1
|
Coca LF, Lumbsch HT, Mercado-Díaz JA, Widhelm TJ, Goffinet B, Kirika P, Lücking R. Diversity, Phylogeny, and historical biogeography of the genus Coccocarpia (lichenized Ascomycota: Peltigerales) in the tropics. Mol Phylogenet Evol 2025; 206:108312. [PMID: 39993490 DOI: 10.1016/j.ympev.2025.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/11/2025] [Accepted: 02/16/2025] [Indexed: 02/26/2025]
Abstract
Coccocarpia Pers. currently comprises 28 mostly broadly distributed tropical species of fungi associated with cyanobacteria. Three of these taxa, C. erythroxyli, C. palmicola, and C. pellita, are presumably pantropical to subcosmopolitan, with broad morphological variation across their range. This study provides the first global phylogeny of the genus, to test current species concepts and infer distribution patterns, based on samples from Colombia, Puerto Rico, Gabon, Kenya, Thailand, Fiji, and Hawaii. We also estimate divergence times within the clade and provide a first reconstruction of its biogeographic history. Based on phylogenetic reconstructions inferred from maximum likelihood and Bayesian approaches of four molecular markers (mtSSU, nuLSU, ITS, RPB2), Coccocarpia was recovered as monophyletic. However, the currently accepted taxa are largely polyphyletic entities and the underlying diversity in this genus is much higher than currently understood. Different methods for species delimitation boundaries came to agree on a scenario involving more than 150 species in the available, albeit still small, dataset. This suggests that with broader sampling, Coccocarpia may indeed represent a hyper-diverse genus, potentially containing over 200 species. The phylogeny is geographically structured: one clade is exclusive to the Paleotropics, one to the Neotropics, and one is pantropical. Coccocarpia likely emerged during the Late Cretaceous (90 ± 10 Mya) in the tropical regions of Australasia-Oceania, initially colonizing Oceania, and Asia and subsequently the Neotropics. The three main clades diverged between the Late Cretaceous and the Paleocene, with significant diversification in the Oligocene, during which the neotropical clade gave rise to morphological novelties, including the epiphylla and stellata clades.
Collapse
Affiliation(s)
- Luis Fernando Coca
- Jardín Botánico de Bogotá José Celestino Mutis. Bogotá D. C., Colombia; Herbario Universidad de Caldas - FAUC, Universidad de Caldas, Manizales, Colombia; Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia.
| | - H Thorsten Lumbsch
- Collections, Conservation, & Research, The Field Museum, 1400 S Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - Joel A Mercado-Díaz
- Collections, Conservation, & Research, The Field Museum, 1400 S Lake Shore Drive, Chicago, IL 60605-2496, USA; Committee on Evolutionary Biology, University of Chicago, 1025 E. 57th Street, Chicago, IL 60637, USA
| | - Todd J Widhelm
- Collections, Conservation, & Research, The Field Museum, 1400 S Lake Shore Drive, Chicago, IL 60605-2496, USA
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269- 3043, USA
| | | | - Robert Lücking
- Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195 Berlin, Germany
| |
Collapse
|
2
|
Gauslaa Y, Hollinger J, Goward T, Asplund J. Unraveling the interplay between phylogeny and chemical niches in epiphytic macrolichens. Oecologia 2024; 207:4. [PMID: 39644338 PMCID: PMC11625070 DOI: 10.1007/s00442-024-05641-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
This study aims to elucidate the connection between the phylogeny of epiphytic macrolichens and their chemical niches. We analyzed published floristic and environmental data from 90 canopies of Picea glauca x engelmannii across various forest settings in British Columbia. To explore the concordance between a principal coordinates analysis of the cladistic distance matrix and a global non-metric multidimensional scaling of the ecological distance matrix, we used Procrustean randomization tests. The findings uncover a robust association between large-scale macrolichen phylogeny and canopy throughfall chemistry. The high calcium-scores of the studied species effectively distinguished members of the Peltigerales from those of the Lecanorales, although parameters linked with Ca such as Mn, Mg, K, bark-, and soil-pH, may contribute to the niche partitioning along the oligotrophic-mesotrophic gradient. The substantial large-scale phylogenetic variation in the macrolichens' Ca-scores is consistent with an ancient adaptation to specialized chemical environments. Conversely, the minor variation in Ca-scores within families and genera likely stems from more recent adaptation. This study highlights crucial functional and chemical differences between members of the Lecanorales and Peltigerales. The deep phylogenetic connection to the chemical environment underscores the value of lichens as transferable bioindicators for the chemical environment and emphasizes the importance of elucidating the intricate interplay between chemical factors and lichen evolution.
Collapse
Affiliation(s)
- Yngvar Gauslaa
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| | - Jason Hollinger
- Herbarium, Department of Biology, Western Carolina University, Cullowhee, NC, 28723, USA
| | - Trevor Goward
- UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Enlichened Consulting Ltd., 5369 Clearwater Valley Road, Upper Clearwater, BC, V0E 1N1, Canada
| | - Johan Asplund
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
3
|
Otero A, Barcenas-Peña A, Lumbsch HT, Grewe F. Reference-Based RADseq Unravels the Evolutionary History of Polar Species in 'the Crux Lichenologorum' Genus Usnea (Parmeliaceae, Ascomycota). J Fungi (Basel) 2023; 9:99. [PMID: 36675920 PMCID: PMC9865703 DOI: 10.3390/jof9010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Nearly 90% of fungal diversity, one of the most speciose branches in the tree of life, remains undescribed. Lichenized fungi as symbiotic associations are still a challenge for species delimitation, and current species diversity is vastly underestimated. The ongoing democratization of Next-Generation Sequencing is turning the tables. Particularly, reference-based RADseq allows for metagenomic filtering of the symbiont sequence and yields robust phylogenomic trees of closely related species. We implemented reference-based RADseq to disentangle the evolution of neuropogonoid lichens, which inhabit harsh environments and belong to Usnea (Parmeliaceae, Ascomycota), one of the most taxonomically intriguing genera within lichenized fungi. Full taxon coverage of neuropogonoid lichens was sampled for the first time, coupled with phenotype characterizations. More than 20,000 loci of 126 specimens were analyzed through concatenated and coalescent-based methods, including time calibrations. Our analysis addressed the major taxonomic discussions over recent decades. Subsequently, two species are newly described, namely U. aymondiana and U. fibriloides, and three species names are resurrected. The late Miocene and Pliocene-Pleistocene boundary is inferred as the timeframe for neuropogonoid lichen diversification. Ultimately, this study helped fill the gap of fungal diversity by setting a solid backbone phylogeny which raises new questions about which factors may trigger complex evolutionary scenarios.
