1
|
Zhang Z, Li Z, Wang D, Feng J, Feng Q. Investigating the Impact of Pore Size and Specification on Soft Tissue Ingrowth in 3D-Printed PEEK Material. Macromol Biosci 2024; 24:e2400278. [PMID: 39348166 DOI: 10.1002/mabi.202400278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Bone pelvis tumor resection and reconstruction is a complex surgical procedure that poses challenges in soft tissue reconstruction despite advancements in stabilizing pelvic structure. This study aims to investigate the potential of using Polyetheretherketone (PEEK) material in repairing and reconstructing soft tissues surrounding pelvic implants. Specifically, the study focuses on exploring the effectiveness of 3D printed porous PEEK material in promoting cell growth and adhesion. The interaction between PEEK materials with different pore sizes (200, 400, 600 µm) and different specifications (through-hole (T)/non-through-hole (C)) is evaluated by cell experiments and animal experiments. The soft tissue ingrowth potential of PEEK materials is evaluated by cell growth and adhesion observation. The findings indicate that PEEK material, particularly the T400 variant, exhibits stronger interaction with muscle tissue compared to its interaction with bone and fibrous tissue. The moderately sized pores present in the T400 material facilitate enhanced cell adhesion and penetration, thereby promoting cell growth and differentiation. PEEK materials with through-hole structures show promise for applications involving the repair and reconstruction of soft tissues and muscle tissue. The study provides valuable insights into the development and application of biomedical materials, specifically PEEK, contributing to the advancement of pelvic tumor resection and reconstruction techniques.
Collapse
Affiliation(s)
- Zibo Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Zenghuai Li
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Donglai Wang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Jiangang Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| | - Qi Feng
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050010, China
| |
Collapse
|
2
|
Huang Z, Wan Y, Zhu X, Zhang P, Yang Z, Yao F, Luo H. Simultaneous engineering of nanofillers and patterned surface macropores of graphene/hydroxyapatite/polyetheretherketone ternary composites for potential bone implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111967. [PMID: 33812595 DOI: 10.1016/j.msec.2021.111967] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/25/2022]
Abstract
Incorporating bioactive nanofillers and creating porous surfaces are two common strategies used to improve the tissue integration of polyetheretherketone (PEEK) material. However, few studies have reported the combined use of both strategies to modify PEEK. Herein, for the first time, dual nanoparticles of graphene oxide (GO) and hydroxyapatite (HAp) were incorporated into PEEK matrix to obtain ternary composites that were laser machined to create macropores with diameters ranging from 200 μm to 600 μm on the surfaces. The surface morphology and chemistry, mechanical properties, and cellular responses of the composites were investigated. The results show that micropatterned pores with a depth of 50 μm were created on the surfaces of the composites, which do not significantly affect the mechanical properties of the resultant composites. More importantly, the incorporation of GO and HAp significantly improves the cell adhesion and proliferation on the surface of PEEK. Compared to the smooth surface composite, the composites with macroporous surface exhibit markedly enhanced cell viability. The combined use of nanofillers and surface macropores may be a promising way of improving tissue integration of PEEK for bone implants.
Collapse
Affiliation(s)
- Zhihuan Huang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiangbo Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Peibiao Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Fanglian Yao
- Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Gas Permeability of Mold during Freezing Process Alters the Pore Distribution of Gelatin Sponge and Its Bone-Forming Ability. MATERIALS 2020; 13:ma13214705. [PMID: 33105615 PMCID: PMC7659933 DOI: 10.3390/ma13214705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Freeze-drying, also known as lyophilization, is widely used in the preparation of porous biomaterials. Nevertheless, limited information is known regarding the effect of gas permeability on molds to obtain porous materials. We demonstrated that the different levels of gas permeability of molds remarkably altered the pore distribution of prepared gelatin sponges and distinct bone formation at critical-sized bone defects of the rat calvaria. Three types of molds were prepared: silicon tube (ST), which has high gas permeability; ST covered with polyvinylidene chloride (PVDC) film, which has low gas permeability, at the lateral side (STPL); and ST covered with PVDC at both the lateral and bottom sides (STPLB). The cross sections or curved surfaces of the sponges were evaluated using scanning electron microscopy and quantitative image analysis. The gelatin sponge prepared using ST mold demonstrated wider pore size and spatial distribution and larger average pore diameter (149.2 µm) compared with that prepared using STPL and STPLB. The sponges using ST demonstrated significantly poor bone formation and bone mineral density after 3 weeks. The results suggest that the gas permeability of molds critically alters the pore size and spatial pore distribution of prepared sponges during the freeze-drying process, which probably causes distinct bone formation.
