, SSU, and tef 1-α sequence data, a new genus Paralentithecium, two new species (Paralentithecium suae, and Setoseptoria suae), three new records (Halobyssothecium phragmitis, H. unicellulare, and Lentithecium yunnanensis) and three known species viz. Halobyssothecium aquifusiforme, Lentithecium pseudoclioninum, and Setoseptoria bambusae are reported.
Collapse
Affiliation(s)
- Hong-Wei Shen
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Dan-Feng Bao
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
| | - Saranyaphat Boonmee
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xi-Jun Su
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
| | - Xing-Guo Tian
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang 550003, China
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.B.); (X.-G.T.); (K.D.H.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Zong-Long Luo
- College of Agriculture and Biological Science, Dali University, Dali 671003, China; (H.-W.S.); (D.-F.B.); (X.-J.S.)
- Co-Innovation Center for Cangshan Mountain and Erhai Lake Integrated Protection and Green Development of Yunnan Province, Dali University, Dali 671003, China
| |
Collapse
|
40
|
Hongsanan S, Phookamsak R, Bhat DJ, Wanasinghe DN, Promputtha I, Suwannarach N, Sandamali D, Lumyong S, Xu J, Xie N. Exploring ascomycete diversity in Yunnan, China I: resolving ambiguous taxa in Phaeothecoidiellaceae and investigating conservation implications of fungi. Front Cell Infect Microbiol 2023; 13:1252387. [PMID: 37743866 PMCID: PMC10513062 DOI: 10.3389/fcimb.2023.1252387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/02/2023] [Indexed: 09/26/2023] Open
Abstract
Yunnan, located in southwestern China, is known for its high fungal diversity, and many of which are endemic to the region. As part of our ongoing studies on fungi in Yunnan, we introduce two new genera in Phaeothecoidiellaceae (Mycosphaerellales), to accommodate one Repetophragma-like and another Stomiopeltis-like taxa. Pseudorepetophragma gen. nov. is introduced herein as a monotypic genus to accommodate P. zygopetali comb. nov.(≡ Repetophragma zygopetali), whereas Pseudostomiopeltis gen. nov. is introduced to accommodate Ps. xishuangbannaensis gen. et sp. nov. and Ps. phyllanthi comb. nov.(≡ Stomiopeltis phyllanthi), based on a new collection from Yunnan. In addition, Stomiopeltis sinensis is transferred to Exopassalora as E. sinensis comb. nov. due to its phylogenetic affinity and grouped with E. zambiae, the generic type of Exopassalora. This study provides new insights into the biodiversity of fungal species in this region and adds to our understanding of their ecological roles, as well as the resolution to ambiguous taxa in Phaeothecoidiellaceae.
Collapse
Affiliation(s)
- Sinang Hongsanan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Rungtiwa Phookamsak
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan, China
- CIFOR-ICRAF China Country Program, Kunming, Yunnan, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, Yunnan, China
| | - Darbhe Jayarama Bhat
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Vishnugupta Vishwavidyapeetam, Gokarna, India
| | - Dhanushka N. Wanasinghe
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan, China
- CIFOR-ICRAF China Country Program, Kunming, Yunnan, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, Yunnan, China
| | | | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Diana Sandamali
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
| | - Saisamorn Lumyong
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Jianchu Xu
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe, Yunnan, China
- CIFOR-ICRAF China Country Program, Kunming, Yunnan, China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Kunming, Yunnan, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
41
|
Mishcherikova V, Lynikienė J, Marčiulynas A, Gedminas A, Prylutskyi O, Marčiulynienė D, Menkis A. Biogeography of Fungal Communities Associated with Pinus sylvestris L. and Picea abies (L.) H. Karst. along the Latitudinal Gradient in Europe. J Fungi (Basel) 2023; 9:829. [PMID: 37623600 PMCID: PMC10455207 DOI: 10.3390/jof9080829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
We assessed the diversity and composition of fungal communities in different functional tissues and the rhizosphere soil of Pinus sylvestris and Picea abies stands along the latitudinal gradient of these tree species distributions in Europe to model possible changes in fungal communities imposed by climate change. For each tree species, living needles, shoots, roots, and the rhizosphere soil were sampled and subjected to high-throughput sequencing. Results showed that the latitude and the host tree species had a limited effect on the diversity and composition of fungal communities, which were largely explained by the environmental variables of each site and the substrate they colonize. The mean annual temperature and mean annual precipitation had a strong effect on root fungal communities, isothermality on needle fungal communities, mean temperature of the warmest quarter and precipitation of the driest month on shoot fungal communities, and precipitation seasonality on soil fungal communities. Fungal communities of both tree species are predicted to shift to habitats with a lower annual temperature amplitude and with increasing precipitation during the driest month, but the suitability of these habitats as compared to the present conditions is predicted to decrease in the future.
