1
|
Khatib S, Pereman I, Kostanda E, Zdouc MM, Ezov N, Schweitzer R, van der Hooft JJJ. Olive mill solid waste induces beneficial mushroom-specialized metabolite diversity revealed by computational metabolomics strategies. Metabolomics 2025; 21:58. [PMID: 40281221 PMCID: PMC12031845 DOI: 10.1007/s11306-025-02257-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
INTRODUCTION Mushrooms contain besides proteins a diverse pallet of specialized metabolites bioactive in either beneficial or harmful manner. Therefore, mushrooms have been exploited by humans for centuries for dietary or medical purposes. For example, the edible and medicinal mushrooms Hericium erinaceus and Pleurotus eryngii are grown commercially around the world. In nature, H. erinaceus grows on old or dead tree trunks, and P. eryngii grows on Apiaceae plant roots, whereas in cultivation, they grow on substrates mainly consisting of dry wood chips, straw, and cereals. To make their farming more sustainable, supplements such as olive mill solid waste (OMSW) have been added to support mushroom development. However, so far, the impact of substrate additives on the edible mushroom metabolic content has not been assessed. METHODS Here, we examined the effect of different proportions of OMSW added to the substrate on the metabolic profiles of the fruiting body (FB) and mycelium of H. erinaceus and P. eryngii mushrooms. The study includes four groups for each mushroom species, mushrooms are grown on 0% OMSW, 33%, 60%, and 80% OMSW, with three biological repeats in each group. We used computational metabolomics strategies including GNPS molecular networking, MS2Query, and the FERMO dashboard, to organize, annotate, and prioritize metabolite features from the untargeted Q-Exactive Plus HR-LC-MS/MS metabolomics data. Following chromatography-based fractionation, the metabolite annotation of four metabolite features was further validated or fine-tuned using 1H-NMR, to resolve structural isomers. RESULTS AND DISCUSSION Our computational metabolomics strategies showed several annotated metabolite features to be affected by OSMW concentration. In general, the methanolic extracts of H. erinaceus FB and mycelium were more highly enriched with specialized metabolites than those of P. eryngii. Interestingly, OMSW increased several hericenone analogues in the H. erinaceus FB, as well as several erinacerin metabolites from the mycelium. In addition, high concentrations of OMSW decreased the enniatin metabolite abundance. In conclusion, we demonstrate how a change in substrate composition affects the mushroom's specialized metabolome and can induce and alter mushroom metabolite content and diversity. These results highlight the importance of including computational metabolomic strategies to investigate new sustainable growth options for edible mushrooms and other natural foods.
Collapse
Affiliation(s)
- Soliman Khatib
- Natural Compounds and Analytical Chemistry Laboratory, MIGAL-Galilee Research Institute, Kiryat Shemona, Israel.
- Department of Biotechnology, Tel-Hai College, Upper Galilee, 12210, Kiryat Shemona, Israel.
| | - Idan Pereman
- Department of Biotechnology, Tel-Hai College, Upper Galilee, 12210, Kiryat Shemona, Israel.
- Molecular biology and analytics of medicinal mushrooms Laboratory, MIGAL-Galilee Research Institute, Kiryat Shemona, Israel.
| | - Elizabeth Kostanda
- Molecular biology and analytics of medicinal mushrooms Laboratory, MIGAL-Galilee Research Institute, Kiryat Shemona, Israel
| | - Mitja M Zdouc
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Nirit Ezov
- Molecular biology and analytics of medicinal mushrooms Laboratory, MIGAL-Galilee Research Institute, Kiryat Shemona, Israel
| | - Ron Schweitzer
- Natural Compounds and Analytical Chemistry Laboratory, MIGAL-Galilee Research Institute, Kiryat Shemona, Israel
- Department of Biotechnology, Tel-Hai College, Upper Galilee, 12210, Kiryat Shemona, Israel
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Department of Biochemistry, University of Johannesburg, Johannesburg, 2006, South Africa.
| |
Collapse
|
2
|
Phukhamsakda C, Hyde KD, Samarakoon MC, Louangphan J, Navasit K, Al-Otibi F, Bhunjun CS. Unveiling Sordariomycetes taxa associated with woody litter in Northern Thailand. MycoKeys 2025; 115:155-185. [PMID: 40134631 PMCID: PMC11933910 DOI: 10.3897/mycokeys.115.145330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Sordariomycetes species are abundant in woody litter samples. In this study, we introduce two novel species, Diaporthethailandica (Diaporthaceae) and Occultithecachiangraiensis (Xylariaceae), from woody litter materials. We also describe a new host record of D.tulliensis and a new geographical record for D.melonis. All collections were identified based on morphology and phylogenetic analyses of combined datasets. The morphologies of the taxa fit the generic concepts of Diaporthe and Occultitheca, respectively. Diaporthethailandica formed a sister clade with D.raonikayaporum but differs from D.raonikayaporum in the sizes of conidiomata, conidiogenous cells, and beta conidia. Diaporthethailandica also differs from D.raonikayaporum by the absence of gamma conidia. Occultithecachiangraiensis differs from the sister taxon O.rosae in having smaller ascomata and a thicker mucilaginous sheath. We also provide a synopsis of Occultitheca species with details on their morphology, host, and country. These findings provide valuable insights into the diversity and ecological roles of Sordariomycetes, emphasising the need for continued exploration of fungal biodiversity in various environments.
Collapse
Affiliation(s)
- Chayanard Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Milan C. Samarakoon
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Johnny Louangphan
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, Yunnan 650201, China
| | - Kedsara Navasit
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
3
|
Zhang GQ, Li ZM, Fan XL, Li QR, Kumla J, Suwannarach N, Elgorban AM, Moussa IM, Dai DQ, Wijayawardene NN. Fungi from Malus in Qujing, China: two new species, three new records, and insights into potential host jumping and lifestyle switching. Front Cell Infect Microbiol 2025; 15:1517908. [PMID: 40134789 PMCID: PMC11933099 DOI: 10.3389/fcimb.2025.1517908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/06/2025] [Indexed: 03/27/2025] Open
Abstract
Apple trees [Malus domestica Borkh. (Rosaceae)] are one of the important temperate fruit crops in China. In comparison to other temperate fruits, such as grapes and pears, fungal studies (in Yunnan) associated with M. domestica are fewer in number. In the present study, we investigated fungi associated with M. domestica in Qujing City, Yunnan Province, China. Samples were collected from apple gardens in different locations. Single spore isolation was carried out to isolate saprobic fungi, while the surface sterilization method was carried out to isolate endophytic fungi. Molecular analyses were carried out to determine the phylogenetic placement of the new collections. Based on the combined methods of morphology and phylogeny, Cytospora qujingensis sp. nov. and Hypoxylon malongense sp. nov. are introduced as novel saprobic and endophytic taxa, respectively. Moreover, Aureobasidium pullulans and Cytospora schulzeri are reported as new geological records from southwestern China. Allocryptovalsa castaneae is reported on M. domestica in China for the first time. The checklist of fungi associated with M. domestica in China is presented.
Collapse
Affiliation(s)
- Gui-Qing Zhang
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biology and Food Engineering, Qujing Normal University, Qujing, China
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Zhu-Mei Li
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biology and Food Engineering, Qujing Normal University, Qujing, China
| | - Xin-Lei Fan
- The Key Laboratory for Silviculture and Conservation of the Ministry of Education, Beijing Forestry University, Beijing, China
| | - Qi-Rui Li
- Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang, Guizhou, China
- The High Efficacy Application of Natural Medicinal Resources Engineering Centre of Guizhou Province (The Key Laboratory of Optimal Utilization of Natural Medicine Resources), School of Pharmaceutical Sciences, Guizhou Medical University, Gui’an, Guizhou, China
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, Thailand
| | - Abdallah M. Elgorban
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia
| | - Ihab M. Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Dong-Qin Dai
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biology and Food Engineering, Qujing Normal University, Qujing, China
| | - Nalin N. Wijayawardene
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biology and Food Engineering, Qujing Normal University, Qujing, China
- Tropical Microbiology Research Foundation, Colombo, Sri Lanka
| |
Collapse
|
4
|
Schrey H, Lambert C, Stadler M. Fungi: Pioneers of chemical creativity - Techniques and strategies to uncover fungal chemistry. IMA Fungus 2025; 16:e142462. [PMID: 40093757 PMCID: PMC11909596 DOI: 10.3897/imafungus.16.142462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
Natural product discovery from fungi for drug development and description of novel chemistry has been a tremendous success. This success is expected to accelerate even further, owing to the advent of sophisticated technical advances of technical advances that recently led to the discovery of an unparalleled biodiversity in the fungal kingdom. This review aims to give an overview on i) important secondary metabolite-derived drugs or drug leads, ii) discuss the analytical and strategic framework of how natural product discovery and drug lead identification transformed from earlier days to the present, iii) how knowledge of fungal biology and biodiversity facilitates the discovery of new compounds, and iv) point out endeavors in understanding fungal secondary metabolite chemistry in order to systematically explore fungal genomes by utilizing synthetic biology. An outlook is given, underlining the necessity for a collaborative and cooperative scenario to harness the full potential of the fungal secondary metabolome.
