1
|
Anjar R, Mahadev M, Charyulu RN, Badalamoole V. Development of a novel polyelectrolyte complex nanocomposite of modified chitosan and karaya gum for co-delivery of 5-fluorouracil and curcumin for cancer therapy. J Mater Chem B 2025; 13:3602-3617. [PMID: 39967374 DOI: 10.1039/d4tb02354d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Combination chemotherapy is a relatively recent and preferred method for cancer treatment. Sustained delivery of dual drugs can be achieved with a suitable matrix. In the present work, a pH-responsive polyelectrolyte complex (PEC) of trimethylchitosan and carboxymethylkaraya gum containing silver nanoparticles (SNps) has been developed as a matrix material for co-delivery of the drugs, 5-fluorouracil (5-Fu) and curcumin (Cur). The experimental conditions have been optimized for high yield and high swelling of the PEC nanocomposite. 1H-NMR, FT-IR, FE-SEM, P-XRD, HR-TEM, EDS, TGA techniques and zeta potential measurements have been employed in the physico-chemical characterization of the nanocomposite material. The presence of SNps with an average diameter of 16.57 ± 1.25 nm influenced the surface structure and hydrophilicity of the PEC. The swelling study indicated higher swelling at pH 7.4 than at pH 1.2. The two drugs, 5-Fu and Cur, were successfully entrapped and released from the nanocomposite in a sustained manner. Cytotoxicity studies performed with the MCF-10A cell line confirmed the biocompatibility of the nanocomposite and those with the MCF-7 cell line indicated the synergistic effect of the dual drugs in controlling cancer cell growth. The overall study indicates the usefulness of the PEC nanocomposite made from modified polysaccharides, chitosan and karaya gum as a promising material for the development of a dual drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Rakshitha Anjar
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri-574199, Karnataka, India.
| | - Manohar Mahadev
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Rompicherla Narayana Charyulu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri-574199, Karnataka, India.
| |
Collapse
|
2
|
Bardajee GR, Ghadimkhani R, Jafarpour F. A biocompatible double network hydrogel based on poly (acrylic acid) grafted onto sodium alginate for doxorubicin hydrochloride anticancer drug release. Int J Biol Macromol 2024; 260:128871. [PMID: 38123038 DOI: 10.1016/j.ijbiomac.2023.128871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/03/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
This study involved the synthesis of a new biocompatible slow-release hydrogel named poly (acrylic acid) grafted onto sodium alginate (poly (AA-g-SA)) double network hydrogel (DNH). The hydrogel was created by polymerization of acrylic acid grafted onto sodium alginate polysaccharide using crosslinkers N,N'-methylenebisacrylamide and calcium chloride via free radical polymerization. The water absorbency of the poly (AA-g-SA) double network hydrogel was improved by optimizing the quantities of ammonium persulfate initiator, pH-sensitive monomer of acrylic acid, and crosslinkers. Various analytical techniques including attenuated total reflection Fourier-transformed infrared (ATR-FTIR), X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and Brunauer-Emmett-Teller specific surface area analysis (BET) were used to characterize the synthesized hydrogels. The swelling and on-off switching behaviors of the hydrogels were investigated in deionized (DI) water at different temperatures and pH values. The optimum poly (AA-g-SA) DNH was tested for in vitro release of a hydrophilic chemotherapeutic drug, doxorubicin hydrochloride (DOX). The eco-friendly hydrogel favorably optimized the DOX slow release owing to its swelling rate, high absorption and regeneration capabilities. The findings of this study may have significant implications for medical and scientific research.
Collapse
Affiliation(s)
| | - Roghieh Ghadimkhani
- Department of Chemistry, Payame Noor University, PO BOX 19395-3697, Tehran, Iran
| | - Farnaz Jafarpour
- School of Chemistry, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| |
Collapse
|
3
|
Zhivkov AM, Popov TT, Hristova SH. Composite Hydrogels with Included Solid-State Nanoparticles Bearing Anticancer Chemotherapeutics. Gels 2023; 9:gels9050421. [PMID: 37233012 DOI: 10.3390/gels9050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have many useful physicochemical properties which, in combination with their biocompatibility, suggest their application as a drug delivery system for the local and prorogated release of drugs. However, their drug-absorption capacity is limited because of the gel net's poor adsorption of hydrophilic molecules and in particular, hydrophobic molecules. The absorption capacity of hydrogels can be increased with the incorporation of nanoparticles due to their huge surface area. In this review, composite hydrogels (physical, covalent and injectable) with included hydrophobic and hydrophilic nanoparticles are considered as suitable for use as carriers of anticancer chemotherapeutics. The main focus is given to the surface properties of the nanoparticles (hydrophilicity/hydrophobicity and surface electric charge) formed from metal and dielectric substances: metals (gold, silver), metal-oxides (iron, aluminum, titanium, zirconium), silicates (quartz) and carbon (graphene). The physicochemical properties of the nanoparticles are emphasized in order to assist researchers in choosing appropriate nanoparticles for the adsorption of drugs with hydrophilic and hydrophobic organic molecules.