Collapse
|
4
|
Sawadkar P, Mohanakrishnan J, Rajasekar P, Rahmani B, Kohli N, Bozec L, García-Gareta E. A Synergistic Relationship between Polycaprolactone and Natural Polymers Enhances the Physical Properties and Biological Activity of Scaffolds. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13587-13597. [PMID: 32107914 DOI: 10.1021/acsami.9b19715] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biomaterials for tissue engineering include natural and synthetic polymers, but their clinical application is still limited due to various disadvantages associated with the use of these polymers. This uncertainty of the polymeric approach in tissue engineering launches an opportunity to address a key question: can we eliminate the disadvantages of both natural and synthetic polymers by combining them to form a synergistic relationship? To answer this question, we fabricated scaffolds from elastin, collagen, fibrin, and electrospun polycaprolactone (PCL) with different ratios. The material characterization of these scaffolds investigated degradation, water contact angle, angiogenesis by an ex ovo chorion allantoic membrane (CAM) assay, and mechanical and structural properties. Biological activity and specific differentiation pathways (MSC, adipogenic, osteogenic, myogenic, and chondrogenic) were studied by using human adipose-derived stem cells. Results indicated that all composite polymers degraded at a different rate, thus affecting their mechanical integrity. Cell-based assays demonstrated continual proliferative and viable properties of the cells on all seeded scaffolds with the particular initiation of a differentiation pathway among which the PCL/collagen/fibrin composite was the most angiogenic material with maximum vasculature. We were able to tailor the physical and biological properties of PCL-based composites to form a synergistic relationship for various tissue regeneration applications.
Collapse
Affiliation(s)
- Prasad Sawadkar
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, U.K
| | - Jeviya Mohanakrishnan
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, U.K
| | - Poojitha Rajasekar
- Division of Respiratory Medicine, University of Nottingham, Nottingham NG5 1PB, U.K
| | - Benyamin Rahmani
- Department of Mechanical Engineering, University College London, London WC1E 6BT, U.K
| | - Nupur Kohli
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, U.K
| | - Laurent Bozec
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Elena García-Gareta
- Regenerative Biomaterials Group, RAFT Institute, Mount Vernon Hospital, Northwood HA6 2RN, U.K
| |
Collapse
|
5
|
Spinnrock A, Cölfen H. Putting a New Spin on It: Gradient Centrifugation for Analytical and Preparative Applications. Chemistry 2019; 25:10026-10032. [PMID: 30980567 DOI: 10.1002/chem.201900974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Indexed: 11/07/2022]
Abstract
Gradient centrifugation is an important technique in chemistry, biology, materials science and engineering. It has big potential beyond the well-known centrifugation for separation of molecules and particles. Various possibilities for special analysis and separation of particles, but also preparative applications like the production of gradient materials and controlled polymerizations exist. In all examples, a gradient of physical and/or chemical properties is generated by centrifugation and used for the further application. In this Concept article, selected examples of gradient centrifugation are presented, to show important developments in the field and discuss their applications, potential, and limitations. It concludes by analysing future trends of gradient centrifugation that are relevant for academic and industrial usage.