Collapse
Affiliation(s)
- Valeriia Mishcherikova
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Jūratė Lynikienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Adas Marčiulynas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Artūras Gedminas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Oleh Prylutskyi
- Department of Mycology and Plant Resistance, V.N. Karazin Kharkiv National University, Svobody Sq., 61022 Kharkiv, Ukraine;
| | - Diana Marčiulynienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| |
Collapse
|
42
|
Gao Y, Zhong T, Bhat JD, Gomes de Farias AR, Dawoud TM, Hyde KD, Xiong W, Li Y, Gui H, Yang X, Wu S, Wanasinghe DN. Pleomorphic Dematiomelanommayunnanense gen. et sp. nov. (Ascomycota, Melanommataceae) from grassland vegetation in Yunnan, China. MycoKeys 2023; 98:273-297. [PMID: 37539358 PMCID: PMC10394607 DOI: 10.3897/mycokeys.98.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/03/2023] [Indexed: 08/05/2023] Open
Abstract
During a survey of microfungi associated with grasslands and related vegetation types from Yunnan Province in China, various ascomycetous and coelomycetous fungi were isolated. This study reports the discovery of four strains of ascomycetous and coelomycetous fungi from dead stalks of Hypericummonogynum L. (Hypericaceae) and Rubusparvifolius L. (Rosaceae) in the Zhaotong region of Yunnan Province, China. The isolates were characterized using multi-locus phylogenetic analyses and were found to represent a new monophyletic lineage in Melanommataceae (Pleosporales, Dothideomycetes). This new clade was named as Dematiomelanommayunnanense gen. et sp. nov. which consists of both sexual and asexual morphs. The sexual morph is characterized by globose to subglobose ascomata with a central ostiole, cylindrical asci with a pedicel and ocular chamber, and muriform, ellipsoidal to fusiform ascospores. The asexual morph has synanamorphs including both brown, muriform macroconidia and hyaline, round to oblong or ellipsoidal microconidia. These findings contribute to the understanding of fungal diversity in grasslands and related vegetation types in Yunnan Province, China.
Collapse
Affiliation(s)
- Ying Gao
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, ChinaCenter for Mountain Futures, Kunming Institute of BotanyKunmingChina
- School of Science, Mae Fah Luang University, Chiang Rai 57100, ThailandMae Fah Luang UniversityChiang RaiThailand
| | - Tingfang Zhong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandKey Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, ChinaUniversity of Chinese Academy of SciencesBeijingChina
| | - Jayarama D. Bhat
- University of Chinese Academy of Sciences, Beijing 100049, ChinaKing Saud UniversityRiyadhSaudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi ArabiaVishnugupta VishwavidyapeetamGokarnaIndia
| | | | - Turki M. Dawoud
- University of Chinese Academy of Sciences, Beijing 100049, ChinaKing Saud UniversityRiyadhSaudi Arabia
| | - Kevin D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai 57100, ThailandMae Fah Luang UniversityChiang RaiThailand
| | - Weiqiang Xiong
- Biology Division, Vishnugupta Vishwavidyapeetam, Ashoke, Gokarna 581326, IndiaScience and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace ChemotechnologyHubeiChina
| | - Yunju Li
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang, 441003, Hubei, ChinaThe State Phosphorus Resource Development and Utilization Engineering Technology Research CentreKunmingChina
- The State Phosphorus Resource Development and Utilization Engineering Technology Research Centre, Yunnan Phosphate Chemical Group Co. Ltd, Kunming, ChinaYTH Modern Agriculture Development Co. LtdKunmingChina
| | - Heng Gui
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, ChinaCenter for Mountain Futures, Kunming Institute of BotanyKunmingChina
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandKey Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of SciencesKunmingChina
| | - Xuefei Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandKey Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, ChinaUniversity of Chinese Academy of SciencesBeijingChina
| | - Shixi Wu
- Biology Division, Vishnugupta Vishwavidyapeetam, Ashoke, Gokarna 581326, IndiaScience and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace ChemotechnologyHubeiChina
| | - Dhanushka N. Wanasinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, ThailandKey Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of SciencesKunmingChina
- YTH Modern Agriculture Development Co. Ltd, Kunming, ChinaCenter for Mountain Futures, Kunming Institute of BotanyYunnanChina
| |
Collapse
|
43
|
Gao Y, de Farias ARG, Jiang HB, Karunarathna SC, Xu JC, Tibpromma S, Gui H. Morphological and Phylogenetic Characterisations Reveal Four New Species in Leptosphaeriaceae ( Pleosporales, Dothideomycetes). J Fungi (Basel) 2023; 9:612. [PMID: 37367548 PMCID: PMC10299561 DOI: 10.3390/jof9060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Leptosphaeriaceae is a widely distributed fungal family with diverse lifestyles. The family includes several genera that can be distinguished by morphology and molecular phylogenetic analysis. During our investigation of saprobic fungi on grasslands in Yunnan Province, China, four fungal taxa belonging to Leptosphaeriaceae associated with grasses were collected. Morphological observations and phylogenetic analyses of the combined SSU, LSU, ITS, tub2, and rpb2 loci based on maximum likelihood and Bayesian inference were used to reveal the taxonomic placement of these fungal taxa. This study introduces four new taxa, viz. Leptosphaeria yunnanensis, L. zhaotongensis, Paraleptosphaeria kunmingensis, and Plenodomus zhaotongensis. Colour photo plates, full descriptions, and a phylogenetic tree to show the placement of the new taxa are provided.