Collapse
Affiliation(s)
- Hedda Schrey
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Christopher Lambert
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| | - Marc Stadler
- Department Microbial Drugs (MWIS), Helmholtz-Centre for Infection Research, 38124 Braunschweig, GermanyHelmholtz-Centre for Infection ResearchBraunschweigGermany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, GermanyTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|
5
|
Chen B, Moriarty T, Steenackers H, Vles G, Onsea J, Vackier T, Spriet I, Lavigne R, Richards RG, Metsemakers WJ. Exploring the potential of naturally occurring antimicrobials for managing orthopedic-device-related infections. J Bone Jt Infect 2024; 9:249-260. [PMID: 39539734 PMCID: PMC11555427 DOI: 10.5194/jbji-9-249-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/29/2024] [Indexed: 11/16/2024] Open
Abstract
Orthopedic-device-related infections (ODRIs) are challenging clinical complications that are often exacerbated by antibiotic resistance and biofilm formation. This review explores the efficacy of naturally occurring antimicrobials - including agents sourced from bacteria, fungi, viruses, animals, plants and minerals - against pathogens common in ODRIs. The limitations of traditional antibiotic agents are presented, and innovative naturally occurring antimicrobials, such as bacteriophage therapy and antimicrobial peptides, are evaluated with respect to their interaction with conventional antibiotics and antibiofilm efficacy. The integration of these natural agents into clinical practice could revolutionize ODRI treatment strategies, offering effective alternatives to conventional antibiotics and mitigating resistance development. However, the translation of these compounds from research into the clinic may require the substantial investment of intellectual and financial resources.
Collapse
Affiliation(s)
- Baixing Chen
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | | | - Hans Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Georges F. Vles
- Department of Orthopaedic Surgery, University Hospitals Leuven, Leuven, Belgium
- Institute for Orthopaedic Research and Training (IORT), KU Leuven, Leuven, Belgium
| | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven, Belgium
| | - Isabel Spriet
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
- Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | | | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Donoso C, Raluca MA, Chávez-Jinez S, Vera E. Hass Avocado ( Persea americana Mill) Peel Extract Reveals Antimicrobial and Antioxidant Properties against Verticillium theobromae, Colletotrichum musae, and Aspergillus niger Pathogens Affecting Musa acuminata Colla Species, in Ecuador. Microorganisms 2024; 12:1929. [PMID: 39338603 PMCID: PMC11434585 DOI: 10.3390/microorganisms12091929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The utilization of agroindustrial residues, such as avocado peel, as a source of bioactive compounds with antioxidant properties has garnered significant attention. In this study, we investigated the antioxidant potential using the DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (oxygen radical absorbance capacity) methods, along with the antimicrobial activity of phenolic compounds extracted from Hass avocado peel. These soluble polyphenols were quantified and identified using high-performance liquid chromatography (HPLC). The research focused on their effects against three fungal pathogens, Verticillium theobromae, Colletotrichum musae, and Aspergillus niger, which significantly impact banana crops, an essential agricultural commodity in Ecuador. The results have revealed that the application of 80% ethanol as an organic solvent led to increased soluble polyphenol content compared to 96% ethanol. Extraction time significantly influenced the phenolic content, with the highest values obtained at 90 min. Interestingly, despite substantial mycelial growth observed across all extract concentrations, the antifungal effect varied among the pathogens. Specifically, V. theobromae exhibited the highest sensitivity, while C. musae and A. niger were less affected. These results underscore the importance of considering both antioxidant and antimicrobial properties when evaluating natural extracts for potential applications in plant disease management.
Collapse
Affiliation(s)
- Caterine Donoso
- Departamento de Ciencias de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional EPN, Quito 170143, Ecuador; (C.D.); (E.V.)
| | - Mihai A. Raluca
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Ruminahui s/n y, Sangolqui 171103, Ecuador;
| | - Stephanie Chávez-Jinez
- Army Scientific and Technological Research Center—CICTE, Department of Life Science and Agriculture, Universidad de Las Fuerzas Armadas—ESPE, Av. General Ruminahui s/n y, Sangolqui 171103, Ecuador;
| | - Edwin Vera
- Departamento de Ciencias de Alimentos y Biotecnología, Facultad de Ingeniería Química y Agroindustria, Escuela Politécnica Nacional EPN, Quito 170143, Ecuador; (C.D.); (E.V.)
| |
Collapse
|
7
|
Wennrich JP, Holzenkamp C, Kolařík M, Maier W, Mándi A, Kurtán T, Ashrafi S, Ebada SS, Stadler M. Dactylfungins and Tetralones: Bioactive Metabolites from a Nematode-Associated Laburnicola nematophila. JOURNAL OF NATURAL PRODUCTS 2024; 87:1860-1871. [PMID: 39012621 PMCID: PMC11287750 DOI: 10.1021/acs.jnatprod.4c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/17/2024]
Abstract
A chemical investigation of Laburnicola nematophila, isolated from cysts of the plant parasitic nematode Heterodera filipjevi, affored three dactylfungin derivatives (1-3) and three tetralone congeners (4-6). Dactylfungin C (1), laburnicolin (4), and laburnicolenone (5) are previously undescribed natural products. Chemical structures of the isolated compounds were determined based on 1D and 2D NMR spectroscopic analyses together with HR-ESI-MS spectrometry and comparison with data reported in the literature. The relative configurations of compounds 1, 2, and 4-6 were determined based on their ROESY data and analysis of their coupling constants (J values). The absolute configurations of 4-6 were determined through the comparison of their measured and calculated TDDFT-ECD spectra. Compounds 1-3 were active against azole-resistant Aspergillus fumigatus.