Collapse
Affiliation(s)
- Alexandar M Zhivkov
- Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria
| | - Trifon T Popov
- Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Svetlana H Hristova
- Department of Medical Physics and Biophysics, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| |
Collapse
|
4
|
ALSamman MT, Sánchez J. Adsorption of Copper and Arsenic from Water Using a Semi-Interpenetrating Polymer Network Based on Alginate and Chitosan. Polymers (Basel) 2023; 15:2192. [PMID: 37177337 PMCID: PMC10180717 DOI: 10.3390/polym15092192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
New biobased hydrogels were prepared via a semi-interpenetrating polymer network (semi-IPN) using polyacrylamide/chitosan (PAAM/chitosan) hydrogel for the adsorption of As(V) or poly acrylic acid/alginate (PAA/alginate) hydrogel for the adsorption of Cu(II). Both systems were crosslinked using N,N'-methylenebisacrylamide as the crosslinker and ammonium persulfate as the initiating agent. The hydrogels were characterized by SEM, Z-potential, and FTIR. Their performance was studied under different variables, such as the biopolymer effect, adsorbent dose, pH, contact time, and concentration of metal ions. The characterization of hydrogels revealed the morphology of the material, with and without biopolymers. In both cases, the added biopolymer provided porosity and cavities' formation, which improved the removal capacity. The Z-potential informed the surface charge of hydrogels, and the addition of biopolymers modified it, which explains the further metal removal ability. The FTIR spectra showed the functional groups of the hydrogels, confirming its chemical structure. In addition, the adsorption results showed that PAAM/chitosan can efficiently remove arsenic, reaching a capacity of 17.8 mg/g at pH 5.0, and it can also be regenerated by HNO3 for six cycles. On the other hand, copper-ion absorption was studied on PAA/alginate, which can remove with an adsorption capacity of 63.59 mg/g at pH 4.0, and the results indicate that it can also be regenerated by HNO3 for five cycles.
Collapse
Affiliation(s)
| | - Julio Sánchez
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile
| |
Collapse
|
5
|
Narendran G, Walunj A, Kumar AM, Jeyachandran P, Awwad NS, Ibrahium HA, Gorji MR, Perumal DA. Experimental Demonstration of Compact Polymer Mass Transfer Device Manufactured by Additive Manufacturing with Hydrogel Integration to Bio-Mimic the Liver Functions. Bioengineering (Basel) 2023; 10:bioengineering10040416. [PMID: 37106603 PMCID: PMC10135587 DOI: 10.3390/bioengineering10040416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
In this paper, we designed and demonstrated a stimuli-responsive hydrogel that mimics the mass diffusion function of the liver. We have controlled the release mechanism using temperature and pH variations. Additive manufacturing technology was used to fabricate the device with nylon (PA-12), using selective laser sintering (SLS). The device has two compartment sections: the lower section handles the thermal management, and feeds temperature-regulated water into the mass transfer section of the upper compartment. The upper chamber has a two-layered serpentine concentric tube; the inner tube carries the temperature-regulated water to the hydrogel using the given pores. Here, the hydrogel is present in order to facilitate the release of the loaded methylene blue (MB) into the fluid. By adjusting the fluid’s pH, flow rate, and temperature, the deswelling properties of the hydrogel were examined. The weight of the hydrogel was maximum at 10 mL/min and decreased by 25.29% to 10.12 g for the flow rate of 50 mL/min. The cumulative MB release at 30 °C increased to 47% for the lower flow rate of 10 mL/min, and the cumulative release at 40 °C climbed to 55%, which is 44.7% more than at 30 °C. The MB release rates considerably increased when the pH dropped from 12 to 8, showing that the lower pH had a major impact on the release of MB from the hydrogel. Only 19% of the MB was released at pH 12 after 50 min, and after that, the release rate remained nearly constant. At higher fluid temperatures, the hydrogels lost approximately 80% of their water in just 20 min, compared to a loss of 50% of their water at room temperature. The outcomes of this study may contribute to further developments in artificial organ design.
Collapse
|
6
|
Hanna DH, El-Mazaly MH, Mohamed RR. Synthesis of biodegradable antimicrobial pH-sensitive silver nanocomposites reliant on chitosan and carrageenan derivatives for 5-fluorouracil drug delivery toward HCT116 cancer cells. Int J Biol Macromol 2023; 231:123364. [PMID: 36693607 DOI: 10.1016/j.ijbiomac.2023.123364] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The current research relies on a one-pot green biosynthesis of silver nanoparticles (SNPs) with various ratios of silver (Ag) in the existence of N, N, N-trimethyl chitosan chloride (TMC) and carboxymethyl kappa-carrageenan (CMKC), to investigate the effectiveness of the synthesized silver nanocomposites (SNCs) as pH sensitive biodegradable carrier for orally intestinal delivery of 5-fluorouracil (5-FU) drug. FTIR, XRD, TEM and FE-SEM/EDX methods were utilized to demonstrate the structure of the prepared polyelectrolyte complex PEC (TMC/CMKC) and SNCs (TMC/CMKC/Ag). The results showed that the 5-FU encapsulation effectiveness inside all of the prepared SNCs samples was improved by increasing the concentration of Ag, reaching 92.16 ± 0.57 % with 3 % Ag. In vitro release behavior of 5-FU loaded SNC 3 % (TMC/CMKC/Ag 3 %), displayed slow and sustained release reaching 96.3 ± 0.81 % up to 24 h into pH 7.4 medium. The successful release of 5-FU from the loaded SNC 3 % was confirmed through occurrence of strong cytotoxicity, with an IC50 value of 31.15 μg/ml, and high % of apoptotic cells (30.66 %) within the treated HCT116 cells. Besides, SNC 3 % showed good biodegradability and antimicrobial properties against different bacterial strains. Overall, SNC 3 % can be suggested as an effective system for both controlled drug delivery and antibacterial action.
