1
|
Li YC, Chu N, Jin FL, Park SJ. Ionic Liquid-Modified Copper for the Enhanced Thermal Conductivity and Mechanical Properties of Epoxy Resin/Expanded Graphite Composites. ACS OMEGA 2024; 9:40992-41002. [PMID: 39371972 PMCID: PMC11447756 DOI: 10.1021/acsomega.4c06340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
In this study, diglycidylether of bisphenol A (DGEBA)/expanded graphite (EG)/copper (Cu) powder composites with high thermal conductivity were prepared for use as thermal interface materials. To construct an excellent thermally conductive network, the Cu surface was modified using the ionic liquid 1-ethyl-3-methyl imidazolium dicyanamide. In addition, the effect of the Cu content on the thermal conductivity, thermal stability, flexural properties, impact strength, and morphologies of the DGEBA/EG/Cu composites was investigated. The results indicated that the addition of 10 wt % Cu increased the thermal conductivity of the composites from 7.35 to 9.86 W/(m·K). Conversely, the thermal stability of the composites decreased with the addition of Cu. The flexural strength and impact strength of the composites increased from 27.9 MPa and 0.81 kJ/m2 to 39.6 MPa and 0.96 kJ/m2, respectively, as the Cu content increased from 0 to 10 wt %. Moreover, the flexural modulus of the composites increased from 9632 to 11,309 MPa with the addition of 10 wt % Cu. Scanning electron microscopy analysis of the DGEBA/EG/Cu composites revealed sheet-shaped blocks with numerous microcracks on the fracture surfaces.
Collapse
Affiliation(s)
- Yan-Chun Li
- Department
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People’s Republic of China
| | - Na Chu
- Department
of Chemistry, Inha University, Michuhol-gu, Incheon 22212, South Korea
| | - Fan-Long Jin
- Department
of Polymer Materials, Jilin Institute of
Chemical Technology, Jilin City 132022, People’s
Republic of China
| | - Soo-Jin Park
- Department
of Chemistry, Inha University, Michuhol-gu, Incheon 22212, South Korea
| |
Collapse
|
2
|
Cheng HL, Chu N, Jin FL, Park SJ. Role of Copper Nanoparticles in the Thermal and Mechanical Properties of Expanded Graphite-Reinforced Epoxy Hybrids. ACS OMEGA 2024; 9:17533-17540. [PMID: 38645326 PMCID: PMC11025089 DOI: 10.1021/acsomega.4c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/23/2024]
Abstract
Epoxy resin is extensively applied in the electronics and electrical fields because of its outstanding comprehensive performance. However, the low thermal conductivity (TC) limits its application in thermal interface materials. In the present work, epoxy-based hybrid composites with high TC were prepared by using expanded graphite (EG) and copper (Cu) nanoparticles as thermally conductive hybrid fillers via hot blending and compression-curing processes. Additionally, the influence of the Cu content on the thermal properties, mechanical properties, and morphology of each epoxy/EG/Cu composite was investigated. According to the results, the epoxy/EG/Cu composite showed a maximum TC of 9.74 W/(m·K) at a fixed EG content of 60 wt % owing to the addition of 10 wt % Cu. After the addition of 10 wt % Cu, the flexural strength, flexural modulus, and impact strengths of epoxy/EG/Cu composites were improved from 27.9 MPa, 9.72 GPa, and 0.81 kJ/m2 to 37.5 MPa, 10.88 GPa, and 0.91 kJ/m2, respectively. Hence, this study offers a feasible strategy for the design of epoxy hybrid composites with excellent TC that can be applied to thermal interface materials.
Collapse
Affiliation(s)
- Hai-Long Cheng
- Department
of Polymer Materials, Jilin Institute of
Chemical Technology, Jilin 132022, People’s
Republic of China
| | - Na Chu
- Department
of Polymer Materials, Jilin Institute of
Chemical Technology, Jilin 132022, People’s
Republic of China
| | - Fan-Long Jin
- Department
of Polymer Materials, Jilin Institute of
Chemical Technology, Jilin 132022, People’s
Republic of China
| | - Soo-Jin Park
- Department
of Chemistry, Inha University, Michuhol-gu, Incheon 22212, South Korea
| |
Collapse
|
3
|
Li YC, Lee SY, Wang H, Jin FL, Park SJ. Enhanced Electrical Properties and Impact Strength of Phenolic Formaldehyde Resin Using Silanized Graphene and Ionic Liquid. ACS OMEGA 2024; 9:294-303. [PMID: 38222635 PMCID: PMC10785615 DOI: 10.1021/acsomega.3c05198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
In this study, to improve the electrical properties and impact strength of phenolic formaldehyde (PF) resin, PF-based composites were prepared by mixing graphene and the ionic liquid 3-decyl-bis(1-vinyl-1H-imidazole-3-ium-bromide) (C10[VImBr]2) via hot blending and compression-curing processes. The graphene surface was modified using a silane coupling agent. The synergistic effect of graphene and C10[VImBr]2 on the electrical properties, electromagnetic shielding efficiency, thermal stability, impact strength, and morphology of PF/graphene and PF/graphene/C10[VImBr]2 composites was then investigated. It was found that the electrical conductivity of the composites significantly increased from 2.3 × 10-10 to 4.14 × 10-3 S/m with an increase in the graphene content from 0 to 15 wt %, increasing further to 0.145 S/m with the addition of 5 wt % C10[VImBr]2. The electromagnetic shielding efficiency of the composite increased from 4.70 to 28.64 dB with the addition of 15 wt % graphene, while the impact strength of the composites rose significantly from 0.59 to 1.13 kJ/m2 with an increase in the graphene content from 0 to 15 wt %, reaching 1.53 kJ/m2 with the addition of 5 wt % C10[VImBr]2. Scanning electron microscopy images of the PF/GNP/C10[VImBr]2 composites revealed a rough morphology with numerous microcracks.