Collapse
Affiliation(s)
- Jan-Peer Wennrich
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| | - Caren Holzenkamp
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| | - Miroslav Kolařík
- Institute
of Microbiology, Czech Academy of Science, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Wolfgang Maier
- Institute
for Epidemiology and Pathogen Diagonstics, Julius Kühn Institut (JKI) - Federal Research Centre for Cultivated
Plants, Messeweg 11-12, 38104 Braunschweig, Germany
| | - Attila Mándi
- Department
of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department
of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
| | - Samad Ashrafi
- Institute
for Epidemiology and Pathogen Diagonstics, Julius Kühn Institut (JKI) - Federal Research Centre for Cultivated
Plants, Messeweg 11-12, 38104 Braunschweig, Germany
- Institute
for Crop and Soil Science, Julius Kühn
Institute (JKI) − Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116 Braunschweig, Germany
| | - Sherif S. Ebada
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, Cairo 11566, Egypt
| | - Marc Stadler
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research (HZI) and German Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
8
|
Bhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, et alBhunjun C, Chen Y, Phukhamsakda C, Boekhout T, Groenewald J, McKenzie E, Francisco E, Frisvad J, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie C, Bai F, Błaszkowski J, Braun U, de Souza F, de Queiroz M, Dutta A, Gonkhom D, Goto B, Guarnaccia V, Hagen F, Houbraken J, Lachance M, Li J, Luo K, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe D, Wang D, Wei D, Zhao C, Aiphuk W, Ajayi-Oyetunde O, Arantes T, Araujo J, Begerow D, Bakhshi M, Barbosa R, Behrens F, Bensch K, Bezerra J, Bilański P, Bradley C, Bubner B, Burgess T, Buyck B, Čadež N, Cai L, Calaça F, Campbell L, Chaverri P, Chen Y, Chethana K, Coetzee B, Costa M, Chen Q, Custódio F, Dai Y, Damm U, Santiago A, De Miccolis Angelini R, Dijksterhuis J, Dissanayake A, Doilom M, Dong W, Álvarez-Duarte E, Fischer M, Gajanayake A, Gené J, Gomdola D, Gomes A, Hausner G, He M, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena R, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin C, Liu J, Liu X, Loizides M, Luangharn T, Maharachchikumbura S, Mkhwanazi GM, Manawasinghe I, Marin-Felix Y, McTaggart A, Moreau P, Morozova O, Mostert L, Osiewacz H, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips A, Phonemany M, Promputtha I, Rathnayaka A, Rodrigues A, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe S, Scholler M, Scott P, Shivas R, Silar P, Silva-Filho A, Souza-Motta C, Spies C, Stchigel A, Sterflinger K, Summerbell R, Svetasheva T, Takamatsu S, Theelen B, Theodoro R, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang X, Wartchow F, Welti S, Wijesinghe S, Wu F, Xu R, Yang Z, Yilmaz N, Yurkov A, Zhao L, Zhao R, Zhou N, Hyde K, Crous P. What are the 100 most cited fungal genera? Stud Mycol 2024; 108:1-411. [PMID: 39100921 PMCID: PMC11293126 DOI: 10.3114/sim.2024.108.01] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 03/17/2024] [Indexed: 08/06/2024] Open
Abstract
The global diversity of fungi has been estimated between 2 to 11 million species, of which only about 155 000 have been named. Most fungi are invisible to the unaided eye, but they represent a major component of biodiversity on our planet, and play essential ecological roles, supporting life as we know it. Although approximately 20 000 fungal genera are presently recognised, the ecology of most remains undetermined. Despite all this diversity, the mycological community actively researches some fungal genera more commonly than others. This poses an interesting question: why have some fungal genera impacted mycology and related fields more than others? To address this issue, we conducted a bibliometric analysis to identify the top 100 most cited fungal genera. A thorough database search of the Web of Science, Google Scholar, and PubMed was performed to establish which genera are most cited. The most cited 10 genera are Saccharomyces, Candida, Aspergillus, Fusarium, Penicillium, Trichoderma, Botrytis, Pichia, Cryptococcus and Alternaria. Case studies are presented for the 100 most cited genera with general background, notes on their ecology and economic significance and important research advances. This paper provides a historic overview of scientific research of these genera and the prospect for further research. Citation: Bhunjun CS, Chen YJ, Phukhamsakda C, Boekhout T, Groenewald JZ, McKenzie EHC, Francisco EC, Frisvad JC, Groenewald M, Hurdeal VG, Luangsa-ard J, Perrone G, Visagie CM, Bai FY, Błaszkowski J, Braun U, de Souza FA, de Queiroz MB, Dutta AK, Gonkhom D, Goto BT, Guarnaccia V, Hagen F, Houbraken J, Lachance MA, Li JJ, Luo KY, Magurno F, Mongkolsamrit S, Robert V, Roy N, Tibpromma S, Wanasinghe DN, Wang DQ, Wei DP, Zhao CL, Aiphuk W, Ajayi-Oyetunde O, Arantes TD, Araujo JC, Begerow D, Bakhshi M, Barbosa RN, Behrens FH, Bensch K, Bezerra JDP, Bilański P, Bradley CA, Bubner B, Burgess TI, Buyck B, Čadež N, Cai L, Calaça FJS, Campbell LJ, Chaverri P, Chen YY, Chethana KWT, Coetzee B, Costa MM, Chen Q, Custódio FA, Dai YC, Damm U, de Azevedo Santiago ALCM, De Miccolis Angelini RM, Dijksterhuis J, Dissanayake AJ, Doilom M, Dong W, Alvarez-Duarte E, Fischer M, Gajanayake AJ, Gené J, Gomdola D, Gomes AAM, Hausner G, He MQ, Hou L, Iturrieta-González I, Jami F, Jankowiak R, Jayawardena RS, Kandemir H, Kiss L, Kobmoo N, Kowalski T, Landi L, Lin CG, Liu JK, Liu XB, Loizides M, Luangharn T, Maharachchikumbura SSN, Makhathini Mkhwanazi GJ, Manawasinghe IS, Marin-Felix Y, McTaggart AR, Moreau PA, Morozova OV, Mostert L, Osiewacz HD, Pem D, Phookamsak R, Pollastro S, Pordel A, Poyntner C, Phillips AJL, Phonemany M, Promputtha I, Rathnayaka AR, Rodrigues AM, Romanazzi G, Rothmann L, Salgado-Salazar C, Sandoval-Denis M, Saupe SJ, Scholler M, Scott P, Shivas RG, Silar P, Souza-Motta CM, Silva-Filho AGS, Spies CFJ, Stchigel AM, Sterflinger K, Summerbell RC, Svetasheva TY, Takamatsu S, Theelen B, Theodoro RC, Thines M, Thongklang N, Torres R, Turchetti B, van den Brule T, Wang XW, Wartchow F, Welti S, Wijesinghe SN, Wu F, Xu R, Yang ZL, Yilmaz N, Yurkov A, Zhao L, Zhao RL, Zhou N, Hyde KD, Crous PW (2024). What are the 100 most cited fungal genera? Studies in Mycology 108: 1-411. doi: 10.3114/sim.2024.108.01.
Collapse
Affiliation(s)
- C.S. Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Y.J. Chen
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - C. Phukhamsakda
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - T. Boekhout
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- The Yeasts Foundation, Amsterdam, the Netherlands
| | - J.Z. Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - E.H.C. McKenzie
- Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand
| | - E.C. Francisco
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Laboratório Especial de Micologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J.C. Frisvad
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - V. G. Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Luangsa-ard
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - G. Perrone
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Amendola 122/O, 70126 Bari, Italy
| | - C.M. Visagie
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - F.Y. Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - J. Błaszkowski
- Laboratory of Plant Protection, Department of Shaping of Environment, West Pomeranian University of Technology in Szczecin, Słowackiego 17, PL-71434 Szczecin, Poland
| | - U. Braun
- Martin Luther University, Institute of Biology, Department of Geobotany and Botanical Garden, Neuwerk 21, 06099 Halle (Saale), Germany
| | - F.A. de Souza
- Núcleo de Biologia Aplicada, Embrapa Milho e Sorgo, Empresa Brasileira de Pesquisa Agropecuária, Rodovia MG 424 km 45, 35701–970, Sete Lagoas, MG, Brazil
| | - M.B. de Queiroz
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - A.K. Dutta
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - D. Gonkhom
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B.T. Goto
- Programa de Pós-graduação em Sistemática e Evolução, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal-RN, 59078-970, Brazil
| | - V. Guarnaccia
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Largo Braccini 2, 10095 Grugliasco, TO, Italy
| | - F. Hagen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - M.A. Lachance
- Department of Biology, University of Western Ontario London, Ontario, Canada N6A 5B7
| | - J.J. Li
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - K.Y. Luo
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - F. Magurno
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland
| | - S. Mongkolsamrit
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - V. Robert
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - N. Roy
- Molecular & Applied Mycology Laboratory, Department of Botany, Gauhati University, Gopinath Bordoloi Nagar, Jalukbari, Guwahati - 781014, Assam, India
| | - S. Tibpromma
- Center for Yunnan Plateau Biological Resources Protection and Utilization, College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan 655011, P.R. China
| | - D.N. Wanasinghe
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - D.Q. Wang
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - D.P. Wei
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| | - C.L. Zhao
- College of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, P.R. China
| | - W. Aiphuk
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - O. Ajayi-Oyetunde
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
| | - T.D. Arantes
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - J.C. Araujo
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
| | - D. Begerow
- Organismic Botany and Mycology, Institute of Plant Sciences and Microbiology, Ohnhorststraße 18, 22609 Hamburg, Germany
| | - M. Bakhshi
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, UK
| | - R.N. Barbosa
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - F.H. Behrens
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - K. Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - J.D.P. Bezerra
- Laboratório de Micologia, Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 74605-050, Goiânia, GO, Brazil
| | - P. Bilański
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - C.A. Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445, USA
| | - B. Bubner
- Johan Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Forstgenetik, Eberswalder Chaussee 3a, 15377 Waldsieversdorf, Germany
| | - T.I. Burgess
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
| | - B. Buyck
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d’Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier, CP 39, 75231, Paris cedex 05, France
| | - N. Čadež
- University of Ljubljana, Biotechnical Faculty, Food Science and Technology Department Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - L. Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.J.S. Calaça
- Mykocosmos - Mycology and Science Communication, Rua JP 11 Qd. 18 Lote 13, Jd. Primavera 1ª etapa, Post Code 75.090-260, Anápolis, Goiás, Brazil
- Secretaria de Estado da Educação de Goiás (SEDUC/ GO), Quinta Avenida, Quadra 71, número 212, Setor Leste Vila Nova, Goiânia, Goiás, 74643-030, Brazil
- Laboratório de Pesquisa em Ensino de Ciências (LabPEC), Centro de Pesquisas e Educação Científica, Universidade Estadual de Goiás, Campus Central (CEPEC/UEG), Anápolis, GO, 75132-903, Brazil
| | - L.J. Campbell
- School of Veterinary Medicine, University of Wisconsin - Madison, Madison, Wisconsin, USA