Collapse
Affiliation(s)
- Ying Gao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; (Y.G.); (A.R.G.d.F.)
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; (H.-B.J.); (J.-C.X.)
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | | | - Hong-Bo Jiang
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; (H.-B.J.); (J.-C.X.)
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Samantha C. Karunarathna
- National Institute of Fundamental Studies (NIFS), Kandy 20000, Sri Lanka;
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Jian-Chu Xu
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; (H.-B.J.); (J.-C.X.)
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Heng Gui
- Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China; (H.-B.J.); (J.-C.X.)
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
44
|
Hong SM, Das K, Lim SK, Suh SJ, Lee SY, Jung HY. Neocucurbitaria chlamydospora sp. nov.: A Novel Species of the Family Cucurbitariaceae Isolated from a Stink Bug in Korea. MYCOBIOLOGY 2023; 51:115-121. [PMID: 37359958 PMCID: PMC10288907 DOI: 10.1080/12298093.2023.2203973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 06/28/2023]
Abstract
The fungal strain KNUF-22-18B, belonging to Cucurbitariaceae, was discovered from a stink bug (Hygia lativentris) during the investigation of insect microbiota in Chungnam Province, South Korea. The colonies of the strain KNUF-22-18B were wooly floccose, white to brown in the center on oatmeal agar (OA), and the colonies were buff, margin even, and colorless, reverse white to yellowish toward the center on malt extract agar (MEA). The strain KNUF-22-18B produced pycnidia after 60 days of culturing on potato dextrose agar, but pycnidia were not observed on OA. On the contrary, N. keratinophila CBS 121759T abundantly formed superficial pycnidia on OA and MEA after a few days. The strain KNUF-22-18B produced chlamydospores subglobose to globose, mainly in the chain, with a small diameter of 4.4-8.8 μm. At the same time, N. keratinophila CBS 121759T displayed a globose terminal with a diameter of 8-10 μm. A multilocus phylogeny using the internal transcribed spacer regions, 28S rDNA large subunit, β-tubulin, and RNA polymerase II large subunit genes further validated the uniqueness of the strain. The detailed description and illustration of the proposed species as Neocucurbitaria chlamydospora sp. nov. from Korea was strongly supported by molecular phylogeny.
Collapse
Affiliation(s)
- Soo-Min Hong
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Kallol Das
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Seong-Keun Lim
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Sang Jae Suh
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
| | - Seung-Yeol Lee
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Young Jung
- College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Korea
- Institute of Plant Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
45
|
Su P, Lu Z, Tian W, Chen Y, Maharachchikumbura SSN. Six Additions to the Genus Periconia (Dothideomycetes: Periconiaceae) from Graminaceous Plants in China. J Fungi (Basel) 2023; 9:jof9030300. [PMID: 36983468 PMCID: PMC10054280 DOI: 10.3390/jof9030300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Periconia is a polyphyletic and asexual morphic genus within the family Periconiaceae (Pleosporales). The genus is characterized by a pale to dark brown stipe with an apical conidial head and ellipsoidal to oblong conidia. Species of Periconia are widely distributed throughout the world in various hosts, while most species are isolated from graminaceous plants. During our investigations of microfungal in Sichuan Province, China, 26 Periconia isolates were collected from a wide variety of graminaceous plants. These isolates corresponded to 11 species based on the examination of morphology and multi-locus phylogenetic analysis (SSU, ITS, LSU, TEF1, RPB2). This includes six new species (P. chengduensis, P. cynodontis, P. festucae, P. imperatae, P. penniseti, and P. spodiopogonis) and five new records (P. byssoides, P. chimonanthi, P. cookie, P. pseudobyssoides, and P. verrucosa). A comprehensive description and illustrations of the new species are provided and discussed with comparable taxa. These discoveries expand our knowledge of the species diversity of Periconia taxa in graminaceous plants in China.