Collapse
Affiliation(s)
- Demiana H Hanna
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Marwa H El-Mazaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Riham R Mohamed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
7
|
Kushwaha R, Kumar S, Das A, Sukriti, Verma ML. Silver nanoparticle-based nanocomposite hydrogels for biomedical applications. FUNCTIONAL NANOCOMPOSITE HYDROGELS 2023:241-265. [DOI: 10.1016/b978-0-323-99638-9.00010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Hu Y, Shin Y, Park S, Jeong JP, Kim Y, Jung S. Multifunctional Oxidized Succinoglycan/Poly(N-isopropylacrylamide-co-acrylamide) Hydrogels for Drug Delivery. Polymers (Basel) 2022; 15:polym15010122. [PMID: 36616471 PMCID: PMC9824477 DOI: 10.3390/polym15010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
We prepared the self-healing and temperature/pH-responsive hydrogels using oxidized succinoglycan (OSG) and a poly (N-isopropyl acrylamide-co-acrylamide) [P(NIPAM-AM)] copolymer. OSG was synthesized by periodate oxidation of succinoglycan (SG) isolated directly from soil microorganisms, Sinorhizobium meliloti Rm1021. The OSG/P(NIPAM-AM) hydrogels were obtained by introducing OSG into P(NIPAM-AM) networks. The chemical structure and physical properties of these hydrogels were characterized by ATR-FTIR, XRD, TGA, and FE-SEM. The OSG/P(NIPAM-AM) hydrogels showed improved elasticity, increased thermal stability, new self-healing ability, and 4-fold enhanced tensile strength compared with the P(NIPAM-AM) hydrogels. Furthermore, the 5-FU-loaded OSG/P(NIPAM-AM) hydrogels exhibited effective temperature/pH-responsive drug release. Cytotoxicity experiments showed that the OSG/P(NIPAM-AM) hydrogels were non-toxic, suggesting that OSG/P(NIPAM-AM) hydrogels could have the potential for biomedical applications, such as stimuli-responsive drug delivery systems, wound healing, smart scaffolds, and tissue engineering.
Collapse
Affiliation(s)
- Yiluo Hu
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Younghyun Shin
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Sohyun Park
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-pil Jeong
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Yohan Kim
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk University, Seoul 05029, Republic of Korea
- Department of Systems Biotechnology, Microbial Carbohydrate Resource Bank (MCRB), Konkuk Univesity, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-450-3520
| |
Collapse
|
9
|
Sodium alginate/xanthan-based nanocomposite hydrogels containing 5-fluorouracil: Characterization and cancer cell death studies in presence of halloysite nanotube. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Silver-loaded carboxymethyl cellulose nonwoven sheet with controlled counterions for infected wound healing. Carbohydr Polym 2022; 286:119289. [DOI: 10.1016/j.carbpol.2022.119289] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/05/2023]
|
11
|
NVCL-Based Hydrogels and Composites for Biomedical Applications: Progress in the Last Ten Years. Int J Mol Sci 2022; 23:ijms23094722. [PMID: 35563114 PMCID: PMC9103572 DOI: 10.3390/ijms23094722] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/20/2022] Open
Abstract
Hydrogels consist of three-dimensionally crosslinked polymeric chains, are hydrophilic, have the ability to absorb other molecules in their structure and are relatively easy to obtain. However, in order to improve some of their properties, usually mechanical, or to provide them with some physical, chemical or biological characteristics, hydrogels have been synthesized combined with other synthetic or natural polymers, filled with inorganic nanoparticles, metals, and even polymeric nanoparticles, giving rise to composite hydrogels. In general, different types of hydrogels have been synthesized; however, in this review, we refer to those obtained from the thermosensitive polymer poly(N-vinylcaprolactam) (PNVCL) and we focus on the definition, properties, synthesis techniques, nanomaterials used as fillers in composites and mainly applications of PNVCL-based hydrogels in the biomedical area. This type of material has great potential in biomedical applications such as drug delivery systems, tissue engineering, as antimicrobials and in diagnostic and bioimaging.