| | - P. Chaverri
- Centro de Investigaciones en Productos Naturales (CIPRONA) and Escuela de Biología, Universidad de Costa Rica, 11501-2060, San José, Costa Rica
- Department of Natural Sciences, Bowie State University, Bowie, Maryland, U.S.A
| | - Y.Y. Chen
- Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - K.W.T. Chethana
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - B. Coetzee
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- School for Data Sciences and Computational Thinking, University of Stellenbosch, South Africa
| | - M.M. Costa
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - Q. Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F.A. Custódio
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa-MG, Brazil
| | - Y.C. Dai
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - U. Damm
- Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany
| | - A.L.C.M.A. Santiago
- Post-graduate course in the Biology of Fungi, Department of Mycology, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, 50740-465, Recife, PE, Brazil
| | | | - J. Dijksterhuis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - A.J. Dissanayake
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - M. Doilom
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - W. Dong
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - E. Álvarez-Duarte
- Mycology Unit, Microbiology and Mycology Program, Biomedical Sciences Institute, University of Chile, Chile
| | - M. Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Geilweilerhof, D-76833 Siebeldingen, Germany
| | - A.J. Gajanayake
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - J. Gené
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - D. Gomdola
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.A.M. Gomes
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife-PE, Brazil
| | - G. Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 5N6
| | - M.Q. He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - L. Hou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, 100094, China
| | - I. Iturrieta-González
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
- Department of Preclinic Sciences, Medicine Faculty, Laboratory of Infectology and Clinical Immunology, Center of Excellence in Translational Medicine-Scientific and Technological Nucleus (CEMT-BIOREN), Universidad de La Frontera, Temuco 4810296, Chile
| | - F. Jami
- Plant Health and Protection, Agricultural Research Council, Pretoria, South Africa
| | - R. Jankowiak
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - R.S. Jayawardena
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, South Korea
| | - H. Kandemir
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - L. Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
- Centre for Research and Development, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - N. Kobmoo
- BIOTEC, National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani, 12120, Thailand
| | - T. Kowalski
- Department of Forest Ecosystems Protection, Faculty of Forestry, University of Agriculture in Krakow, Al. 29 Listopada 46, 31-425 Krakow, Poland
| | - L. Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - C.G. Lin
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - J.K. Liu
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - X.B. Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
- Synthetic and Systems Biology Unit, Institute of Biochemistry, HUN-REN Biological Research Center, Temesvári krt. 62, Szeged H-6726, Hungary
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | | | - T. Luangharn
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - S.S.N. Maharachchikumbura
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - G.J. Makhathini Mkhwanazi
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - I.S. Manawasinghe
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
| | - Y. Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - A.R. McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park 4102, Queensland, Australia
| | - P.A. Moreau
- Univ. Lille, ULR 4515 - LGCgE, Laboratoire de Génie Civil et géo-Environnement, F-59000 Lille, France
| | - O.V. Morozova
- Komarov Botanical Institute of the Russian Academy of Sciences, 2, Prof. Popov Str., 197376 Saint Petersburg, Russia
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - L. Mostert
- Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - H.D. Osiewacz
- Faculty for Biosciences, Institute for Molecular Biosciences, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt/Main, Germany
| | - D. Pem
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - R. Phookamsak
- Center for Mountain Futures, Kunming Institute of Botany, Honghe 654400, Yunnan, China
| | - S. Pollastro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - A. Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - C. Poyntner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - A.J.L. Phillips
- Faculdade de Ciências, Biosystems and Integrative Sciences Institute (BioISI), Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - M. Phonemany
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - I. Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - A.R. Rathnayaka
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - A.M. Rodrigues
- Laboratory of Emerging Fungal Pathogens, Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, 04023062, Brazil
| | - G. Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Rothmann
- Plant Pathology, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - C. Salgado-Salazar
- Mycology and Nematology Genetic Diversity and Biology Laboratory, U.S. Department of Agriculture, Agriculture Research Service (USDA-ARS), 10300 Baltimore Avenue, Beltsville MD, 20705, USA
| | - M. Sandoval-Denis
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - S.J. Saupe
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095 CNRS Université de Bordeaux, 1 rue Camille Saint Saëns, 33077 Bordeaux cedex, France
| | - M. Scholler
- Staatliches Museum für Naturkunde Karlsruhe, Erbprinzenstraße 13, 76133 Karlsruhe, Germany
| | - P. Scott
- Harry Butler Institute, Murdoch University, Murdoch, 6150, Australia
- Sustainability and Biosecurity, Department of Primary Industries and Regional Development, Perth WA 6000, Australia
| | - R.G. Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, QLD 4350 Toowoomba, Australia
| | - P. Silar
- Laboratoire Interdisciplinaire des Energies de Demain, Université de Paris Cité, 75205 Paris Cedex, France
| | - A.G.S. Silva-Filho
- IFungiLab, Departamento de Ciências e Matemática (DCM), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, BraziI
| | - C.M. Souza-Motta
- Micoteca URM-Department of Mycology Prof. Chaves Batista, Federal University of Pernambuco, Av. Prof. Moraes Rego, s/n, Center for Biosciences, University City, Recife, Pernambuco, Zip Code: 50670-901, Brazil
| | - C.F.J. Spies
- Agricultural Research Council - Plant Health and Protection, Private Bag X5017, Stellenbosch, 7599, South Africa
| | - A.M. Stchigel
- Unitat de Micologia i Microbiologia Ambiental, Facultat de Medicina i Ciències de la Salut & IURESCAT, Universitat Rovira i Virgili (URV), Reus, Catalonia Spain
| | - K. Sterflinger
- Institute of Natural Sciences and Technology in the Arts (INTK), Academy of Fine Arts Vienna, Augasse 2–6, 1090, Vienna, Austria
| | - R.C. Summerbell
- Sporometrics, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - T.Y. Svetasheva
- Tula State Lev Tolstoy Pedagogical University, 125, Lenin av., 300026 Tula, Russia
| | - S. Takamatsu
- Mie University, Graduate School, Department of Bioresources, 1577 Kurima-Machiya, Tsu 514-8507, Japan
| | - B. Theelen
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.C. Theodoro
- Laboratório de Micologia Médica, Instituto de Medicina Tropical do RN, Universidade Federal do Rio Grande do Norte, 59078-900, Natal, RN, Brazil
| | - M. Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt Am Main, Germany
| | - N. Thongklang
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - R. Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech de Lleida, Parc de Gardeny, 25003, Lleida, Catalonia, Spain
| | - B. Turchetti
- Department of Agricultural, Food and Environmental Sciences and DBVPG Industrial Yeasts Collection, University of Perugia, Italy
| | - T. van den Brule
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- TIFN, P.O. Box 557, 6700 AN Wageningen, the Netherlands
| | - X.W. Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - F. Wartchow
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, Paraiba, João Pessoa, Brazil
| | - S. Welti
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| | - S.N. Wijesinghe
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand
| | - F. Wu
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
| | - R. Xu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
- Internationally Cooperative Research Center of China for New Germplasm Breeding of Edible Mushroom, Jilin Agricultural University, Changchun 130118, China
| | - Z.L. Yang
- Syngenta Crop Protection, 410 S Swing Rd, Greensboro, NC. 27409, USA
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - N. Yilmaz
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - A. Yurkov
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - L. Zhao
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
| | - R.L. Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - N. Zhou
- Department of Biological Sciences and Biotechnology, Botswana University of Science and Technology, Private Bag, 16, Palapye, Botswana
| | - K.D. Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Innovative Institute for Plant Health/Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, P.R. China
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - P.W. Crous
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, Utrecht, 3584 CT, The Netherlands
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
- Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht
| |
Collapse
|
9
|
Pfütze S, Charria-Girón E, Schulzke E, Toshe R, Khonsanit A, Franke R, Surup F, Brönstrup M, Stadler M. Depicting the Chemical Diversity of Bioactive Meroterpenoids Produced by the Largest Organism on Earth. Angew Chem Int Ed Engl 2024; 63:e202318505. [PMID: 38390787 DOI: 10.1002/anie.202318505] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
In this investigation, we explored the diversity of melleolide-type meroterpenoids produced by Armillaria ostoyae, one of the largest and oldest organisms on Earth, using extracts from liquid and solid fermentation media. The study unveiled three unprecedented dimeric bismelleolides and three novel fatty-acid-substituted congeners, along with 11 new and 21 known derivatives. The structures were elucidated by 1D and 2D NMR spectroscopy and HRESI-MS, and ROESY spectral analysis for relative configurations. Absolute configurations were determined from crystal structures and through ECD spectra comparison. A compound library of melleolide-type meroterpenoids facilitated metabolomics-wide associations, revealing production patterns under different culture conditions. The library enabled assessments of antimicrobial and cytotoxic activities, revealing that the Δ2,4 double bond is not crucial for antifungal activity. Cytotoxicity was linked to the presence of an aldehyde at C1, but lost with hydroxylation at C13. Chemoinformatic analyses demonstrated the intricate interplay of chemical modifications on biological properties. This study marks the first systematic exploration of Armillaria spp. meroterpenoid diversity by MS-based untargeted metabolomics, offering insight into structure-activity relationships through innovative chemoinformatics.