Collapse
Affiliation(s)
- Yan-Chun Li
- Department
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People’s Republic of China
| | - Seul-Yi Lee
- Department
of Chemistry, Inha University, Inharo 100, Incheon 22212, South Korea
| | - Hong Wang
- Institute
of Petrochemical Technology, Jilin Institute
of Chemical Technology, Jilin City 132022, People’s
Republic of China
| | - Fan-Long Jin
- Department
of Polymer Materials, Jilin Institute of
Chemical Technology, Jilin City 132022, People’s
Republic of China
| | - Soo-Jin Park
- Department
of Chemistry, Inha University, Inharo 100, Incheon 22212, South Korea
| |
Collapse
|
4
|
Saliakas S, Damilos S, Karamitrou M, Trompeta AF, Milickovic TK, Charitidis C, Koumoulos EP. Integrating Exposure Assessment and Process Hazard Analysis: The Nano-Enabled 3D Printing Filament Extrusion Case. Polymers (Basel) 2023; 15:2836. [PMID: 37447482 DOI: 10.3390/polym15132836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Nanoparticles are being used in novel applications of the thermoplastics industry, including automotive parts, the sports industry and leisure and consumer goods, which can be produced nowadays through additive manufacturing. However, there is limited information on the health and safety aspects during the production of these new materials, mainly from recycled sources. This study covers the exposure assessment to nano- and micro-size particles emitted from the nanocomposites during the production of filaments for 3D printing through a compounding and extrusion pilot line using recycled (post-industrial) thermoplastic polyurethane (TPU) and recycled polyamide 12 (PA12), which have been also upcycled through reinforcement with iron oxide nanoparticles (Fe3O4 NPs), introducing matrix healing properties triggered by induction heating. The assessment protocol included near- and far-field measurements, considering the extruder as the primary emission source, and portable measuring devices for evaluating particulate emissions reaching the inhalable zone of the lab workers. A Failure Modes and Effects Analysis (FMEA) study for the extrusion process line was defined along with a Failure Tree Analysis (FTA) process in which the process deviations, their sources and the relations between them were documented. FTA allowed the identification of events that should take place in parallel (simultaneously) or in series for the failure modes to take place and the respective corrective actions to be proposed (additional to the existing control measures).
Collapse
Affiliation(s)
- Stratos Saliakas
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium
| | - Spyridon Damilos
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium
| | - Melpo Karamitrou
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece
| | - Aikaterini-Flora Trompeta
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece
| | - Tatjana Kosanovic Milickovic
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece
| | - Costas Charitidis
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece
| | - Elias P Koumoulos
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium
| |
Collapse
|
5
|
Mechanical and Thermal Characterization on Synthesized Silane-Treated Graphitic Carbon Nitride (g-C3N4) Reinforced 3D Printed Poly (Lactic Acid) Composite. J Inorg Organomet Polym Mater 2023. [DOI: 10.1007/s10904-023-02579-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
6
|
Li Y, Tang K, Jin F, Park S. Enhanced thermal stability and impact strength of phenolic formaldehyde resin using acid‐treated basalt scales. J Appl Polym Sci 2022. [DOI: 10.1002/app.52827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yan‐Chun Li
- Department of Chemistry and Pharmaceutical Engineering Jilin Institute of Chemical Technology Jilin City China
| | - Kai‐Jun Tang
- Changchun Faway Tongyang Automobile Plastic Componets Co., Ltd. Jilin City China
| | - Fan‐Long Jin
- Department of Polymer Materials Jilin Institute of Chemical Technology Jilin City China
| | - Soo‐Jin Park
- Department of Chemistry Inha University Michuhol‐gu South Korea
| |
Collapse
|
7
|
Jin FL, Chu N, Yao SS, Park SJ. Thermal and electrical conductivity improvement in epoxy resin with expanded graphite and silver plating. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1065-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Yao SS, Gao MZ, Feng ZY, Jin FL, Park SJ. Thermal and mechanical properties of poly(latic acid) reinforced with silanized basalt scales. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-1014-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Wang H, Yao SS, Guan Z, Jin FL, Park SJ. Electrical property improvement of phenolic formaldehyde resin with graphene and ionic liquid. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0860-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Synergistic reinforcing of poly(lactic acid) by poly(butylene adipate‐
co