Collapse
|
12
|
Fabrication of Polyelectrolyte Membranes of Pectin Graft-Copolymers with PVA and Their Composites with Phosphomolybdic Acid for Drug Delivery, Toxic Metal Ion Removal, and Fuel Cell Applications. MEMBRANES 2021; 11:membranes11100792. [PMID: 34677559 PMCID: PMC8537921 DOI: 10.3390/membranes11100792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022]
Abstract
In this study, a simple method for the fabrication of highly diffusive, adsorptive and conductive eco-friendly polyelectrolyte membranes (PEMs) with sulfonate functionalized pectin and poly(vinyl alcohol)(PVA) was established. The graft-copolymers were synthesized by employing the use of potassium persulfate as a free radical initiator from pectin (PC), a carbohydrate polymer with 2-acrylamido-2-methyl-1-propanesulphonic acid (AMPS) and sodium 4-vinylbenzene sulphonate (SVBS). The PEMs were fabricated from the blends of pectin graft-copolymers (PC-g-AMPS and PC-g-SVBS) and PVA by using a solution casting method, followed by chemical crosslinking with glutaraldehyde. The composite PEMs were fabricated by mixing phosphomolybdic acid with the aforementioned blends. The PEMs were successfully characterized by FTIR, XRD, SEM, and EDAX studies. They were assessed for the controlled release of an anti-cancer drug (5-fluorouracil) and the removal of toxic metal ions (Cu2+) from aqueous media. Furthermore, the composite PEMs were evaluated for fuel cell application. The 5-fluorouracil release capacity of the PEMs was found to be 93% and 99.1% at 300 min in a phosphate buffer solution (pH = 7.4). The highest Cu2+ removal was observed at 206.7 and 190.1 mg/g. The phosphomolybdic acid-embedded PEMs showed superior methanol permeability, i.e., 6.83 × 10−5, and 5.94 × 10−5, compared to the pristine PEMs. Furthermore, the same trend was observed for the proton conductivities, i.e., 13.77 × 10−3, and 18.6 × 10−3 S/cm at 30 °C.
Collapse
|
13
|
Single-Step Pore-Selective Silver-Functionalized Honeycomb-Patterned Porous Polystyrene Film Using a Modified Breath Figure Method. Macromol Res 2021. [DOI: 10.1007/s13233-021-9070-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Zhang WJ, Yan YZ, Nagappan S, He S, Ha CS, Jin YS. Dual (thermo-/pH-) responsive P(NIPAM-co-AA-co-HEMA) nanocapsules for controlled release of 5-fluorouracil. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1964368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Wei-Jin Zhang
- Beijing Key Laboratory of Special Elastomer Composites, School of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
- Department of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yong-Zhu Yan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Saravanan Nagappan
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Shanshan He
- Engineering/Precision Manufacturing Systems Division, School of Mechanical Engineering, Pusan National University, Busan, Republic of Korea
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, School of Chemical Engineering, Pusan National University, Busan, Republic of Korea
| | - Yu-Shun Jin
- Beijing Key Laboratory of Special Elastomer Composites, School of Materials Science and Engineering, Beijing Institute of Petrochemical Technology, Beijing, P. R. China
| |
Collapse
|
15
|
Palem RR, Rao KM, Shimoga G, Saratale RG, Shinde SK, Ghodake GS, Lee SH. Physicochemical characterization, drug release, and biocompatibility evaluation of carboxymethyl cellulose-based hydrogels reinforced with sepiolite nanoclay. Int J Biol Macromol 2021; 178:464-476. [PMID: 33662416 DOI: 10.1016/j.ijbiomac.2021.02.195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Polymer-clay nanocomposite hydrogel films (PCNCHFs) were prepared from caboxymethyl cellulose, polyvinylpyrrolidone, agar and nanosepiolite clay (0, 0.3, 0.5, 0.7, 0.9 and 1.5% reinforcement) by treating thermally in a simple, rapid, and inexpensive route. The PCNCHFs and its 5-fluorouracil (FU)-loaded composites (PCNCHFs@FU) were tested for FU release and characterized by FTIR, XRD, FE-SEM, EDX, DSC, and TGA analyses to investigate their structural, morphological, and thermal properties. The nanosepiolite-loaded polymer composites (PCNCHF1 to PCNCHF5) exhibited higher tensile strength than the pristine polymer hydrogel (PCNCHF0); consequently, the thermal properties (glass- and melting-transition) were improved. The PCNCHFs@FU demonstrated prolonged FU release at pH 7.4 for 32 h. The biocompatibility of PCNCHFs was tested against human skin fibroblast (CCDK) cells. The viability of cells exposed to all PCNCHFs was >95% after 72 h of culture. The live/dead assay show the proliferation of fibroblast cells, confirming the biocompatibility of the hydrogels. The pH-sensitive PCNCHFs@FU release could be suitable for drug release in cancer therapy, and the developed PCNCHFs may also be useful for tissue engineering, food packaging, and other biological applications.
