1
|
Risangud N, Mama J, Sungkhaphan P, Pananusorn P, Termkunanon O, Arkana MS, Sripraphot S, Lertwimol T, Thongkham S. Synthesis and Characterization of Furan-Based Methacrylate Oligomers Containing the Imine Functional Group for Stereolithography. ACS OMEGA 2024; 9:30771-30781. [PMID: 39035923 PMCID: PMC11256344 DOI: 10.1021/acsomega.4c03274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/23/2024]
Abstract
Herein, a furan-based methacrylate oligomer (FBMO) featuring imine functional groups was synthesized for application in stereolithography. The preparation involved the imination reaction of 5-hydroxymethylfurfural (5-HMF) and amino ethanol. Utilizing 5-HMF as a sustainable building block for furan-based polymers, FBMO was formulated and subsequently integrated into photosensitive resin formulations along with methacrylate-containing diluents, such as PEGDMA and TEGDMA. The synthesized furan-based methacrylate oligomers underwent comprehensive characterization using FTIR, 1H NMR spectroscopy, and size exclusion chromatography. The impact of methacrylate-containing diluents on various properties of the formulated resins and the resulting 3D-printed specimens was systematically evaluated. This assessment included an analysis of rheological behavior, printing fidelity, mechanical properties, thermal stability, surface morphology, and cytotoxicity. By adjusting the ratios of FBMO to methacrylate-containing diluents within the range of 50:50 to 90:10, the viscosity of the resulting resins was controlled to fall within 0.04 to 0.28 Pa s at a shear rate of 10 s-1. The 3D-printed specimens exhibited precise conformity to the computer-aided design (CAD) model and demonstrated compressive moduli ranging from 0.53 ± 0.04 to 144 ± 6.70 MPa, dependent on the resin formulation and internal structure. Furthermore, cytotoxicity assessments revealed that the 3D-printed specimens were noncytotoxic to porcine chondrocytes. In conclusion, we introduce a new strategy to prepare the furan-based methacrylate oligomer (FBMO) and 3D-printed specimens with adjustable properties using stereolithography, which can be further utilized for appropriate applications.
Collapse
Affiliation(s)
- Nuttapol Risangud
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
- Petroleum
and Petrochemical College, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Jittima Mama
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| | - Piyarat Sungkhaphan
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Puttipong Pananusorn
- Department
of Materials Science and Engineering, School of Molecular Science
and Engineering, Vidyasirimedhi Institute
of Science and Technology (VISTEC), Wangchan, Rayong 21210, Thailand
| | - Orawan Termkunanon
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| | | | - Supang Sripraphot
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| | - Tareerat Lertwimol
- National
Metal and Materials Technology Center, National
Science and Technology Development Agency, 111 Thailand Science Park, Phahonyothin Road, Klong Luang, Pathum Thani 12120, Thailand
| | - Somprasong Thongkham
- National
Nanotechnology Center, National Science
and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong
1, Klong Luang, Pathumthani 12120, Thailand
| |
Collapse
|
2
|
Hong PH, Moon G, Kim J, Choi K, Ko MJ, Yoon HG, Hong SW. Highly Self-Healable Polymeric Coating Materials Based on Charge Transfer Complex Interactions with Outstanding Weatherability. Polymers (Basel) 2023; 15:4544. [PMID: 38231957 PMCID: PMC10707963 DOI: 10.3390/polym15234544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
In this study, we prepare highly self-healable polymeric coating materials using charge transfer complex (CTC) interactions. The resulting coating materials demonstrate outstanding thermal stability (1 wt% loss thermal decomposition temperature at 420 °C), rapid self-healing kinetics (in 5 min), and high self-healing efficiency (over 99%), which is facilitated by CTC-induced multiple interactions between the polymeric chains. In addition, these materials exhibit excellent optical properties, including transmittance over 91% and yellow index (YI) below 2, and show enhanced weatherability with a ΔYI value below 0.5 after exposure to UV light for 72 h. Furthermore, the self-healable coating materials developed in this study show outstanding mechanical properties by overcoming the limitations of conventional self-healing materials.
Collapse
Affiliation(s)
- Pyong Hwa Hong
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Republic of Korea
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gyeongmin Moon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Republic of Korea
| | - Jinsil Kim
- Department of Chemical Engineering, University of Montreal, 2900 Edouard Montpetit Blvd, Montreal, QC H3T 1J4, Canada
| | - Kiwon Choi
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Ho Gyu Yoon
- Department of Materials Science and Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sung Woo Hong
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Republic of Korea
- Convergence Research Center for Solutions to Electromagnetic Interference in Future-Mobility, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| |
Collapse
|
3
|
El Choufi N, Mustapha S, Tehrani B A, Grady BP. An Overview of Self-Healable Polymers and Recent Advances in the Field. Macromol Rapid Commun 2022; 43:e2200164. [PMID: 35478422 DOI: 10.1002/marc.202200164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Indexed: 12/23/2022]
Abstract
The search for materials with better performance, longer service life, lower environmental impact, and lower overall cost is at the forefront of polymer science and material engineering. This has led to the development of self-healing polymers with a range of healing mechanisms including capsular-based, vascular, and intrinsic self-healing polymers. The development of self-healable systems has been inspired by the healing of biological systems such as skin wound healing and broken bone reconstruction. The goal of using self-healing polymers in various applications is to extend the service life of polymers without the need for replacement or human intervention especially in restricted access areas such as underwater/underground piping where inspection, intervention, and maintenance are very difficult. Through an industrial and scholarly lens, this paper provides (a) an overview of self-healing polymers, (b) classification of different self-healing polymers and polymer-based composites, (c) mechanical, thermal, and electrical analysis characterization, (d) applications in coating, composites, and electronics, (e) modeling and simulation, and (f) recent development in the past 20 years . This review highlights the importance of healable polymers for an economically and environmentally sustainable future, the most recent advances in the field, and current limitations in fabrication, manufacturing, and performance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nadim El Choufi
- Chemical Engineering Department, American University of Beirut, Lebanon
| | - Samir Mustapha
- Mechanical Engineering Department, American University of Beirut, Lebanon
| | - Ali Tehrani B
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Brian P Grady
- School of Chemical, Biological and, Materials Engineering, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|