‐terephthalate) and alumina nanoparticles. J Appl Polym Sci 2021. [DOI: 10.1002/app.50250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Yao SS, Ma CL, Jin FL, Park SJ. Fracture toughness enhancement of epoxy resin reinforced with graphene nanoplatelets and carbon nanotubes. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0620-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Lule ZC, Kim J. Thermally conductive polybutylene succinate composite filled with Si-O-N-C functionalized silicon carbide fabricated via low-speed melt extrusion. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109849] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Improved impact strength of poly(lactic acid) by incorporating poly(butylene succinate) and silicon dioxide nanoparticles. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0488-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Lee WJ, Cha SH. Improvement of Mechanical and Self-Healing Properties for Polymethacrylate Derivatives Containing Maleimide Modified Graphene Oxide. Polymers (Basel) 2020; 12:E603. [PMID: 32155854 PMCID: PMC7182887 DOI: 10.3390/polym12030603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/19/2023] Open
Abstract
In this paper, a self-healable nanocomposite based on the Diels-Alder reaction is developed. A graphene-based nanofiller is introduced to improve the self-healing efficiency, as well as the mechanical properties of the nanocomposite. Graphene oxide (GO) is modified with maleimide functional groups, and the maleimide-modified GO (mGO) enhanced the compatibility of the polymer matrix and nanofiller. The tensile strength of the nanocomposite containing 0.030 wt% mGO is improved by 172%, compared to that of a polymer film incorporating both furan-functionalized polymer and bismaleimide without any nanofiller. Moreover, maleimide groups of the surface on mGO participate in the Diels-Alder reaction, which improves the self-healing efficiency. The mechanical and self-healing properties are significantly improved by using a small amount of mGO.
Collapse
Affiliation(s)
| | - Sang-Ho Cha
- Department of Chemical Engineering Kyonggi University, 154-42, Gwanggyosan-ro, Yeongtong-gu, Suwon, Gyeonggi 16227, Korea;
| |
Collapse
|
15
|
Lule ZC, Wondu Shiferaw E, Kim J. Thermomechanical Properties of SiC-Filled Polybutylene Succinate Composite Fabricated via Melt Extrusion. Polymers (Basel) 2020; 12:E418. [PMID: 32054110 PMCID: PMC7077630 DOI: 10.3390/polym12020418] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 11/17/2022] Open
Abstract
Polybutylene succinate (PBS) composites filled with various mass fractions of silicon carbide (SiC) particles were fabricated via slow melt extrusion. The morphological analysis revealed that the fabrication technique assisted in achieving a good adhesion between the PBS and SiC, along with excellent filler dispersion throughout the PBS matrix. The inclusion of 40 wt.% SiC in the PBS composite afforded a 10 °C increase in the thermal degradation temperature and a 160% enhancement in the thermal conductivity relative to the neat PBS. The crystallization temperature also increased with the inclusion of SiC particles, thus making the composites easier to process. Furthermore, the improvement in the Young's modulus of the PBS composites increased their rigidity and stiffness relative to the neat PBS.
Collapse
Affiliation(s)
| | | | - Jooheon Kim
- School of Chemical Engineering & Materials Science, Chung-Ang University, Seoul 156-756, Korea; (Z.C.L.); (E.W.S.)
| |
Collapse
|
16
|
Jin F, Ma C, Guo B, Park S. Effect of Surface Modification on Thermal Stability, Flexural Properties, and Impact Strength of Epoxy/Graphene Nanocomposites. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11858] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fan‐Long Jin
- Department of Polymer MaterialsJilin Institute of Chemical Technology Jilin City 132022 People's Republic of China
| | - Chun‐Liu Ma
- Department of Polymer MaterialsJilin Institute of Chemical Technology Jilin City 132022 People's Republic of China
- College of ChemistryJilin University Changchun City 130012 People's Republic of China
| | - Bao‐Tian Guo
- Department of Polymer MaterialsJilin Institute of Chemical Technology Jilin City 132022 People's Republic of China
| | - Soo‐Jin Park
- Department of ChemistryInha University Incheon 22212 South Korea
| |
Collapse
|
17
|
Recent Trends of Foaming in Polymer Processing: A Review. Polymers (Basel) 2019; 11:polym11060953. [PMID: 31159423 PMCID: PMC6631771 DOI: 10.3390/polym11060953] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/29/2023] Open
Abstract
Polymer foams have low density, good heat insulation, good sound insulation effects, high specific strength, and high corrosion resistance, and are widely used in civil and industrial applications. In this paper, the classification of polymer foams, principles of the foaming process, types of blowing agents, and raw materials of polymer foams are reviewed. The research progress of various foaming methods and the current problems and possible solutions are discussed in detail.
Collapse
|