Collapse
Affiliation(s)
- Sebastian Pfütze
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Esther Schulzke
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Rita Toshe
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Pharmaceutical Biology Pharm. Biotechnology, Universität des Saarlandes Campus C2 3, 66123, Saarbrücken, Germany
| | - Artit Khonsanit
- BIOTEC, National Science and Technology Development, Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Raimo Franke
- Department Chemical Biology, Helmholtz Centre for Infection Research (HZI), and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| | - Mark Brönstrup
- Department Chemical Biology, Helmholtz Centre for Infection Research (HZI), and German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106, Braunschweig, Germany
| |
Collapse
|
10
|
Wang HY, Li X, Dong CB, Zhang YW, Chen WH, Liang JD, Han YF. Two new species of Sordariomycetes (Chaetomiaceae and Nectriaceae) from China. MycoKeys 2024; 102:301-315. [PMID: 38495535 PMCID: PMC10940860 DOI: 10.3897/mycokeys.102.114480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/11/2023] [Indexed: 03/19/2024] Open
Abstract
Rich and diverse fungal species occur in different habitats on the earth. Many new taxa are being reported and described in increasing numbers with the advent of molecular phylogenetics. However, there are still a number of unknown fungi that have not yet been discovered and described. During a survey of fungal diversity in different habitats in China, we identified and proposed two new species, based on the morphology and multi-gene phylogenetic analyses. Herein, we report the descriptions, illustrations and molecular phylogeny of the two new species, Bisifusariumkeratinophilumsp. nov. and Ovatosporasinensissp. nov.
Collapse
Affiliation(s)
- Hai-Yan Wang
- Institute of Fungus Resources, Department of Ecology, College of Life Science, Guizhou University, Guiyang 550025 Guizhou, ChinaGuizhou UniversityGuiyangChina
| | - Xin Li
- Institute of Fungus Resources, Department of Ecology, College of Life Science, Guizhou University, Guiyang 550025 Guizhou, ChinaGuizhou UniversityGuiyangChina
| | - Chun-Bo Dong
- Institute of Fungus Resources, Department of Ecology, College of Life Science, Guizhou University, Guiyang 550025 Guizhou, ChinaGuizhou UniversityGuiyangChina
| | - Yan-Wei Zhang
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, ChinaGuizhou Education UniversityGuiyangChina
| | - Wan-Hao Chen
- Center for Mycomedicine Research, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, ChinaGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Jian-Dong Liang
- Center for Mycomedicine Research, Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, ChinaGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yan-Feng Han
- Institute of Fungus Resources, Department of Ecology, College of Life Science, Guizhou University, Guiyang 550025 Guizhou, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
11
|
Duarte I, Rodrigues ML. Funding for research on cryptococcal disease: an analysis based on the G-finder report. IMA Fungus 2024; 15:4. [PMID: 38429837 PMCID: PMC10908028 DOI: 10.1186/s43008-023-00133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/13/2023] [Indexed: 03/03/2024] Open
Abstract
Members of the genus Cryptococcus are the causative agents of cryptococcal meningitis, a disease mainly associated with HIV-induced immunosuppression. Patients with cryptococcal meningitis are at a serious risk of death. Most patients suffering from cryptococcosis belong to neglected populations. With reduced support for research, new therapies are unlikely to emerge. In this essay, we used the Policy Cures/G-finder platform as a reference database for funding research on cryptococcal disease. Funding for cryptococcal research started being tracked by G-finder in 2013 and has continued to appear in the annual reports ever since. In total, 15 institutions were reported as major funders for research on cryptococcal disease over the years. The US National Institutes of Health (NIH) was the main funder, followed by the UK's Wellcome Trust. The annual analysis suggested slow yearly growth in funding from 2013 to 2021. The development of new tools to prevent and fight cryptococcal disease is urgent but requires improved funding.
Collapse
Affiliation(s)
- Iraine Duarte
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Professor Algacyr Munhoz Mader 3775- CIC, Curitiba, PR, 81350-010, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Rua Professor Algacyr Munhoz Mader 3775- CIC, Curitiba, PR, 81350-010, Brazil.
- Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro. Cidade Universitária, Centro de Ciências da Saúde., Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
12
|
Toshe R, Charria-Girón E, Khonsanit A, Luangsa-ard JJ, Khalid SJ, Schrey H, Ebada SS, Stadler M. Bioprospection of Tenellins Produced by the Entomopathogenic Fungus Beauveria neobassiana. J Fungi (Basel) 2024; 10:69. [PMID: 38248978 PMCID: PMC10821025 DOI: 10.3390/jof10010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Fungi are known as prolific producers of bioactive secondary metabolites with applications across various fields, including infectious diseases, as well as in biological control. However, some of the well-known species are still underexplored. Our current study evaluated the production of secondary metabolites by the entomopathogenic fungus Beauveria neobassiana from Thailand. The fermentation of this fungus in a liquid medium, followed by preparative high-performance liquid chromatography (HPLC) purification, resulted in the isolation of a new tenellin congener, namely pretenellin C (1), together with five known derivatives (2-6). Their chemical structures were elucidated by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy in combination with high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). We evaluated the antimicrobial and cytotoxic activities from all isolated compounds, as well as their inhibitory properties on biofilm formation by Staphylococcus aureus. Generally, tenellins displayed varying antibiofilm and cytotoxic effects, allowing us to propose preliminary structure-activity relationships (SARs). Among the tested compounds, prototenellin D (2) exhibited the most prominent antibiofilm activity, while its 2-pyridone congener, tenellin (4), demonstrated potent cytotoxic activity against all tested cell lines. Given the fact that the biological activities of the tenellins have so far been neglected in the past, our study could provide a good starting point to establish more concise structure-activity relationships in the near future.
Collapse
Affiliation(s)
- Rita Toshe
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; (R.T.); (E.C.-G.); (S.J.K.); (H.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Esteban Charria-Girón
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; (R.T.); (E.C.-G.); (S.J.K.); (H.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Artit Khonsanit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (A.K.); (J.J.L.-a.)
| | - Janet Jennifer Luangsa-ard
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (A.K.); (J.J.L.-a.)
| | - Syeda Javariya Khalid
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; (R.T.); (E.C.-G.); (S.J.K.); (H.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; (R.T.); (E.C.-G.); (S.J.K.); (H.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Sherif S. Ebada
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; (R.T.); (E.C.-G.); (S.J.K.); (H.S.)
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany; (R.T.); (E.C.-G.); (S.J.K.); (H.S.)
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
13
|
Sum W, Ebada SS, Kirchenwitz M, Wanga L, Decock C, Stradal TEB, Matasyoh JC, Mándi A, Kurtán T, Stadler M. Neurite Outgrowth-Inducing Drimane-Type Sesquiterpenoids Isolated from Cultures of the Polypore Abundisporus violaceus MUCL 56355. JOURNAL OF NATURAL PRODUCTS 2023; 86:2457-2467. [PMID: 37910033 PMCID: PMC10683085 DOI: 10.1021/acs.jnatprod.3c00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 11/03/2023]
Abstract
Abundisporin A (1), together with seven previously undescribed drimane sesquiterpenes named abundisporins B-H (2-8), were isolated from a polypore, Abundisporus violaceus MUCL 56355 (Polyporaceae), collected in Kenya. Chemical structures of the isolated compounds were elucidated based on exhaustive 1D and 2D NMR spectroscopic measurements and supported by HRESIMS data. The absolute configurations of the isolated compounds were determined by using Mosher's method for 1-4 and TDDFT-ECD calculations for 4 and 5-8. None of the isolated compounds exhibited significant activities in either antimicrobial or cytotoxicity assays. Notably, all of the tested compounds demonstrated neurotrophic effects, with 1 and 6 significantly increasing outgrowth of neurites when treated with 5 ng/mL NGF.