Collapse
|
46
|
Jayawardena RS, Hyde KD, Wang S, Sun YR, Suwannarach N, Sysouphanthong P, Abdel-Wahab MA, Abdel-Aziz FA, Abeywickrama PD, Abreu VP, Armand A, Aptroot A, Bao DF, Begerow D, Bellanger JM, Bezerra JDP, Bundhun D, Calabon MS, Cao T, Cantillo T, Carvalho JLVR, Chaiwan N, Chen CC, Courtecuisse R, Cui BK, Damm U, Denchev CM, Denchev TT, Deng CY, Devadatha B, de Silva NI, dos Santos LA, Dubey NK, Dumez S, Ferdinandez HS, Firmino AL, Gafforov Y, Gajanayake AJ, Gomdola D, Gunaseelan S, Shucheng-He, Htet ZH, Kaliyaperumal M, Kemler M, Kezo K, Kularathnage ND, Leonardi M, Li JP, Liao C, Liu S, Loizides M, Luangharn T, Ma J, Madrid H, Mahadevakumar S, Maharachchikumbura SSN, Manamgoda DS, Martín MP, Mekala N, Moreau PA, Mu YH, Pahoua P, Pem D, Pereira OL, Phonrob W, Phukhamsakda C, Raza M, Ren GC, Rinaldi AC, Rossi W, Samarakoon BC, Samarakoon MC, Sarma VV, Senanayake IC, Singh A, Souza MF, Souza-Motta CM, Spielmann AA, Su W, Tang X, Tian X, Thambugala KM, Thongklang N, Tennakoon DS, Wannathes N, Wei D, Welti S, Wijesinghe SN, Yang H, Yang Y, Yuan HS, Zhang H, Zhang J, Balasuriya A, Bhunjun CS, Bulgakov TS, Cai L, Camporesi E, Chomnunti P, Deepika YS, et alJayawardena RS, Hyde KD, Wang S, Sun YR, Suwannarach N, Sysouphanthong P, Abdel-Wahab MA, Abdel-Aziz FA, Abeywickrama PD, Abreu VP, Armand A, Aptroot A, Bao DF, Begerow D, Bellanger JM, Bezerra JDP, Bundhun D, Calabon MS, Cao T, Cantillo T, Carvalho JLVR, Chaiwan N, Chen CC, Courtecuisse R, Cui BK, Damm U, Denchev CM, Denchev TT, Deng CY, Devadatha B, de Silva NI, dos Santos LA, Dubey NK, Dumez S, Ferdinandez HS, Firmino AL, Gafforov Y, Gajanayake AJ, Gomdola D, Gunaseelan S, Shucheng-He, Htet ZH, Kaliyaperumal M, Kemler M, Kezo K, Kularathnage ND, Leonardi M, Li JP, Liao C, Liu S, Loizides M, Luangharn T, Ma J, Madrid H, Mahadevakumar S, Maharachchikumbura SSN, Manamgoda DS, Martín MP, Mekala N, Moreau PA, Mu YH, Pahoua P, Pem D, Pereira OL, Phonrob W, Phukhamsakda C, Raza M, Ren GC, Rinaldi AC, Rossi W, Samarakoon BC, Samarakoon MC, Sarma VV, Senanayake IC, Singh A, Souza MF, Souza-Motta CM, Spielmann AA, Su W, Tang X, Tian X, Thambugala KM, Thongklang N, Tennakoon DS, Wannathes N, Wei D, Welti S, Wijesinghe SN, Yang H, Yang Y, Yuan HS, Zhang H, Zhang J, Balasuriya A, Bhunjun CS, Bulgakov TS, Cai L, Camporesi E, Chomnunti P, Deepika YS, Doilom M, Duan WJ, Han SL, Huanraluek N, Jones EBG, Lakshmidevi N, Li Y, Lumyong S, Luo ZL, Khuna S, Kumla J, Manawasinghe IS, Mapook A, Punyaboon W, Tibpromma S, Lu YZ, Yan J, Wang Y. Fungal diversity notes 1512-1610: taxonomic and phylogenetic contributions on genera and species of fungal taxa. FUNGAL DIVERS 2023; 117:1-272. [PMID: 36852303 PMCID: PMC9948003 DOI: 10.1007/s13225-022-00513-0] [Show More Authors] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 02/25/2023]
Abstract
