1
|
Zhou Z, Li A, Sun K, Guo D, Li T, Lu J, Tonin BSH, Ye Z, Watts DC, Wang T, Fu J. Synthesis of a novel monomer "DDTU-IDI" for the development of low-shrinkage dental resin composites. Dent Mater 2024; 40:608-618. [PMID: 38369405 DOI: 10.1016/j.dental.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
OBJECTIVE The current dental resin composites often suffer from polymerization shrinkage, which can lead to microleakage and potentially result in recurring tooth decay. This study presents the synthesis of a novel monomer, (3,9-diethyl-1,5,7,11-tetraoxaspiro[5,5]undecane-3,9-diyl)bis(methylene) bis((2-(3-(prop-1-en-2-yl)phenyl)propan-2-yl)carbamate) (DDTU-IDI), and evaluates its effect in the formulation of low-shrinkage dental resin composites. METHODS DDTU-IDI was synthesized through a two-step reaction route, with the initial synthesis of the required raw material monomer 3,9-diethyl-3,9-dihydroxymethyl-1,5,7,11-tetraoxaspiro-[5,5] undecane (DDTU). The structures were confirmed using Fourier-transform infrared (FT-IR) spectroscopy and hydrogen nuclear magnetic resonance (1HNMR) spectroscopy. Subsequently, DDTU-IDI was incorporated into Bis-GMA-based composites at varying weight percentages (5, 10, 15, and 20 wt%). The polymerization reaction, degree of conversion, polymerization shrinkage, mechanical properties, physicochemical properties and biocompatibility of the low-shrinkage composites were thoroughly evaluated. Furthermore, the mechanical properties were assessed after a thermal cycling test with 10,000 cycles to determine the stability. RESULTS The addition of DDTU-IDI at 10, 15, and 20 wt% significantly reduced the polymerization volumetric shrinkage of the experimental resin composites, without compromising the degree of conversion, mechanical and physicochemical properties. Remarkably, at a monomer content of 20 wt%, the polymerization shrinkage was reduced to 1.83 ± 0.53%. Composites containing 10, 15, and 20 wt% DDTU-IDI exhibited lower water sorption and higher contact angle. Following thermal cycling, the composites exhibited no significant decrease in mechanical properties, except for the flexural properties. SIGNIFICANCE DDTU-IDI has favorable potential as a component which could produce volume expansion and increase rigidity in the development of low-shrinkage dental resin composites. The development of low-shrinkage composites containing DDTU-IDI appears to be a promising strategy for reducing polymerization shrinkage, thereby potentially enhancing the longevity of dental restorations.
Collapse
Affiliation(s)
- Zixuan Zhou
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Aihua Li
- College of Materials Science and Engineering, Qingdao University, Qingdao 266003, China
| | - Ke Sun
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Di Guo
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Tingting Li
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Jun Lu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Bruna S H Tonin
- Department of Dental Materials and Prosthodontics, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto 14040904, SP, Brazil
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 999077, Hong Kong S.A.R, China
| | - David C Watts
- University of Manchester, School of Medical Sciences, Oxford Road, M13 9PL Manchester, UK
| | - Ting Wang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| | - Jing Fu
- Department of Prosthodontics, The Affiliated Hospital of Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
3
|
Wang Q, Wellinghoff ST, Rawls HR. Investigation of Thermal-Induced Changes in Molecular Order on Photopolymerization and Performance Properties of a Nematic Liquid-Crystal Diacrylate. MATERIALS (BASEL, SWITZERLAND) 2022; 15:4605. [PMID: 35806735 PMCID: PMC9267439 DOI: 10.3390/ma15134605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/05/2023]
Abstract
Polymerization shrinkage and associated stresses are the main reasons for dental restorative failure. We developed a series of liquid crystal diacrylates and dimethacrylates which have markedly low polymerization shrinkage. In order to fully understand the effects of temperature-induced changes of molecular order on the photopolymerization process and performance properties of the generated polymers, the photopolymerization of a difunctional acrylate, 2-t-butyl-1,4-phenylene bis (4-(6-(acryloyloxy)hexyloxy)benzoate), which exists in the nematic liquid crystalline phase at room temperature, was investigated as a function of photopolymerization temperature over the nematic to isotropic range. Morphological studies suggested that a mesogenic phase was immediately formed in the polymer even if polymerization in thin films occurred above the nematic-to-isotropic (N→I) transition temperature of the monomer (Tn-i = 45.8 °C). Dynamic mechanical analysis of 2 × 2 mm cross-section bar samples polymerized at 60 °C showed reduced elastic moduli, increased glass transition temperature and formation of a more crosslinked network, in comparison to polymers formed at lower polymerization temperatures. Fractography analysis showed that polymers generated from the nematic liquid crystalline phase underwent a different fracture pattern in comparison to those generated from the isotropic phase. Volumetric shrinkage (2.2%) found in polymer polymerized from the nematic liquid crystalline phase at room temperature was substantially less than the 6.0% observed in polymer polymerized from an initial isotropic phase at 60 °C, indicating that an organized monomer can greatly contribute to reducing cure shrinkage.
