1
|
Khan J, Kim ND, Bromhead C, Truman P, Kruger MC, Mallard BL. Hepatotoxicity of titanium dioxide nanoparticles. J Appl Toxicol 2025; 45:23-46. [PMID: 38740968 PMCID: PMC11634566 DOI: 10.1002/jat.4626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The food additive E171 (titanium dioxide, TiO2), is widely used in foods, pharmaceuticals and cosmetics. It is a fine white powder, with at least one third of its particles sized in the nanoparticulate (˂100 nm range, TiO2 NPs). The use of E171 is controversial as its relevant risk assessment has never been satisfactorily accomplished. In vitro and in vivo studies have shown dose-dependent toxicity in various organs including the liver. TiO2 NPs have been shown to induce inflammation, cell death and structural and functional changes within the liver. The toxicity of TiO2 NPs in experimental models varies between organs and according to their physiochemical characteristics and parameters such as dosage and route of administration. Among these factors, ingestion is the most significant exposure route, and the liver is a key target organ. The aim of this review is to highlight the reported adverse effects of orally administered TiO2 NPs on the liver and to discuss the controversial state of its toxicity.
Collapse
Affiliation(s)
- Jangrez Khan
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Nicholas D. Kim
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Collette Bromhead
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Penelope Truman
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Marlena C. Kruger
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Beth L. Mallard
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| |
Collapse
|
2
|
Gong HZ, Li S, Wang FY, Zhu Y, Jiang QL, Zhu XL, Zeng Y, Jiang J. Titanium dioxide nanoparticles Disrupt ultrastructure and function of Rat thyroid tissue via oxidative stress. Heliyon 2024; 10:e34722. [PMID: 39130420 PMCID: PMC11315151 DOI: 10.1016/j.heliyon.2024.e34722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Nano-TiO2 is widely used in various fields such as industry, daily necessities, food and medicine. Previous studies have shown that it can enter mammalian tissues through the digestive tract or respiratory tract and have effects on various organs and systems. However, the effect of nano-TiO2 on the mammalian thyroid gland has not been reported. In this study, we fed SD rats with rutile nano-TiO2 at a dose of 5 mg/kg body weight for 3 weeks, and then examined the thyroid histology and thyroid function of the rats. In vitro experiments were conducted to determine the effects of nano-TiO2 on the viability, apoptosis, inflammatory factors, antioxidant enzymes, and oxidative stress of human thyroid follicular epithelial cells. Histological evidence showed abnormal morphology of rat thyroid follicles and organelle damage in follicular epithelial cells. Nano-TiO2 caused a decrease in the level of sodium/iodide symporter (NIS), an increase in the level of apoptotic protein cleaved-caspase 3, and an increase in the levels of pro-inflammatory factors IL-1β and TNF-α in rat thyroid tissue. Nano-TiO2 also resulted in increased serum FT4 and TPO-Ab levels. In in vitro experiments, nano-TiO2 reduced the viability of human thyroid follicular cells, downregulated the levels and activities of antioxidant enzymes CAT, GPX1 and SOD, and increased the levels of ROS and MDA caused by oxidative stress. These results indicate that nano-TiO2 damages the structure and function of thyroid follicular epithelial cells through oxidative stress. Long-term exposure to nano-TiO2 could be a potential risk factor for thyroid dysfunction.
Collapse
Affiliation(s)
- Hong-Zhen Gong
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Sha Li
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Fu-Yi Wang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Ye Zhu
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qi-Lan Jiang
- Department of Clinical Nutrition, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Xiao-Ling Zhu
- Department of Intensive Care, Deyang People's Hospital, Deyang, Sichuan Province, China
| | - Yang Zeng
- Department of Orthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
3
|
Balci-Ozyurt A, Yirün A, Cakır DA, Zeybek ND, Oral D, Sabuncuoğlu S, Erkekoğlu P. Evaluation of possible cytotoxic, genotoxic and epigenotoxic effects of titanium dioxide nanoparticles and possible protective effect of melatonin. Toxicol Mech Methods 2024; 34:109-121. [PMID: 37794599 DOI: 10.1080/15376516.2023.2259980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/11/2023] [Indexed: 10/06/2023]
Abstract
Nanoparticles (NPs) are particles of matter that are between 1 to 100 nm in diameter. They are suggested to cause toxic effects in both humans and environment thorough different mechanisms. However, their toxicity profile may be different from the parent material. Titanium dioxide (TiO2) NPs are widely used in cosmetic, pharmaceutical and food industries. As a white pigment, the use of TiO2 is used in food coloring, industrial paints, clothing and UV filters has increased tremendously in recent years. Melatonin, on the other hand, is a well-known antioxidant and may prevent oxidative stress caused by a variety of different substances, including NPs. In the current study, we aimed to comparatively investigate the effects of normal-sized TiO2 (220 nm) and nano-sized TiO2 (21 nm) on cytopathology, cytotoxicity, oxidative damage (lipid peroxidation, protein oxidation and glutathione), genotoxicity (8-hydroxydeoxyguanosine), apoptosis (caspase 3, 8 and 9) and epigenetic alterations (global DNA methylation, H3 acetylation) on 3T3 fibroblast cells. In addition, the possible protective effects of melatonin, which is known to have strong antioxidant effects, against the toxicity of TiO2 were also evaluated. Study groups were: a. the control group; b. melatonin group; c. TiO2 group; d. nano-sized TiO2 group; e. TiO2 + melatonin group and f. nano-sized TiO2 + melatonin group. We observed that both normal-sized and nano-sized TiO2 NPs showed significant toxic effects. However, TiO2 NPs caused higher DNA damage and global DNA methylation compared to normal-sized TiO2 whereas normal-sized TiO2 led to lower H3 acetylation vs. TiO2 NPs. Melatonin showed partial protective effect against the toxicity caused by TiO2 NPs.