Collapse
Affiliation(s)
- Winnie
Chemutai Sum
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| | - Sherif S. Ebada
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Department
of Pharmacognosy, Faculty of Pharmacy, Ain
Shams University, 11566 Cairo, Egypt
| | - Marco Kirchenwitz
- Department
of Cell Biology, Helmholtz Centre for Infection
Research, Inhoffenstrasse
7, 38124 Braunschweig, Germany
| | - Lucy Wanga
- Department
of Biochemistry, Egerton University, P.O. Box 536, 20115, Njoro, Kenya
| | - Cony Decock
- Mycothéque
de l’ Universite Catholique de Louvain (BCCM/MUCL), Place Croix du Sud 3, B-1348 Louvain-la-Neuve, Belgium
| | - Theresia E. B. Stradal
- Department
of Cell Biology, Helmholtz Centre for Infection
Research, Inhoffenstrasse
7, 38124 Braunschweig, Germany
| | | | - Attila Mándi
- Department
of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department
of Organic Chemistry, University of Debrecen, P.O. Box 400, 4002 Debrecen, Hungary
| | - Marc Stadler
- Department
of Microbial Drugs, Helmholtz Centre for
Infection Research GmbH (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| |
Collapse
|
14
|
Harms K, Paomephan P, Boonpratuang T, Choeyklin R, Boonchird C, Surup F. ent-Clavilactone J and Its Quinone Derivative, Meroterpenoids from the Fungus Resupinatus sp. JOURNAL OF NATURAL PRODUCTS 2023; 86:2580-2584. [PMID: 37931226 PMCID: PMC10683060 DOI: 10.1021/acs.jnatprod.3c00174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Metabolites 1 and 2, isolated from cultures of the basidiomycete Resupinatus sp. BCC84615, collected in a tropical forest in northeastern Thailand, showed weak antibiotic activity against Bacillus subtilis and Staphylococcus aureus and cytotoxicity against cancer cell lines. Their planar structures were elucidated by high-resolution electrospray ionization mass spectrometry and NMR spectroscopy as clavilactone J, known from the basidiomycete Ampulloclitocybe clavipes, and its new 1,4-benzoquinone derivative. A detailed analysis of the ROESY correlations in 1 confirmed the recent revision of the relative configuration of clavilactone J. However, specific rotation and Cotton effects observed by electronic circular dichroism were contrary to those of the clavilactones; thus, we assigned a rare antipodal absolute configuration.
Collapse
Affiliation(s)
- Karen Harms
- Department
Microbial Drugs, Helmholtz Centre for Infection
Research, and German Centre for Infection Research
(DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Pathompong Paomephan
- Department
Microbial Drugs, Helmholtz Centre for Infection
Research, and German Centre for Infection Research
(DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department
of Biotechnology, Faculty of Science, Mahidol
University, 272 Thanon 4 Rama VI, Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand
| | - Thitiya Boonpratuang
- National
Biobank of Thailand (NBT), National Science
and Technology Development Agency (NSTDA), 144 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Rattaket Choeyklin
- National
Biobank of Thailand (NBT), National Science
and Technology Development Agency (NSTDA), 144 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
- Biodiversity-Based
Economy Development Office (Public Organization), The Government Complex Commemorating
His Majesty the King’s 80th Birthday Anniversary 5 December
2007 Ratthaprasasanabhakdi Building, ninth Floor, Chaengwattana Road,
Thung Song Hong, Lak Si, Bangkok 10210, Thailand
| | - Chuenchit Boonchird
- Department
of Biotechnology, Faculty of Science, Mahidol
University, 272 Thanon 4 Rama VI, Thung Phaya Thai, Ratchathewi, Bangkok 10400, Thailand
| | - Frank Surup
- Department
Microbial Drugs, Helmholtz Centre for Infection
Research, and German Centre for Infection Research
(DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
15
|
Mountessou BYG, Anoumedem ÉGM, Kemkuignou BM, Marin-Felix Y, Surup F, Stadler M, Kouam SF. Secondary metabolites of Diaporthe cameroonensis, isolated from the Cameroonian medicinal plant Trema guineensis. Beilstein J Org Chem 2023; 19:1555-1561. [PMID: 37915561 PMCID: PMC10616697 DOI: 10.3762/bjoc.19.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
From a fresh root of Trema guineensis (Ulmaceae), endophytic fungi were isolated, among which a taxon belonging to the new species Diaporthe cameroonensis. This strain was fermented in shake flask batch cultures and the broth was extracted with ethyl acetate. From the crude extract, a hemiketal polyketide 1, and an acetylated alternariol 2 were isolated, along with fifteen known secondary metabolites. Their structures were established by extensive NMR spectroscopy and mass spectrometry analyses, as well as by comparison with literature data of their analogs.
Collapse
Affiliation(s)
- Bel Youssouf G Mountessou
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Élodie Gisèle M Anoumedem
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany,
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany,
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Frank Surup
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany,
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI) and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany,
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Simeon Fogue Kouam
- Department of Chemistry, Higher Teacher Training College, University of Yaoundé I, P.O. Box 47, Yaoundé, Cameroon
| |
Collapse
|
16
|
Yu G, Ge X, Wang Y, Mo X, Yu H, Tan L, Yang S. Discovery of Novel Terpenoids from the Basidiomycete Pleurotus ostreatus through Genome Mining and Coculture Optimization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37441728 DOI: 10.1021/acs.jafc.3c03276] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
In our previous work, postredienes A-C, three unusual linear sesterterpenes with high antifungal activities, were isolated from Pleurotus ostreatus SY10 when cocultured with Trametes robiniophila SY636. However, their titers were low, and exploration of newly biosynthesized trace analogues is required. Herein, genome mining analysis predicted that 17 gene clusters are involved in terpenoid biosynthesis in P. ostreatus. Thus, coculture conditions for strains SY10 and SY636 were optimized using a single-factor test and Box-Behnken design. As a result, the titers of postredienes A-C were increased by over 2.5-fold, reaching 1.28 to 8.40 mg/L. Moreover, five new terpenoids, named postredienes D-H (1-5), were successfully isolated. Compound 1 exhibited activities against the human pathogenic fungi Candida albicans and Cryptococcus neoformans comparable to those of amphotericin B. Compound 2 represents a novel sesterterpene with a five-membered ring at C-7. The absolute configurations of 1-5 were elucidated by making the methoxyphenylacetic acid esters and acetonide derivatives, combined with ECD and NMR calculation. Two potential gene clusters and relevant biosynthetic pathways for 1-5 were subsequently proposed based on real-time reverse transcription-quantitative PCR (RT-qPCR) analysis. The current study provides new insights into the research of terpenoid biosynthesis genes in P. ostreatus and other basidiomycetes.