Collapse
Affiliation(s)
- Andreas Spinnrock
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, Box 714, 78457, Konstanz, Germany
| | - Helmut Cölfen
- Physical Chemistry, University of Konstanz, Universitätsstrasse 10, Box 714, 78457, Konstanz, Germany
| |
Collapse
|
6
|
Barnett HH, Heimbuck AM, Pursell I, Hegab RA, Sawyer BJ, Newman JJ, Caldorera-Moore ME. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:895-918. [PMID: 31039085 DOI: 10.1080/09205063.2019.1612725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3 D) hydrogel scaffolds are an attractive option for tissue regeneration applications because they allow for cell migration, fluid exchange, and can be synthesized to closely mimic the physical properties of the extracellular matrix environment. The material properties of hydrogels play a vital role in cellular migration and differentiation. In light of this, in-depth understanding of material properties is required before such scaffolds can be used to study their influence on cells. Herein, various blends and thicknesses of poly (ethylene glycol) dimethacrylate (PEGDMA) hydrogels were synthesized, flash frozen, and dried by lyophilization to create scaffolds with multiscale porosity. Environmental scanning electron microscopy (ESEM) images demonstrated that lyophilization induced microporous voids in the PEGDMA hydrogels while swelling studies show the hydrogels retain their innate swelling properties. Change in pore size was observed between drying methods, polymer blend, and thickness when imaged in the hydrated state. Human adipose-derived stem cells (hASCs) were seeded on lyophilized and non-lyophilized hydrogels to determine if the scaffolds would support cell attachment and proliferation of a clinically relevant cell type. Cell attachment and morphology of the hASCs were evaluated using fluorescence imaging. Qualitative observations in cell attachment and morphology of hASCs on the surface of the different hydrogel spatial configurations indicate these multiscale porosity hydrogels create a suitable scaffold for hASC culture. These findings offer another factor of tunability in creating biomimetic hydrogels for various tissue engineering applications including tissue repair, regeneration, wound healing, and controlled release of growth factors.
Collapse
Affiliation(s)
- Haley H Barnett
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | - Abitha M Heimbuck
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA
| | - India Pursell
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | - Rachel A Hegab
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA
| | - Benjamin J Sawyer
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA.,c Department of chemistry, Trinity University , San Antonio , TX , USA
| | - Jamie J Newman
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | | |
Collapse
|
7
|
Chen F, Song Z, Gao L, Hong H, Liu C. Hierarchically macroporous/mesoporous POC composite scaffolds with IBU-loaded hollow SiO2 microspheres for repairing infected bone defects. J Mater Chem B 2016; 4:4198-4205. [DOI: 10.1039/c6tb00435k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Figure illustration of the hierarchically porous IBU-loaded SiO2/β-TCP/POC scaffold.
Collapse
Affiliation(s)
- Fangping Chen
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| | - Zhiyan Song
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing
| | - Li Gao
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| | - Hua Hong
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P. R. China
- Key Laboratory for Ultrafine Materials of Ministry of Education
| |
Collapse
|
8
|
Benetti EM, Gunnewiek MK, van Blitterswijk CA, Julius Vancso G, Moroni L. Mimicking natural cell environments: design, fabrication and application of bio-chemical gradients on polymeric biomaterial substrates. J Mater Chem B 2016; 4:4244-4257. [DOI: 10.1039/c6tb00947f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gradients of biomolecules on synthetic, solid substrates can efficiently mimic the natural, graded variation of properties of the extracellular matrix (ECM).
Collapse
Affiliation(s)
- Edmondo M. Benetti
- Department of Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Michel Klein Gunnewiek
- Department of Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Complex Tissue Regeneration
- MERLN Institute for Technology Inspired Regenerative Medicine
- Maastricht University
- 6200 MD Maastricht
- The Netherlands
| | - G. Julius Vancso
- Department of Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration
- MERLN Institute for Technology Inspired Regenerative Medicine
- Maastricht University
- 6200 MD Maastricht
- The Netherlands
| |
Collapse
|
9
|
Zhao Y, Tan K, Zhou Y, Ye Z, Tan WS. A combinatorial variation in surface chemistry and pore size of three-dimensional porous poly(ε-caprolactone) scaffolds modulates the behaviors of mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:193-202. [PMID: 26652364 DOI: 10.1016/j.msec.2015.10.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/28/2015] [Accepted: 10/05/2015] [Indexed: 12/23/2022]
Abstract
Biomaterial properties play significant roles in controlling cellular behaviors. The objective of the present study was to investigate how pore size and surface chemistry of three-dimensional (3D) porous scaffolds regulate the fate of mesenchymal stem cells (MSCs) in vitro in combination. First, on poly(ε-caprolactone) (PCL) films, the hydrolytic treatment was found to stimulate the adhesion, spreading and proliferation of human MSCs (hMSCs) in comparison with pristine films, while the aminolysis showed mixed effects. Then, 3D porous PCL scaffolds with varying pore sizes (100-200μm, 200-300μm and 300-450μm) were fabricated and subjected to either hydrolysis or aminolysis. It was found that a pore size of 200-300μm with hydrolysis in 3D scaffolds was the most favorable condition for growth of hMSCs. Importantly, while a pore size of 200-300μm with hydrolysis for 1h supported the best osteogenic differentiation of hMSCs, the chondrogenic differentiation was greatest in scaffolds with a pore size of 300-450μm and treated with aminolysis for 1h. Taken together, these results suggest that surface chemistry and pore size of 3D porous scaffolds may potentially have a synergistic impact on the behaviors of MSCs.