This article is the 14th in the Fungal Diversity Notes series, wherein we report 98 taxa distributed in two phyla, seven classes, 26 orders and 50 families which are described and illustrated. Taxa in this study were collected from Australia, Brazil, Burkina Faso, Chile, China, Cyprus, Egypt, France, French Guiana, India, Indonesia, Italy, Laos, Mexico, Russia, Sri Lanka, Thailand, and Vietnam. There are 59 new taxa, 39 new hosts and new geographical distributions with one new combination. The 59 new species comprise Angustimassarina kunmingense, Asterina lopi, Asterina brigadeirensis, Bartalinia bidenticola, Bartalinia caryotae, Buellia pruinocalcarea, Coltricia insularis, Colletotrichum flexuosum, Colletotrichum thasutense, Coniochaeta caraganae, Coniothyrium yuccicola, Dematipyriforma aquatic, Dematipyriforma globispora, Dematipyriforma nilotica, Distoseptispora bambusicola, Fulvifomes jawadhuvensis, Fulvifomes malaiyanurensis, Fulvifomes thiruvannamalaiensis, Fusarium purpurea, Gerronema atrovirens, Gerronema flavum, Gerronema keralense, Gerronema kuruvense, Grammothele taiwanensis, Hongkongmyces changchunensis, Hypoxylon inaequale, Kirschsteiniothelia acutisporum, Kirschsteiniothelia crustaceum, Kirschsteiniothelia extensum, Kirschsteiniothelia septemseptatum, Kirschsteiniothelia spatiosum, Lecanora immersocalcarea, Lepiota subthailandica, Lindgomyces guizhouensis, Marthe asmius pallidoaurantiacus, Marasmius tangerinus, Neovaginatispora mangiferae, Pararamichloridium aquisubtropicum, Pestalotiopsis piraubensis, Phacidium chinaum, Phaeoisaria goiasensis, Phaeoseptum thailandicum, Pleurothecium aquisubtropicum, Pseudocercospora vernoniae, Pyrenophora verruculosa, Rhachomyces cruralis, Rhachomyces hyperommae, Rhachomyces magrinii, Rhachomyces platyprosophi, Rhizomarasmius cunninghamietorum, Skeletocutis cangshanensis, Skeletocutis subchrysella, Sporisorium anadelphiae-leptocomae, Tetraploa dashaoensis, Tomentella exiguelata, Tomentella fuscoaraneosa, Tricholomopsis lechatii, Vaginatispora flavispora and Wetmoreana blastidiocalcarea. The new combination is Torula sundara. The 39 new records on hosts and geographical distribution comprise Apiospora guiyangensis, Aplosporella artocarpi, Ascochyta medicaginicola, Astrocystis bambusicola, Athelia rolfsii, Bambusicola bambusae, Bipolaris luttrellii, Botryosphaeria dothidea, Chlorophyllum squamulosum, Colletotrichum aeschynomenes, Colletotrichum pandanicola, Coprinopsis cinerea, Corylicola italica, Curvularia alcornii, Curvularia senegalensis, Diaporthe foeniculina, Diaporthe longicolla, Diaporthe phaseolorum, Diatrypella quercina, Fusarium brachygibbosum, Helicoma aquaticum, Lepiota metulispora, Lepiota pongduadensis, Lepiota subvenenata, Melanconiella meridionalis, Monotosporella erecta, Nodulosphaeria digitalis, Palmiascoma gregariascomum, Periconia byssoides, Periconia cortaderiae, Pleopunctum ellipsoideum, Psilocybe keralensis, Scedosporium apiospermum, Scedosporium dehoogii, Scedosporium marina, Spegazzinia deightonii, Torula fici, Wiesneriomyces laurinus and Xylaria venosula. All these taxa are supported by morphological and multigene phylogenetic analyses. This article allows the researchers to publish fungal collections which are important for future studies. An updated, accurate and timely report of fungus-host and fungus-geography is important. We also provide an updated list of fungal taxa published in the previous fungal diversity notes. In this list, erroneous taxa and synonyms are marked and corrected accordingly.