Collapse
Affiliation(s)
- Qian Wang
- Division of Research, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
- Core Facility Center for Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Stephen T. Wellinghoff
- Chemistry and Chemical Engineering Division, Southwest Research Institute, San Antonio, TX 78238, USA;
| | - Henry Ralph Rawls
- Division of Research, Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| |
Collapse
|
4
|
Zhang X, Wang Z, Yao S, Zhou C, Wu J. Development and Dental Applications of Spiro Expanding Monomers as Antishrinkage Additives. ChemistrySelect 2022. [DOI: 10.1002/slct.202201025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoran Zhang
- Department of Prosthodontics School and Hospital of Stomatology, Cheeloo College of Medicine Shandong University Shandong Key Laboratory of Oral Tissue Regeneration Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan 250012 China
| | - Zonghua Wang
- Department of Prosthodontics School and Hospital of Stomatology, Cheeloo College of Medicine Shandong University Shandong Key Laboratory of Oral Tissue Regeneration Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan 250012 China
| | - Shuo Yao
- Department of Prosthodontics School and Hospital of Stomatology, Cheeloo College of Medicine Shandong University Shandong Key Laboratory of Oral Tissue Regeneration Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan 250012 China
| | - Chuanjian Zhou
- Research Institute of Polymer Materials School of Materials Science and Engineering Shandong University Jinan 250061 China
| | - Junling Wu
- Department of Prosthodontics School and Hospital of Stomatology, Cheeloo College of Medicine Shandong University Shandong Key Laboratory of Oral Tissue Regeneration Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan 250012 China
| |
Collapse
|
6
|
Berlanga Duarte ML, Reyna Medina LA, Torres Reyes P, Esparza González SC, Herrera González AM. Dental restorative composites containing methacrylic spiroorthocarbonate monomers as antishrinking matrixes. J Appl Polym Sci 2018. [DOI: 10.1002/app.47114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- María Lydia Berlanga Duarte
- Centro de Investigación en Química Aplicada CIQA Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294 México
| | - Luis Alberto Reyna Medina
- Centro de Investigación en Química Aplicada CIQA Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294 México
| | - Patricia Torres Reyes
- Facultad de Odontología de la Universidad Autónoma de CoahuilaUnidad Saltillo Ave. Dra. Cuquita Cepeda S. N. Col. Adolfo López Mateos, Saltillo, Coahuila C.P 25125 México
| | - Sandra C. Esparza González
- Facultad de Medicina de la Universidad Autónoma de CoahuilaUnidad Saltillo Calle Francisco Murguía 210. Zona Centro, Saltillo, Coahuila C.P 25000 México
| | - Ana María Herrera González
- Laboratorio de Polímeros, Instituto de Ciencias Básicas e IngenieríaUniversidad Autónoma del Estado de Hidalgo México. Carretera Pachuca‐Tulancingo Km. 4.5 Colonia Carboneras, Mineral de la Reforma Hidalgo C.P 42184 México
| |
Collapse
|
7
|
Characterization of a low shrinkage dental composite containing bismethylene spiroorthocarbonate expanding monomer. Int J Mol Sci 2014; 15:2400-12. [PMID: 24518683 PMCID: PMC3958858 DOI: 10.3390/ijms15022400] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/15/2014] [Accepted: 01/24/2014] [Indexed: 02/05/2023] Open
Abstract
In this study, a novel dental composite based on the unsaturated bismethylene spiroorthocarbonate expanding monomer 3,9-dimethylene-1,3,5,7-tetraoxa-spiro[5,5]undecane (BMSOC) and bisphenol-S-bis(3-meth acrylate-2-hydroxypropyl)ether (BisS-GMA) was prepared. CQ (camphorquinone) of 1 wt % and DMAEMA (2-(dimethylamino)ethyl methacrylate) of 2 wt % were used in a photoinitiation system to initiate the copolymerization of the matrix resins. Distilled water contact angle measurements were performed for the wettability measurement. Degree of conversion, volumetric shrinkage, contraction stress and compressive strength were measured using Fourier Transformation Infrared-FTIR spectroscopy, the AccuVol and a universal testing machine, respectively. Within the limitations of this study, it can be concluded that the resin composites modified by bismethylene spiroorthocarbonate and BisS-GMA showed a low volumetric shrinkage at 1.25% and a higher contact angle. The lower contraction stress, higher degree of conversion and compressive strength of the novel dental composites were also observed.
Collapse
|