Collapse
Affiliation(s)
- Guihong Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province 266109, People's Republic of China
| | - Xiaoxuan Ge
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province 266109, People's Republic of China
| | - Yu Wang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province 266109, People's Republic of China
| | - Xuhua Mo
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province 266109, People's Republic of China
| | - Hao Yu
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province 266109, People's Republic of China
| | - Lingling Tan
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province 266109, People's Republic of China
| | - Song Yang
- School of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, and Qingdao International Center on Microbes Utilizing Biogas, Qingdao Agricultural University, Qingdao, Shandong Province 266109, People's Republic of China
| |
Collapse
|
17
|
Zhang ZY, Li X, Chen WH, Liang JD, Han YF. Culturable fungi from urban soils in China II, with the description of 18 novel species in Ascomycota (Dothideomycetes, Eurotiomycetes, Leotiomycetes and Sordariomycetes). MycoKeys 2023; 98:167-220. [PMID: 37425100 PMCID: PMC10326621 DOI: 10.3897/mycokeys.98.102816] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
As China's urbanisation continues to advance, more people are choosing to live in cities. However, this trend has a significant impact on the natural ecosystem. For instance, the accumulation of keratin-rich substrates in urban habitats has led to an increase in keratinophilic microbes. Despite this, there is still a limited amount of research on the prevalence of keratinophilic fungi in urban areas. Fortunately, our group has conducted in-depth investigations into this topic since 2015. Through our research, we have discovered a significant amount of keratinophilic fungi in soil samples collected from various urban areas in China. In this study, we have identified and characterised 18 new species through the integration of morphological and phylogenetic analyses. These findings reveal the presence of numerous unexplored fungal taxa in urban habitats, emphasising the need for further taxonomic research in urban China.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Xin Li
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| | - Wan-Hao Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, ChinaGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Jian-Dong Liang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, ChinaGuizhou University of Traditional Chinese MedicineGuiyangChina
| | - Yan-Feng Han
- Institute of Fungus Resources, College of Life Sciences, Guizhou University, Guiyang 550025, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
18
|
Zhang ZY, Feng Y, Tong SQ, Ding CY, Tao G, Han YF. Morphological and phylogenetic characterisation of two new soil-borne fungal taxa belonging to Clavicipitaceae (Hypocreales, Ascomycota). MycoKeys 2023; 98:113-132. [PMID: 37324546 PMCID: PMC10267719 DOI: 10.3897/mycokeys.98.106240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/27/2023] [Indexed: 06/17/2023] Open
Abstract
The fungal taxa belonging to the Clavicipitaceae (Hypocreales, Ascomycota) are widely distributed and include diverse saprophytic, symbiotic and pathogenic species that are associated with soils, insects, plants, fungi and invertebrates. In this study, we identified two new fungal taxa belonging to the family Clavicipitaceae that were isolated from soils collected in China. Morphological characterisation and phylogenetic analyses showed that the two species belong to Pochonia (Pochoniasinensissp. nov.) and a new genus for which we propose Paraneoaraneomycesgen. nov. in Clavicipitaceae.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Yao Feng
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Shuo-Qiu Tong
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Chen-Yu Ding
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 550025, ChinaGuizhou UniversityGuiyangChina
| | - Gang Tao
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, ChinaGuizhou Minzu UniversityGuiyangChina
| | - Yan-Feng Han
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 550025, ChinaGuizhou UniversityGuiyangChina
| |
Collapse
|
19
|
Samaradiwakara NP, de Farias ARG, Tennakoon DS, Aluthmuhandiram JVS, Bhunjun CS, Chethana KWT, Kumla J, Lumyong S. Appendage-Bearing Sordariomycetes from Dipterocarpus alatus Leaf Litter in Thailand. J Fungi (Basel) 2023; 9:625. [PMID: 37367561 DOI: 10.3390/jof9060625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Leaf litter is an essential functional aspect of forest ecosystems, acting as a source of organic matter, a protective layer in forest soils, and a nurturing habitat for micro- and macro-organisms. Through their successional occurrence, litter-inhabiting microfungi play a key role in litter decomposition and nutrient recycling. Despite their importance in terrestrial ecosystems and their abundance and diversity, information on the taxonomy, diversity, and host preference of these decomposer taxa is scarce. This study aims to clarify the taxonomy and phylogeny of four saprobic fungal taxa inhabiting Dipterocarpus alatus leaf litter. Leaf litter samples were collected from Doi Inthanon National Park in Chiang Mai, northern Thailand. Fungal isolates were characterized based on morphology and molecular phylogeny of the nuclear ribosomal DNA (ITS, LSU) and protein-coding genes (tub2, tef1-α, rpb2). One novel saprobic species, Ciliochorella dipterocarpi, and two new host records, Pestalotiopsis dracontomelon and Robillarda australiana, are introduced. The newly described taxa are compared with similar species, and comprehensive descriptions, micrographs, and phylogenetic trees are provided.
Collapse
Affiliation(s)
- Nethmini P Samaradiwakara
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | | | - Danushka S Tennakoon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Janith V S Aluthmuhandiram
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chitrabhanu S Bhunjun
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - K W Thilini Chethana
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| |
Collapse
|
20
|
Charria-Girón E, Stchigel AM, Čmoková A, Kolařík M, Surup F, Marin-Felix Y. Amesia hispanica sp. nov., Producer of the Antifungal Class of Antibiotics Dactylfungins. J Fungi (Basel) 2023; 9:463. [PMID: 37108917 PMCID: PMC10141101 DOI: 10.3390/jof9040463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
During a study of the diversity of soilborne fungi from Spain, a strain belonging to the family Chaetomiaceae (Sordariales) was isolated. The multigene phylogenetic inference using five DNA loci showed that this strain represents an undescribed species of the genus Amesia, herein introduced as A. hispanica sp. nov. Investigation of its secondary metabolome led to the isolation of two new derivatives (2 and 3) of the known antifungal antibiotic dactylfungin A (1), together with the known compound cochliodinol (4). The planar structures of 1-4 were determined by ultrahigh performance liquid chromatography coupled with diode array detection and ion mobility tandem mass spectrometry (UHPLC-DAD-IM-MS/MS) and extensive 1D and 2D nuclear magnetic resonance (NMR) spectroscopy after isolation by HPLC. All isolated secondary metabolites were tested for their antimicrobial and cytotoxic activities. Dactylfungin A (1) showed selective and strong antifungal activity against some of the tested human pathogens (Aspergillus fumigatus and Cryptococcus neoformans). The additional hydroxyl group in 2 resulted in the loss of activity against C. neoformans but still retained the inhibition of As. fumigatus in a lower concentration than that of the respective control, without showing any cytotoxic effects. In contrast, 25″-dehydroxy-dactylfungin A (3) exhibited improved activity against yeasts (Schizosaccharomyces pombe and Rhodotorula glutinis) than 1 and 2, but resulted in the appearance of slight cytotoxicity. The present study exemplifies how even in a well-studied taxonomic group such as the Chaetomiaceae, the investigation of novel taxa still brings chemistry novelty, as demonstrated in this first report of this antibiotic class for chaetomiaceous and sordarialean taxa.
Collapse
Affiliation(s)
- Esteban Charria-Girón
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Alberto Miguel Stchigel
- Mycology Unit, Medical School, Universitat Rovira i Virgili, C/Sant Llorenç 21, 43201 Tarragona, Spain
| | - Adéla Čmoková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Miroslav Kolařík
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Yasmina Marin-Felix
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
21
|
Bhunjun CS, Phukhamsakda C, Hyde KD, McKenzie EHC, Saxena RK, Li Q. Do all fungi have ancestors with endophytic lifestyles? FUNGAL DIVERS 2023. [DOI: 10.1007/s13225-023-00516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
22
|
Pfütze S, Khamsim A, Surup F, Decock C, Matasyoh JC, Stadler M. Calamene-Type Sesqui-, Mero-, and Bis-sesquiterpenoids from Cultures of Heimiomyces sp., a Basidiomycete Collected in Africa. JOURNAL OF NATURAL PRODUCTS 2023; 86:390-397. [PMID: 36779910 PMCID: PMC9972471 DOI: 10.1021/acs.jnatprod.2c01015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 05/27/2023]
Abstract
New meroterpenoids bis-heimiomycins A-D (1-4) and heimiomycins D and E (5 and 6) were isolated from solid rice cultures of Heimiomyces sp., while new calamene-type sesquiterpenoids heimiocalamene A (7) and B (8) were isolated from shake cultures, respectively. Structures of the metabolites were elucidated by 1D and 2D NMR in addition to HRESIMS data. While relative configurations were assigned by ROESY data, absolute configurations were derived from the structurally related, previously described calamenes, which we herein name heimiocalamenes C-E (9-11). A plausible biosynthetic pathway was proposed for 1-6, with a radical reaction connecting their central para-benzoquinone building block to calamene-sesquiterpenoids. Based on the assumption of a common biosynthesis, we reviewed the structure of the known nitrogen-containing derivative 11, calling the validity of the originally proposed structure into question. Subsequently, the structure of 11 was revised by analysis of HMBC and ROESY NMR data. Only heimiomycin D (5) displayed cytotoxic effects against cell line KB3.1.