Collapse
Affiliation(s)
- Ana Otero
- The Grainger Bioinformatics Center & Negaunee Integrative Research Center, Science & Education, The Field Museum, Chicago, IL 60605, USA
| | | | | | | |
Collapse
|
4
|
Zhang Y, Clancy J, Jensen J, McMullin RT, Wang L, Leavitt SD. Providing Scale to a Known Taxonomic Unknown—At Least a 70-Fold Increase in Species Diversity in a Cosmopolitan Nominal Taxon of Lichen-Forming Fungi. J Fungi (Basel) 2022; 8:jof8050490. [PMID: 35628746 PMCID: PMC9146994 DOI: 10.3390/jof8050490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Robust species delimitations provide a foundation for investigating speciation, phylogeography, and conservation. Here we attempted to elucidate species boundaries in the cosmopolitan lichen-forming fungal taxon Lecanora polytropa. This nominal taxon is morphologically variable, with distinct populations occurring on all seven continents. To delimit candidate species, we compiled ITS sequence data from populations worldwide. For a subset of the samples, we also generated alignments for 1209 single-copy nuclear genes and an alignment spanning most of the mitochondrial genome to assess concordance among the ITS, nuclear, and mitochondrial inferences. Species partitions were empirically delimited from the ITS alignment using ASAP and bPTP. We also inferred a phylogeny for the L. polytropa clade using a four-marker dataset. ASAP species delimitations revealed up to 103 species in the L. polytropa clade, with 75 corresponding to the nominal taxon L. polytropa. Inferences from phylogenomic alignments generally supported that these represent evolutionarily independent lineages or species. Less than 10% of the candidate species were comprised of specimens from multiple continents. High levels of candidate species were recovered at local scales but generally with limited overlap across regions. Lecanora polytropa likely ranks as one of the largest species complexes of lichen-forming fungi known to date.
Collapse
Affiliation(s)
- Yanyun Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Heilongtan, Kunming 650201, China;
- College of Life Science, Anhui Normal University, Wuhu 241000, China
| | - Jeffrey Clancy
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT 84602, USA; (J.C.); (J.J.)
| | - Jacob Jensen
- Department of Biology, Brigham Young University, 4102 Life Science Building, Provo, UT 84602, USA; (J.C.); (J.J.)
| | | | - Lisong Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Heilongtan, Kunming 650201, China;
- Correspondence: (L.W.); (S.D.L.)
| | - Steven D. Leavitt
- Department of Biology, M. L. Bean Life Science Museum, Brigham Young University, 4102 Life Science Building, Provo, UT 84602, USA
- Correspondence: (L.W.); (S.D.L.)
| |
Collapse
|
5
|
Liimatainen K, Kim JT, Pokorny L, Kirk PM, Dentinger B, Niskanen T. Taming the beast: a revised classification of Cortinariaceae based on genomic data. FUNGAL DIVERS 2022. [DOI: 10.1007/s13225-022-00499-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AbstractFamily Cortinariaceae currently includes only one genus, Cortinarius, which is the largest Agaricales genus, with thousands of species worldwide. The species are important ectomycorrhizal fungi and form associations with many vascular plant genera from tropicals to arctic regions. Genus Cortinarius contains a lot of morphological variation, and its complexity has led many taxonomists to specialize in particular on infrageneric groups. The previous attempts to divide Cortinarius have been shown to be unnatural and the phylogenetic studies done to date have not been able to resolve the higher-level classification of the group above section level. Genomic approaches have revolutionized our view on fungal relationships and provide a way to tackle difficult groups. We used both targeted capture sequencing and shallow whole genome sequencing to produce data and to perform phylogenomic analyses of 75 single-copy genes from 19 species. In addition, a wider 5-locus analysis of 245 species, from the Northern and Southern Hemispheres, was also done. Based on our results, a classification of the family Cortinariaceae into ten genera—Cortinarius, Phlegmacium, Thaxterogaster, Calonarius, Aureonarius, Cystinarius, Volvanarius, Hygronarius, Mystinarius, and Austrocortinarius—is proposed. Seven genera, 10 subgenera, and four sections are described as new to science and five subgenera are introduced as new combinations in a new rank. In addition, 41 section names and 514 species names are combined in new genera and four lecto- and epitypes designated. The position of Stephanopus in suborder Agaricineae remains to be studied. Targeted capture sequencing is used for the first time in fungal taxonomy in Basidiomycetes. It provides a cost-efficient way to produce -omics data in species-rich groups. The -omics data was produced from fungarium specimens up to 21 years old, demonstrating the value of museum specimens in the study of the fungal tree of life. This study is the first family revision in Agaricales based on genomics data and hopefully many others will soon follow.
Collapse
|