Collapse
Affiliation(s)
- Ramasubba Reddy Palem
- Department of Medical Biotechnology, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea
| | - Kummara Madhusudana Rao
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Republic of Korea
| | - Ganesh Shimoga
- Advanced Technology Research Center, Future Convergence Engineering, Korea University of Technology and Education, Cheonan-si, Chungcheongnam-do 330-708, Republic of Korea
| | - Rijuta G Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, Seoul 10326, Republic of Korea
| | - Surendra K Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Republic of Korea
| | - Gajanan S Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido, Seoul 10326, Republic of Korea
| | - Soo-Hong Lee
- Department of Medical Biotechnology, Biomedical Campus 32, Gyeonggi 10326, Republic of Korea.
| |
Collapse
|
16
|
Ibrahim SM, Yin TY, Misran M. Arabic Gum Grafted PEGDMA Hydrogels: Synthesis, Physico-Chemical Characterization and In-vitro Release of Hydrophobic Drug. Macromol Res 2021. [DOI: 10.1007/s13233-020-8166-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Sarwar MS, Ghaffar A, Huang Q, Zafar MS, Usman M, Latif M. Controlled-release behavior of ciprofloxacin from a biocompatible polymeric system based on sodium alginate/poly(ethylene glycol) mono methyl ether. Int J Biol Macromol 2020; 165:1047-1054. [DOI: 10.1016/j.ijbiomac.2020.09.196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 01/17/2023]
|
18
|
Sreekanth Reddy O, Subha MCS, Jithendra T, Madhavi C, Chowdoji Rao K. Curcumin encapsulated dual cross linked sodium alginate/montmorillonite polymeric composite beads for controlled drug delivery. J Pharm Anal 2020; 11:191-199. [PMID: 34012695 PMCID: PMC8116217 DOI: 10.1016/j.jpha.2020.07.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/30/2019] [Accepted: 07/05/2020] [Indexed: 11/28/2022] Open
Abstract
The aim of the present work is fabrication of dual cross linked sodium alginate (SA)/montmorillonite (MMT) microbeads as a potential drug vehicle for extended release of curcumin (CUR). The microbeads were prepared using in situ ion-exchange followed by simple ionotropic gelation technique. The developed beads were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (X-RD) and scanning electron microscopy (SEM). The effect of MMT on encapsulation efficiency of CUR and intercalation kinetics was investigated. Dynamic swelling study and in vitro release study were investigated in simulated intestinal fluid (pH 7.4) and simulated gastric fluid (pH 1.2) at 37 °C. Results suggested that both the swelling and in vitro release studies were influenced by the pH of test media, which might be suitable for intestinal drug delivery. The release mechanism was analyzed by fitting the release data into Korsmeyer-Peppas equation. The microbeads prepared using sodium alginate (SA)/montmorillonite (MMT) were found to be potentially good carriers of curcumin (CUR) for extended release of CUR. The bioavailability of CUR is increased by the usage of MMT in the microbeads, hence making it possible to enhance the anti-tumour activity. The incorporation of multivalent ions like Mg2+, Ba2+ and Al3+ into calcium alginate matrix modified the swelling property and release rate of bio-active molecules. The porous nature of the microbeads was based on the size and interaction of the ions namely Mg2+, Ba2+ and Al3+ with alginate.
Collapse
Affiliation(s)
- O Sreekanth Reddy
- Department of Chemistry, Sri Krishnadevaraya University, Ananthapuramu, 515003, India
| | - M C S Subha
- Department of Chemistry, Sri Krishnadevaraya University, Ananthapuramu, 515003, India
| | - T Jithendra
- Department of Chemistry, Sri Krishnadevaraya University, Ananthapuramu, 515003, India
| | - C Madhavi
- Department of Polymer Science and Technology, Sri Krishnadevaraya University, Ananthapuramu, 515003, India
| | - K Chowdoji Rao
- Department of Polymer Science and Technology, Sri Krishnadevaraya University, Ananthapuramu, 515003, India
| |
Collapse
|
19
|
Sudarsan S, Selvi MS, Chitra G, Sakthivel S, Franklin DS, Guhanathan S. Nontoxic pH-sensitive silver nanocomposite hydrogels for potential wound healing applications. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1786584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- S. Sudarsan
- Department of Chemistry, C. Abdul Hakeem College of Engineering and Technology, Melvisharam, India
| | - M. S. Selvi
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| | - G. Chitra
- Department of Chemistry, Bangalore College of Engineering and Technology, Bangalore, India
| | - S. Sakthivel
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| | - D. S. Franklin
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| | - S. Guhanathan
- PG & Research Department of Chemistry, Muthurangam Government Arts College(Autonomous), Vellore, India
| |
Collapse
|
20
|
Skatova AV, Sarin SA, Shchipunov YA. Linear Assemblies of Monodisperse Silver Nanoparticles on Micro/Nanofibrillar Cellulose. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20030126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Murugesan S, Scheibel T. Copolymer/Clay Nanocomposites for Biomedical Applications. ADVANCED FUNCTIONAL MATERIALS 2020; 30. [DOI: 10.1002/adfm.201908101] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Indexed: 01/06/2025]
Abstract
AbstractNanoclays still hold a great strength in biomedical nanotechnology applications due to their exceptional properties despite the development of several new nanostructured materials. This article reviews the recent advances in copolymer/clay nanocomposites with a focus on health care applications. In general, the structure of clay comprises aluminosilicate layers separated by a few nanometers. Recently, nanoclay‐incorporated copolymers have attracted the interest of both researchers and industry due to their phenomenal properties such as barrier function, stiffness, thermal/flame resistance, superhydrophobicity, biocompatibility, stimuli responsiveness, sustained drug release, resistance to hydrolysis, outstanding dynamic mechanical properties including resilience and low temperature flexibility, excellent hydrolytic stability, and antimicrobial properties. Surface modification of nanoclays provides additional properties due to improved adhesion between the polymer matrix and the nanoclay, high surface free energy, a high degree of intercalation, or exfoliated morphology. The architecture of the copolymer/clay nanocomposites has great impact on biomedical applications, too, by providing various cues especially in drug delivery systems and regenerative medicine.