Collapse
Affiliation(s)
- Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Song Wang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Ya-Ru Sun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Phongeun Sysouphanthong
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Biotechnology and Ecology Institute, Ministry of Agriculture and Forestry, P.O.Box: 811, Vientiane Capital, Lao PDR
| | - Mohamed A. Abdel-Wahab
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Faten A. Abdel-Aziz
- Department of Botany and Microbiology, Faculty of Science, Sohag University, Sohag, 82524 Egypt
| | - Pranami D. Abeywickrama
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Vanessa P. Abreu
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Alireza Armand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - André Aptroot
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Dan-Feng Bao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- College of Agriculture and Biological Sciences, Dali University, Dali, 671003 Yunnan China
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Dominik Begerow
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Jean-Michel Bellanger
- CEFE, CNRS, Univ. Montpellier, EPHE, IRD, INSERM, 1919, Route de Mende, 34293 Montpellier Cedex 5, France
| | - Jadson D. P. Bezerra
- Setor de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Rua 235, S/N, Setor Universitário, Goiânia, GO CEP: 74605-050 Brazil
| | - Digvijayini Bundhun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Mark S. Calabon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Division of Biological Sciences, College of Arts and Sciences, University of the Philippines Visayas, 5023 Miagao, Iloilo Philippines
| | - Ting Cao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Taimy Cantillo
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina, S/N – Novo Horizonte, Feira de Santana, BA 44036-900 Brazil
| | - João L. V. R. Carvalho
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Napalai Chaiwan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Che-Chih Chen
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, 11529 Taipei Taiwan
| | - Régis Courtecuisse
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Bao-Kai Cui
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | - Ulrike Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - Cvetomir M. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Teodor T. Denchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin St., 1113 Sofia, Bulgaria
- IUCN SSC Rusts and Smuts Specialist Group, Sofia, Bulgaria
| | - Chun Y. Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Bandarupalli Devadatha
- Virus Diagnostic and Research Lab, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh 517501 India
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
| | - Nimali I. de Silva
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Lidiane A. dos Santos
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife, Pernambuco Brazil
| | - Nawal K. Dubey
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Sylvain Dumez
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Himashi S. Ferdinandez
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - André L. Firmino
- Universidade Federal de Uberlândia, Instituto de Ciências Agrárias, Monte Carmelo, Minas Gerais Brazil
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Republic of Uzbekistan, 32 Durmon Yuli Street, Tashkent, Uzbekistan 100125
- AKFA University, 264 Milliy Bog Street, Tashkent, Uzbekistan 111221
| | - Achala J. Gajanayake
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Deecksha Gomdola
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Sugantha Gunaseelan
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Shucheng-He
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Zin H. Htet
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Malarvizhi Kaliyaperumal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Martin Kemler
- Institute of Plant Science and Microbiology, Universität Hamburg, Organismic Botany and Mycology, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Kezhocuyi Kezo
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai, 600025 India
| | - Nuwan D. Kularathnage
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Marco Leonardi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Ji-Peng Li
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Shanxi Road No. 1, Yunyan District, Guiyang, 550001 China
| | - Chunfang Liao
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Shun Liu
- Institute of Microbiology, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100083 China
| | | | - Thatsanee Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Jian Ma
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Hugo Madrid
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Sede Iquique, Av. Luis Emilio Recabarren, 2477 Iquique, Chile
| | - S. Mahadevakumar
- Forest Pathology Department, KSCSTE-Kerala Forest Research Institute, Peechi, Thrissur, Kerala 680653 India
- Botanical Survey of India, Andaman and Nicobar Regional Centre, Haddo, Port Blair, South Andaman 744102 India
| | | | - Dimuthu S. Manamgoda
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - María P. Martín
- Real Jardín Botánico, RJB-CSIC, Plaza de Murillo 2, 28014 Madrid, Spain
| | - Niranjan Mekala
- Department of Biotechnology, Pondicherry University, Kalapet, Pondicheryy 605014 India
- Department of Botany, Rajiv Gandhi University, Rono Hills, Doimukh, Papum Pare, Itanagar, Arunachal Pradesh 791112 India
| | | | - Yan-Hong Mu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
- University of the Chinese Academy of Sciences, Beijing, 100049 China
| | - Pasouvang Pahoua
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dhandevi Pem
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Olinto L. Pereira
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais Brazil
| | - Wiphawanee Phonrob
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - Chayanard Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Mubashar Raza
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Guang-Cong Ren
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| | - Walter Rossi
- University of L’Aquila Dept. MeSVA, sect. Environmental Sciences via Vetoio, 67100 Coppito, AQ Italy
| | - Binu C. Samarakoon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Vemuri V. Sarma
- Department of Biotechnology, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry 605014 India
| | - Indunil C. Senanayake
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangdong, 510225 China
| | - Archana Singh
- Center of Advanced Study in Botany, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Maria F. Souza
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Cristina M. Souza-Motta
- Departamento de Micologia Prof. Chaves Batista, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, S/N, Centro de Biociências, Cidade Universitária, Recife, PE CEP: 50670-901 Brazil
| | - Adriano A. Spielmann
- Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva S/N, Bairro Universitário, Campo Grande, Mato Grosso do Sul CEP 79070-900 Brazil
| | - Wenxin Su
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Xia Tang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Engineering and Research Center for Southwest Biopharmaceutical Resource of National Education Ministry of China, Guizhou University, Guiyang, 550025 Guizhou Province China