Collapse
Affiliation(s)
- Yingdi Zhao
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ke Tan
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaoyang Ye
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
|
11
|
Choi YC, Choi JS, Woo CH, Cho YW. Stem cell delivery systems inspired by tissue-specific niches. J Control Release 2014; 193:42-50. [PMID: 24979211 DOI: 10.1016/j.jconrel.2014.06.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 12/18/2022]
Abstract
Since stem cells have the capacity to differentiate into a variety of cell types, stem cell delivery systems (SCDSs) can be effective therapeutic strategies for a multitude of diseases and disorders. For stem cell-based therapy, stem cells are introduced directly (or peripherally) into a target tissue via different delivery systems. Despite initial promising results obtained from preclinical studies, a number of technical hurdles must be overcome for ultimate clinical utility of stem cells. A key aspect of SCDSs is how to create local environments, called stem cell niches, for improvement of survival and engraftment as well as the fate of transplanted stem cells. The stem cell niches encompassing a wide range of biochemical, biophysical, and biomechanical cues play a guidance role to modulate stem cell behaviors such as adhesion, proliferation, and differentiation. Recent studies have tried to decipher the complex interplay between stem cells and niches, and thereafter to engineer SCDS, mimicking dynamic stem cell niches encompassing a wide range of biochemical, biophysical, and biomechanical cues. Here, we discuss the biological role of stem cell niches and highlight recent progress in SCDS to mimic stem cell niches, particularly focusing on important biomaterial properties for modulating stem cell fate.
Collapse
Affiliation(s)
- Young Chan Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Chang Hee Woo
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Gyeonggi-do 426-791, South Korea.
| |
Collapse
|
12
|
Huri PY, Ozilgen BA, Hutton DL, Grayson WL. Scaffold pore size modulates in vitro osteogenesis of human adipose-derived stem/stromal cells. Biomed Mater 2014; 9:045003. [PMID: 24945873 DOI: 10.1088/1748-6041/9/4/045003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Trabecular bone has an interconnected porous structure, which influences cellular responses, biochemical transport and mechanical strength. Appropriately mimicking this structural organization in biomaterial scaffolds can facilitate more robust bone tissue regeneration and integration by providing a native microenvironment to the cells. This study examined the effect of pore size on human adipose-derived stem/stromal cell (ASC) osteogenesis within poly(ε-caprolactone) (PCL) scaffolds. Scaffold pore size was controlled by porogen leaching of custom-made paraffin particles with three different size ranges: P200 (< 500 µm), P500 (500-1000 µm), and P1000 (1000-1500 µm). Scaffolds produced by leaching these particles exhibited highly interconnected pores and rough surface structures that were favorable for cell attachment and ingrowth. The osteogenic response of ASCs was evaluated following 3 weeks of in vitro culture using biochemical (ALP, Ca(2+)/DNA content), mechanical (compression test) and histological (H&E and von Kossa staining) analyses. It was observed that while the total number of cells was similar for all scaffolds, the cell distributions and osteogenic properties were affected by the scaffold pore size. ASCs were able to bridge smaller pores and grow uniformly within these scaffolds (P200) while they grew as a layer along the periphery of the largest pores (P1000). The cell-biomaterial interactions specific to the latter case led to enhanced osteogenic responses. The ALP activity and Ca(2+) deposition were doubled in P1000 scaffolds as compared to P200 scaffolds. A significant difference was observed between the compressive strength of unseeded and seeded P1000 scaffolds. Therefore, we demonstrated that the use of scaffolds with pores that are in the range of 1 mm enhances in vitro ASC osteogenesis, which may improve their performance in engineered bone substitutes.
Collapse
Affiliation(s)
- Pinar Yilgor Huri
- Department of Biomedical Engineering, Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | | | | |
Collapse
|