Collapse
Affiliation(s)
- Selvakumar Murugesan
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.‐Rüdiger‐Bormann‐Str. 1 95447 Bayreuth Germany
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Prof.‐Rüdiger‐Bormann‐Str. 1 95447 Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG) Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB) Bayreuther Materialzentrum (BayMAT) Bayerisches Polymerinstitut (BPI) University Bayreuth Universitätsstr. 30 95447 Bayreuth Germany
| |
Collapse
|
22
|
Jalababu R, Rao KK, Rao BS, Reddy KS. Dual responsive GG-g-PNPA/PIPAM based novel hydrogels for the controlled release of anti- cancer agent and their swelling and release kinetics. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02061-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
23
|
Guar gum graft polymer-based silver nanocomposite hydrogels: synthesis, characterization and its biomedical applications. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2026-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
24
|
Pal P, Singh SK, Mishra S, Pandey JP, Sen G. Gum ghatti based hydrogel: Microwave synthesis, characterization, 5-Fluorouracil encapsulation and ‘in vitro’ drug release evaluation. Carbohydr Polym 2019; 222:114979. [DOI: 10.1016/j.carbpol.2019.114979] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/30/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
|
25
|
Fabrication of Aminosilanized Halloysite Based Floating Biopolymer Composites for Sustained Gastro Retentive Release of Curcumin. Macromol Res 2019. [DOI: 10.1007/s13233-019-7062-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Nezami S, Sadeghi M. pH-sensitive free AgNPs composite and nanocomposite beads based on starch as drug delivery systems. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02801-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Nguyen TD, Vo TT, Huynh TTT, Nguyen CH, Doan VD, Nguyen DT, Nguyen TD, Dang CH. Effect of capping methods on the morphology of silver nanoparticles: study on the media-induced release of silver from the nanocomposite β-cyclodextrin/alginate. NEW J CHEM 2019. [DOI: 10.1039/c9nj04730a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel multi-functional nanocomposites were fabricated from polysaccharides, alginate (Alg) and β-cyclodextrin (β-CD) via the ionotropic gelation mechanism.
Collapse
Affiliation(s)
- Thanh-Danh Nguyen
- Institute of Research and Development
- Duy Tan University
- Da Nang City
- Vietnam
- Institute of Chemical Technology
| | - Thanh-Truc Vo
- Institute of Chemical Technology
- Vietnam Academy of Science and Technology
- Ho Chi Minh City
- Vietnam
- Graduate University of Science and Technology
| | - T. Thanh-Tam Huynh
- Institute of Chemical Technology
- Vietnam Academy of Science and Technology
- Ho Chi Minh City
- Vietnam
| | - Cao-Hien Nguyen
- Graduate University of Science and Technology
- Vietnam Academy of Science and Technology
- Hanoi
- Vietnam
- Department of Chemical Technology
| | - Van-Dat Doan
- Faculty of Chemical Engineering
- Industrial University of Ho Chi Minh City
- Ho Chi Minh City
- Vietnam
| | | | - Trinh-Duy Nguyen
- Center of Excellence for Green Energy and Environmental Nanomaterials
- Nguyen Tat Thanh University
- Ho Chi Minh City 755414
- Vietnam
| | - Chi-Hien Dang
- Institute of Chemical Technology
- Vietnam Academy of Science and Technology
- Ho Chi Minh City
- Vietnam
- Graduate University of Science and Technology
| |
Collapse
|
28
|
Nematidil N, Sadeghi M. Fabrication and characterization of a novel biosorbent and its evaluation as adsorbent for heavy metal ions. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2646-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Abureesh MA, Oladipo AA, Mizwari ZM, Berksel E. Engineered mixed oxide-based polymeric composites for enhanced antimicrobial activity and sustained release of antiretroviral drug. Int J Biol Macromol 2018; 116:417-425. [DOI: 10.1016/j.ijbiomac.2018.05.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/29/2018] [Accepted: 05/12/2018] [Indexed: 12/11/2022]
|
30
|
Sesbania gum based hydrogel as platform for sustained drug delivery: An ‘in vitro’ study of 5-Fu release. Int J Biol Macromol 2018; 113:1116-1124. [DOI: 10.1016/j.ijbiomac.2018.02.143] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 01/04/2023]