| | - XingGuo Tian
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Kasun M. Thambugala
- Generics and Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, 10250 Nugegoda Sri Lanka
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Danushka S. Tennakoon
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nopparat Wannathes
- Microbiology Program, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, 65000 Thailand
| | - DingPeng Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Stéphane Welti
- Faculty of Pharmacy of Lille, EA 4515 (LGCgE), Univ Lille, 59000 Lille, France
| | - Subodini N. Wijesinghe
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Hongde Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Yunhui Yang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Hai-Sheng Yuan
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164 China
| | - Huang Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, West Side of North Section of Industrial Avenue, Linyi, 276000 China
| | - Jingyi Zhang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Abhaya Balasuriya
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Timur S. Bulgakov
- Department of Plant Protection, Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Jana Fabriciusa Str. 2/28, Krasnodar Region, Sochi, Russia 354002
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Erio Camporesi
- A.M.B, Circolo Micologico ‘‘Giovanni Carini’’, C.P. 314, 25121 Brescia, Italy
- A.M.B. Gruppo, Micologico Forlivese ‘‘Antonio Cicognani’’, via Roma 18, 47121 Forlì, Italy
- Società per gli Studi Naturalistici Della Romagna, C.P. 143, 48012 Bagnacavallo, RA Italy
| | - Putarak Chomnunti
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Y. S. Deepika
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Mingkwan Doilom
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Wei-Jun Duan
- Ningbo Academy of Inspection and Quarantine, Ningbo, Zhejiang, 315012 PR China
- Ningbo Customs District, Ningbo, 315012 Zhejiang PR China
| | - Shi-Ling Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 3, 1st Beichen West Rd., Chaoyang District, Beijing, 100101 China
| | - Naruemon Huanraluek
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - E. B. Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451 Saudi Arabia
| | - N. Lakshmidevi
- Department of Studies in Botany, University of Mysore, Manasagangotri, Mysuru, Karnataka 570006 India
| | - Yu Li
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University 38, Changchun, 130118 China
| | - Saisamorn Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Zong-Long Luo
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - Surapong Khuna
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Ishara S. Manawasinghe
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 P.R. China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Wilawan Punyaboon
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, Yunnan Engineering Research Center of Fruit Wine, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, 655011 Yunnan China
| | - Yong-Zhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, 550003 China
| | - JiYe Yan
- Beijing Key Laboratory of Environment-Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, 550025 Guizhou China
| |
Collapse
|
47
|
Sun YR, Zhang JY, Hyde KD, Wang Y, Jayawardena RS. Morphology and Phylogeny Reveal Three Montagnula Species from China and Thailand. PLANTS (BASEL, SWITZERLAND) 2023; 12:738. [PMID: 36840086 PMCID: PMC9961173 DOI: 10.3390/plants12040738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Four stains were isolated from two fresh twigs of Helwingia himalaica and two dead woods during investigations of micro-fungi in China and Thailand. Phylogenetic analyses of four gene regions LSU, ITS, SSU and tef1-α revealed the placement of these species in Montagnula. Based on the morphological examination and molecular data, two new species, M. aquatica and M. guiyangensis, and a known species M. donacina are described. Descriptions and illustrations of the new collections and a key to the Montagnula species are provided. Montagnula chromolaenicola, M. puerensis, M. saikhuensis, and M. thailandica are discussed and synonymized under M. donacina.
Collapse
Affiliation(s)
- Ya-Ru Sun
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jing-Yi Zhang
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yong Wang
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Ruvishika S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
48
|
Wang M, Wang C, Yu Z, Wang H, Wu C, Masoudi A, Liu J. Fungal diversities and community assembly processes show different biogeographical patterns in forest and grassland soil ecosystems. Front Microbiol 2023; 14:1036905. [PMID: 36819045 PMCID: PMC9928764 DOI: 10.3389/fmicb.2023.1036905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Soil fungal community has been largely explored by comparing their natural diversity. However, there is a relatively small body of literature concerned with fungal community assembly processes and their co-occurrence network correlations carried out across large spatial-temporal scales with complex environmental gradients in natural ecosystems and different habitats in China. Thus, soil fungal community assembly processes were assessed to predict changes in soil function in 98 different forest and grassland sites from the Sichuan, Hubei, and Hebei Provinces of China using high-throughput sequencing of nuclear ribosomal internal transcribed spacer 2 (ITS-2). The 10 most abundant fungal phyla results showed that Ascomycota was the most abundant phylum in forests from Sichuan province (64.42%) and grassland habitats from Hebei province (53.46%). Moreover, core fungal taxa (487 OTUs) represented 0.35% of total fungal OTUs. We observed higher fungal Shannon diversity and richness (the Chao1 index) from diverse mixed forests of the Sichuan and Hubei Provinces than the mono-cultured forest and grassland habitats in Hebei Province. Although fungal alpha and beta diversities exhibited different biogeographical patterns, the fungal assembly pattern was mostly driven by dispersal limitation than selection in different habitats. Fungal co-occurrence analyses showed that the network was more intense at Saihanba National Forest Park (SNFP, Hebei). In contrast, the co-occurrence network was more complex at boundaries between forests and grasslands at SNFP. Additionally, the highest number of positive (co-presence or co-operative) correlations of fungal genera were inferred from grassland habitat, which led fungal communities to form commensalism relationships compared to forest areas with having higher negative correlations (mutual exclusion or competitive). The generalized additive model (GAM) analysis showed that the association of fungal Shannon diversity and richness indices with geographical coordinates did not follow a general pattern; instead, the fluctuation of these indices was restricted to local geographical coordinates at each sampling location. These results indicated the existence of a site effect on the diversity of fungal communities across our sampling sites. Our observation suggested that higher fungal diversity and richness of fungal taxa in a particular habitat are not necessarily associated with more complex networks.