Collapse
Affiliation(s)
- Sebastian Pfütze
- Department
of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI)
and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| | - Atchara Khamsim
- Department
of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI)
and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| | - Frank Surup
- Department
of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI)
and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| | - Cony Decock
- Mycothèque
de l’Université Catholique de Louvain (BCCM/MUCL), Earth
and Life Institute, Microbiology, B-1348 Louvain-la-Neuve, Belgium
| | - Josphat C. Matasyoh
- Department
of Chemistry, Egerton University, P.O. Box 536, Njoro 20115, Kenya
| | - Marc Stadler
- Department
of Microbial Drugs, Helmholtz Centre for Infection Research GmbH (HZI)
and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstraße 7, 38124 Braunschweig, Germany
- Institute
of Microbiology, Technische Universität
Braunschweig, Spielmannstraße
7, 38106 Braunschweig, Germany
| |
Collapse
|
23
|
Itraconazole-Loaded Ufasomes: Evaluation, Characterization, and Anti-Fungal Activity against Candida albicans. Pharmaceutics 2022; 15:pharmaceutics15010026. [PMID: 36678655 PMCID: PMC9862016 DOI: 10.3390/pharmaceutics15010026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Numerous obstacles challenge the treatment of fungal infections, including the uprising resistance and the low penetration of available drugs. One of the main active agents against fungal infections is itraconazole (ITZ), with activity against a broad spectrum of fungi while having few side effects. The aim of this study was to design ufasomes, oleic acid-based colloidal carriers, that could encapsulate ITZ to improve its penetration power. Employing a 2231 factorial design, the effect of three independent factors (oleic acid amount, cholesterol concentration, and ITZ amount) was investigated and evaluated for the percentage encapsulation efficiency (%EE), particle size (PS), and zeta potential (ZP). Optimization was performed using Design® expert software and the optimized ITZ-loaded ufasomes obtained had %EE of 99.4 ± 0.7%, PS of 190 ± 1 nm, and ZP of -81.6 ± 0.4 mV, with spherical unilamellar morphology and no aggregation. An in vitro microbiological study was conducted to identify the minimum inhibitory concentration of the selected formula against Candida albicans, which was found to be 0.0625 μg/mL. Moreover, the optimized formula reduced the expression of toll-like receptors-4 and pro-inflammatory cytokine IL-1β secretion in the C. albicans-infected fibroblasts, indicating that the proposed ITZ-loaded ufasomes are a promising drug delivery system for ITZ.
Collapse
|
24
|
Suazo P, Viana-Lora A. The Contribution of Mycological Tourism to Well-Being, the Economy and Sustainable Development. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17027. [PMID: 36554907 PMCID: PMC9779319 DOI: 10.3390/ijerph192417027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
This article analyses the scientific production related to tourism and mushrooms. The method used was a bibliometric analysis and a systematic literature review. The main results show that it is a recent area of study that predominates in Spain but that will expand and gain relevance over time. The thematic analysis has made it possible to structure the information according to the economic contribution of this tourist niche, the well-being it brings to residents and tourists, the importance of a sustainable development of the activity, and the promotion and marketing of this new tourism. Supporting mycological tourism will help the development of rural areas and bring physical, mental, social, educational, and nutritional benefits to residents and tourists. This study has allowed us to develop a future research agenda, highlighting the importance of further research to harness the benefits of mycological tourism while at the same time transferring that knowledge to stakeholders, which will be necessary.
Collapse
Affiliation(s)
- Pablo Suazo
- Faculty of Administration and Economics, Tarapacá University, Iquique 1100000, Chile
| | - Alba Viana-Lora
- Department of Geography, Rovira i Virgili University, 43480 Vila-seca, Spain
| |
Collapse
|
25
|
Hassan K, Matio Kemkuignou B, Kirchenwitz M, Wittstein K, Rascher-Albaghdadi M, Chepkirui C, Matasyoh JC, Decock C, Köster RW, Stradal TEB, Stadler M. Neurotrophic and Immunomodulatory Lanostane Triterpenoids from Wood-Inhabiting Basidiomycota. Int J Mol Sci 2022; 23:13593. [PMID: 36362380 PMCID: PMC9657622 DOI: 10.3390/ijms232113593] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 09/05/2023] Open
Abstract
Neurotrophins such as nerve growth factor (ngf) and brain-derived neurotrophic factor (bdnf) play important roles in the central nervous system. They are potential therapeutic drugs for the treatment of neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. In this study, we investigated the neurotrophic properties of triterpenes isolated from fruiting bodies of Laetiporus sulphureus and a mycelial culture of Antrodia sp. MUCL 56049. The structures of the isolated compounds were elucidated based on nuclear magnetic resonance (NMR) spectroscopy in combination with high-resolution electrospray mass spectrometry (HR-ESIMS). The secondary metabolites were tested for neurotrophin (ngf and bdnf) expression levels on human astrocytoma 1321N1 cells. Neurite outgrowth activity using rat pheochromocytoma (PC-12) cells was also determined. Twelve triterpenoids were isolated, of which several potently stimulated the expression of neurotrophic factors, namely, ngf (sulphurenic acid, 15α-dehydroxytrametenolic acid, fomefficinic acid D, and 16α-hydroxyeburicoic acid) and bdnf (sulphurenic acid and 15α-dehydroxytrametenolic acid), respectively. The triterpenes also potentiated ngf-induced neurite outgrowth in PC-12 cells. This is, to the best of our knowledge, the first report on the compound class of lanostanes in direct relation to bdnf and ngf enhancement. These compounds are widespread in medicinal mushrooms; hence, they appear promising as a starting point for the development of drugs and mycopharmaceuticals to combat neurodegenerative diseases. Interestingly, they do not show any pronounced cytotoxicity and may, therefore, be better suited for therapy than many other neurotrophic compounds that were previously reported.
Collapse
Affiliation(s)
- Khadija Hassan
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Blondelle Matio Kemkuignou
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kathrin Wittstein
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Monique Rascher-Albaghdadi
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Clara Chepkirui
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Josphat C. Matasyoh
- Department of Chemistry, Egerton University, P.O. Box 536, Njoro 20115, Kenya
| | - Cony Decock
- Mycothéque de l’Université Catholique de Louvain (BCCM/MUCL), Place Croix du Sud 3, B-1348 Louvain-la-Neuve, Belgium
| | - Reinhard W. Köster
- Department of Cellular and Molecular Neurobiology, Zoological Institute, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
26
|
Aiduang W, Kumla J, Srinuanpan S, Thamjaree W, Lumyong S, Suwannarach N. Mechanical, Physical, and Chemical Properties of Mycelium-Based Composites Produced from Various Lignocellulosic Residues and Fungal Species. J Fungi (Basel) 2022; 8:1125. [PMID: 36354892 PMCID: PMC9697540 DOI: 10.3390/jof8111125] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/17/2022] Open
Abstract
Mycelium-based composites (MBCs) are characterized as biodegradable materials derived from fungal species. These composites can be employed across a range of industrial applications that involve the manufacturing of packaging materials as well as the manufacturing of buildings, furniture, and various other household items. However, different fungal species and substrates can directly affect the functional properties of MBCs, which ultimately vary their potential to be used in many applications. In this study, the mechanical, physical, and chemical properties of MBCs made from four different fungal species (Ganoderma fornicatum, Ganoderma williamsianum, Lentinus sajor-caju, and Schizophyllum commune) combined with three different types of lignocellulosic residues (sawdust, corn husk, and rice straw) were investigated. The results indicate that differences in both the type of lignocellulosic residues and the fungal species could affect the properties of the obtained MBCs. It was found that the MBCs obtained from sawdust had the highest degree of density. Moreover, MBCs obtained from S. commune with all three types of lignocellulosic residues exhibited the highest shrinkage value. The greatest degree of water absorption was observed in the MBCs obtained from rice straw, followed by those obtained from corn husk and sawdust. Additionally, the thermal degradation ability of the MBCs was observed to be within a range of 200 to 325 °C, which was in accordance with the thermal degradation ability of each type of lignocellulosic residue. The greatest degrees of compressive, flexural, impact, and tensile strength were observed in the MBCs of G. williamsianum and L. sajor-caju. The results indicate that the MBCs made from corn husk, combined with each fungal species, exhibited the highest values of flexural, impact, and tensile strength. Subsequently, an analysis of the chemical properties indicated that the pH value, nitrogen content, and organic matter content of the obtained MBCs were within the following ranges: 4.67−6.12, 1.05−1.37%, and 70.40−86.28%, respectively. The highest degree of electrical conductivity was observed in MBCs obtained from rice straw. Most of the physical and mechanical properties of the obtained MBCs were similar to those of polyimide and polystyrene foam. Therefore, these composites could be used to further develop relevant strategies that may allow manufacturers to effectively replace polyimide and polystyrene foams in the future.
Collapse
Affiliation(s)
- Worawoot Aiduang
- Applied Microbiology (International Program), Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jaturong Kumla
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wandee Thamjaree
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
27
|
Konara UA, Thambugala KM, Hapuarachchi KK. <i>Ganoderma</i> (Ganodermataceae, Polyporales); Historical perspectives, recent advances, and future research in Sri Lanka. STUDIES IN FUNGI 2022. [DOI: 10.48130/sif-2022-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|