|
31
|
Dil NN, Sadeghi M. Free radical synthesis of nanosilver/gelatin-poly (acrylic acid) nanocomposite hydrogels employed for antibacterial activity and removal of Cu(II) metal ions. JOURNAL OF HAZARDOUS MATERIALS 2018; 351:38-53. [PMID: 29510326 DOI: 10.1016/j.jhazmat.2018.02.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/29/2017] [Accepted: 02/06/2018] [Indexed: 06/08/2023]
Abstract
The present work involves the synthesis of porous gelatin/AcA (PGE-AcA) hydrogel and novel porous gelatin-silver/AcA (NPGESNC-AcA) nanocomposite hydrogel, and their ability as effective biosorbents for the removal of Cu2+ ions from contaminated water. The formation of the samples was confirmed by UV-Vis, TEM, SEM, EDX, DLS, AFM, XRD, TGA/DTG and FTIR techniques. The adsorption studies results showed that maximum monolayer adsorption capacity of copper ions for PGE-AcA was achieved about 130.50 mg g-1 in pH 6.0 for 50 min, and adsorption capacity for the NPGESNC-AcA was nearly 147.10 mg g-1 in pH 5.5 for 40 min by atomic absorption spectroscopy technique. The Cu2+ ions loaded on the PGE-AcA and NPGESNC-AcA could be recovered by HCl above 65.8% and 78.7% after five consecutive cycles of adsorption/desorption, respectively. The results showed that the both of biosorbents loaded by Cu2+ ions could be easily regenerated and reusable. On the other hand, the results of adsorption kinetics and equilibrium isotherms were indicated high correlation coefficient (closer to a unit) for the pseudo-second-order and excellent fitted the adsorption data with the Langmuir isotherm model. Furthermore, the antimicrobial efficiency of the synthesized samples were tested on the Staphylococcus aureus and the Escherichia coli.
Collapse
Affiliation(s)
- Narjes Nemati Dil
- Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
| | - Mohammad Sadeghi
- Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran.
| |
Collapse
|
32
|
Synthesis and characterization of dual responsive sodium alginate-g-acryloyl phenylalanine-poly N -isopropyl acrylamide smart hydrogels for the controlled release of anticancer drug. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2017.12.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Eswaramma S, Reddy NS, Rao KSVK. Phosphate crosslinked pectin based dual responsive hydrogel networks and nanocomposites: Development, swelling dynamics and drug release characteristics. Int J Biol Macromol 2017; 103:1162-1172. [PMID: 28576553 DOI: 10.1016/j.ijbiomac.2017.05.160] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/17/2017] [Accepted: 05/27/2017] [Indexed: 01/08/2023]
Abstract
Potential dual responsive hydrogel networks (PPAD) are fabricated from pectin, poly((2-dimethylamino)ethyl methacrylate)) and phosphate crosslinker bis[2-methacryloyloxy] ethyl phosphate (BMEP) by a simple free radical polymerization. These hydrogel networks are successfully utilized for encapsulation of an anti-cancer drug, 5-fluorouracil (5-FU) and also employed as versatile platforms for production of silver nanoparticles. Fabricated hydrogel networks and silver nanocomposites were characterized by FTIR, SEM, EDX, TEM, DLS, DSC, TGA and XRD. Different polymer network parameters such as MC¯, χ, ξ and υe and diffusion constant (D) were evaluated to assess the drug release profile. The 5FU loaded PPAD hydrogels were used to perform in vitro release studies in both gastric and intestinal conditions of GIT (pH 1.2 & pH 7.4) at two different temperatures (25 and 37°C). On the other hand various kinetic models (zero, first, Higuchi & Koresmeyer-Peppas) have also been employed to fit drug release profile. In addition, the antibacterial activity of PPAD silver nanocomposites were tested against four bacterial species Escherichia coli (-ve), Klebsiella pneumoniae (-ve), Bacillus cereus (+ve) and Staphylococcus aereus (+ve) using zone of inhibition test.
Collapse
Affiliation(s)
- S Eswaramma
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003, India
| | - N Sivagangi Reddy
- Advanced Nanomaterials Lab, Department of Polymer Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - K S V Krishna Rao
- Polymer Biomaterial Design and Synthesis Laboratory, Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, 516003, India.