Collapse
|
49
|
Liu L, Yang J, Zhou S, Gu X, Gou J, Wei Q, Zhang M, Liu Z. Novelties in Microthyriaceae (Microthyriales): Two New Asexual Genera with Three New Species from Freshwater Habitats in Guizhou Province, China. J Fungi (Basel) 2023; 9:jof9020178. [PMID: 36836293 PMCID: PMC9965287 DOI: 10.3390/jof9020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Microthyriaceae is typified by the sexual genus Microthyrium, with eight asexual genera. Three interesting isolates were collected during our investigation of freshwater fungi from the wetlands in Guizhou Province, southwest China. Three new asexual morphs are identified. Phylogenetic analyses using ITS and LSU gene regions revealed the placement of these isolates in Microthyriaceae (Microthyriales, Dothideomycetes). Based on the morphology and phylogenetic evidence, two new asexual genera, Paramirandina and Pseudocorniculariella, and three new species, Pa. aquatica, Pa. cymbiformis, and Ps. guizhouensis, are introduced. Descriptions and illustrations of the new taxa are provided, with a phylogenetic tree of Microthyriales and related taxa.
Collapse
Affiliation(s)
- Lingling Liu
- Guizhou Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jing Yang
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Center of Excellence in Fungal Research, School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Si Zhou
- Guizhou Provincial Environmental Science Research and Design Institute, Guiyang 550081, China
| | - Xiaofeng Gu
- Guizhou Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Jiulan Gou
- Guizhou Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Quanquan Wei
- Guizhou Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Meng Zhang
- Guizhou Institute of Soil and Fertilizer, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Zuoyi Liu
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Correspondence: ; Tel.: +86-139-8558-8109
| |
Collapse
|
50
|
Du TY, Dai DQ, Mapook A, Lu L, Stephenson SL, Suwannarach N, Elgorban AM, Al-Rejaie S, Karunarathna SC, Tibpromma S. Additions to Rhytidhysteron ( Hysteriales, Dothideomycetes) in China. J Fungi (Basel) 2023; 9:jof9020148. [PMID: 36836263 PMCID: PMC9958654 DOI: 10.3390/jof9020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
In this study, twelve terrestrial hysteriaceous saprobic fungi growing on different pieces of dead wood were collected from Yunnan Province, China. All hysteriaceous strains isolated in this study tallied with the general characteristics associated with Rhytidhysteron. Detailed morphological characteristics and combined multigene phylogeny of LSU, ITS, SSU, and TEF showed that the twelve hysteriaceous fungi strains represent four distinct new species, and seven new host or geographical records of Rhytidhysteron. Based on morphological and phylogenetic evidence, the four new species (Rhytidhysteron bannaense sp. nov., R. coffeae sp. nov., R. mengziense sp. nov., and R. yunnanense sp. nov.) expand the number of species of Rhytidhysteron from thirty-three to thirty-seven, while seven new geographical records expand the records of Rhytidhysteron in China from six to thirteen. In addition, 10 new Rhytidhysteron host records are reported for the first time, thus expanding the known hosts for Rhytidhysteron from 52 to 62. Full descriptions, images of the morphology, and phylogenetic analyses to show the position of the Rhytidhysteron taxa are provided. In addition, the present study summarizes the main morphological characteristics, host associations, and locations of this genus.
Collapse
Affiliation(s)
- Tian-Ye Du
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
| | - Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Li Lu
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Steven L. Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Abdallah M. Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Salim Al-Rejaie
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Samantha C. Karunarathna
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Correspondence: (S.C.K.); (S.T.)
| | - Saowaluck Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing 655011, China
- Correspondence: (S.C.K.); (S.T.)
| |
Collapse
|