| |
Collapse
|
34
|
Eswaramma S, Rao KK. Synthesis of dual responsive carbohydrate polymer based IPN microbeads for controlled release of anti-HIV drug. Carbohydr Polym 2017; 156:125-134. [DOI: 10.1016/j.carbpol.2016.09.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 08/28/2016] [Accepted: 09/07/2016] [Indexed: 10/21/2022]
|
35
|
RETRACTED ARTICLE: Biosynthesis of colloidal silver nanoparticles: Their characterization and potential antibacterial activity. Macromol Res 2016. [DOI: 10.1007/s13233-016-4086-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Rao KM, Rao KSVK, Ha CS. Stimuli Responsive Poly(Vinyl Caprolactam) Gels for Biomedical Applications. Gels 2016; 2:E6. [PMID: 30674138 PMCID: PMC6318617 DOI: 10.3390/gels2010006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 11/26/2022] Open
Abstract
Poly(vinyl caprolactam) (PNVCL) is one of the most important thermoresponsive polymers because it is similar to poly(N-isopropyl acrylamide). PNVCL precipitates from aqueous solutions in a physiological temperature range (32⁻34 °C). The use of PNVCL instead of PNIPAM is considered advantageous because of the assumed lower toxicity of PNVCL. PNVCL copolymer gels are sensitive to external stimuli, such as temperature and pH; which gives them a wide range of biomedical applications and consequently attracts considerable scientific interest. This review focuses on the recent studies on PNVCL-based stimuli responsive three dimensional hydrogels (macro, micro, and nano) for biomedical applications. This review also covers the future outlooks of PNVCL-based gels for biomedical applications, particularly in the drug delivery field.
Collapse
Affiliation(s)
- Kummara Madhusudana Rao
- Department of Polymer Science and Engineering, Pusan National University, Busan 609 735, Korea.
| | - Kummari Subba Venkata Krishna Rao
- Department of Chemistry, Yogi Vemana University, Kadapa 516 003, Andhra Pradesh, India.
- Department of Chemical Engineering and Material Science, Wayne State University, Detroit, MI48202, USA.
| | - Chang-Sik Ha
- Department of Polymer Science and Engineering, Pusan National University, Busan 609 735, Korea.
| |
Collapse
|
37
|
Feldman D. Polymer nanocomposites in medicine. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2016. [DOI: 10.1080/10601325.2016.1110459] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
38
|
Kumar A, Jaiswal M. Design andin vitroinvestigation of nanocomposite hydrogel basedin situspray dressing for chronic wounds and synthesis of silver nanoparticles using green chemistry. J Appl Polym Sci 2015. [DOI: 10.1002/app.43260] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Arun Kumar
- Department of Pharmacy; Jaypee University of Information Technology (JUIT); Waknaghat Solan, Himachal Pradesh 173234 India
| | - Maneesh Jaiswal
- Department of Pharmacy; Jaypee University of Information Technology (JUIT); Waknaghat Solan, Himachal Pradesh 173234 India
| |
Collapse
|
39
|
Burkova YL, Beleneva IA, Shchipunov YA. Bactericidal sodium alginate films containing nanosized silver particles. COLLOID JOURNAL 2015. [DOI: 10.1134/s1061933x15060058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Zhou H, Xu G, Li J, Zeng S, Zhang X, Zheng Z, Ding X, Chen W, Wang Q, Zhang W. Preparation and self-healing behaviors of poly(acrylic acid)/cerium ions double network hydrogels. Macromol Res 2015. [DOI: 10.1007/s13233-015-3145-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
41
|
Baniasadi M, Minary-Jolandan M. Alginate-Collagen Fibril Composite Hydrogel. MATERIALS (BASEL, SWITZERLAND) 2015; 8:799-814. [PMID: 28787971 PMCID: PMC5455273 DOI: 10.3390/ma8020799] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/10/2015] [Accepted: 02/12/2015] [Indexed: 11/17/2022]
Abstract
We report on the synthesis and the mechanical characterization of an alginate-collagen fibril composite hydrogel. Native type I collagen fibrils were used to synthesize the fibrous composite hydrogel. We characterized the mechanical properties of the fabricated fibrous hydrogel using tensile testing; rheometry and atomic force microscope (AFM)-based nanoindentation experiments. The results show that addition of type I collagen fibrils improves the rheological and indentation properties of the hydrogel.
Collapse
Affiliation(s)
- Mahmoud Baniasadi
- Department of Mechanical Engineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX 75080, USA.
| | - Majid Minary-Jolandan
- Department of Mechanical Engineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX 75080, USA.
| |
Collapse
|
42
|
Borrelli NF, Senaratne W, Wei Y, Petzold O. Physics and chemistry of antimicrobial behavior of ion-exchanged silver in glass. ACS APPLIED MATERIALS & INTERFACES 2015; 7:2195-201. [PMID: 25562105 DOI: 10.1021/am508159z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The results of a comprehensive study involving the antimicrobial activity in a silver ion-exchanged glass are presented. The study includes the glass composition, the method of incorporating silver into the glass, the effective concentration of the silver available at the glass surface, and the effect of the ambient environment. A quantitative kinetic model that includes the above factors in predicting the antimicrobial activity is proposed. Finally, experimental data demonstrating antibacterial activity against Staphylococcus aureus with correlation to the predicted model is shown.
Collapse
Affiliation(s)
- N F Borrelli
- S&T Division, Sullivan Park, Corning Incorporated , Corning, New York 14830, United States
| | | | | | | |
Collapse
|
43
|
Kim HJ, Ryu GC, Jeong KS, Jun J. Hydrogel lenses functionalized with polysaccharide for reduction of protein adsorption. Macromol Res 2014. [DOI: 10.1007/s13233-015-3009-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|