Collapse
Affiliation(s)
- Aylin Balci-Ozyurt
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Bahçeşehir University School of Pharmacy, İstanbul, Turkey
| | - Anıl Yirün
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Çukurova University Faculty of Pharmacy, Adana, Turkey
| | - Deniz Arca Cakır
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| | - N Dilara Zeybek
- Department of Histology and Embryology, Hacettepe University, Faculty of Medicine, Ankara, Turkey
| | - Didem Oral
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Pharmaceutical Toxicology, Düzce University Faculty of Pharmacy, Düzce, Turkey
| | - Suna Sabuncuoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
| | - Pınar Erkekoğlu
- Department of Pharmaceutical Toxicology, Hacettepe University Faculty of Pharmacy, Ankara, Turkey
- Department of Vaccine Technology, Hacettepe University Vaccine Institute, Ankara, Turkey
| |
Collapse
|
4
|
Møller P, Roursgaard M. Gastrointestinal tract exposure to particles and DNA damage in animals: A review of studies before, during and after the peak of nanotoxicology. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108491. [PMID: 38522822 DOI: 10.1016/j.mrrev.2024.108491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
Humans ingest particles and fibers on daily basis. Non-digestible carbohydrates are beneficial to health and food additives are considered safe. However, titanium dioxide (E171) has been banned in the European Union because the European Food Safety Authority no longer considers it non-genotoxic. Ingestion of microplastics and nanoplastics are novel exposures; their potential hazardous effects to humans have been under the radar for many years. In this review, we have assessed the association between oral exposure to man-made particles/fibers and genotoxicity in gastrointestinal tract cells and secondary tissues. We identified a total of 137 studies on oral exposure to particles and fibers. This was reduced to 49 papers with sufficient quality and relevance, including exposures to asbestos, diesel exhaust particles, titanium dioxide, silver nanoparticles, zinc oxide, synthetic amorphous silica and certain other nanomaterials. Nineteen studies show positive results, 25 studies show null results, and 5 papers show equivocal results on genotoxicity. Recent studies seem to show null effects, whereas there is a higher proportion of positive genotoxicity results in early studies. Genotoxic effects seem to cluster in studies on diesel exhaust particles and titanium dioxide, whereas studies on silver nanoparticles, zinc oxide and synthetic amorphous silica seem to show mainly null effects. The most widely used genotoxic tests are the alkaline comet assay and micronucleus assay. There are relatively few results on genotoxicity using reliable measurements of oxidatively damaged DNA, DNA double strand breaks (γH2AX assay) and mutations. In general, evidence suggest that oral exposure to particles and fibers is associated with genotoxicity in animals.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K DK-1014, Denmark.
| | - Martin Roursgaard
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, Copenhagen K DK-1014, Denmark
| |
Collapse
|
5
|
Abd-Elhakim YM, Hashem MMM, Abo-El-Sooud K, Mousa MR, Soliman AM, Mouneir SM, Ismail SH, Hassan BA, El-Nour HHM. Interactive effects of cadmium and titanium dioxide nanoparticles on hepatic tissue in rats: Ameliorative role of coenzyme 10 via modulation of the NF-κB and TNFα pathway. Food Chem Toxicol 2023; 182:114191. [PMID: 37980978 DOI: 10.1016/j.fct.2023.114191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
This study investigated the effect of oral dosing of titanium dioxide nanoparticles (TNPs) and cadmium (Cd2+) on rat liver and the potential protective role of coenzyme Q10 (CQ10) against TNPs and Cd2+-induced hepatic injury. Seventy male Sprague Dawley rats were divided into seven groups and orally given distilled water, corn oil, CQ10 (10 mg/kg b.wt), TNPs (50 mg/kg b.wt), Cd2+ (5 mg/kg b.wt), TNPs + Cd2+, or TNPs + Cd2++CQ10 by gastric gavage for 60 successive days. The results showed that individual or mutual exposure to TNPs and Cd2+ significantly increased the serum levels of various hepatic enzymes and lipids, depleted the hepatic content of antioxidant enzymes, and increased malondialdehyde. Moreover, the hepatic titanium and Cd2+ content were increased considerably in TNPs and/or Cd2+-exposed rats. Furthermore, marked histopathological perturbations with increased immunoexpression of tumor necrosis factor-alpha and nuclear factor kappa B were evident in TNPs and/or Cd2+-exposed rats. However, CQ10 significantly counteracted the damaging effect of combined exposure of TNPs and Cd2+ on the liver. The study concluded that TNPs and Cd2+ exposure harm hepatic function and its architecture, particularly at their mutual exposure, but CQ10 could be a candidate protective agent against TNPs and Cd2+ hepatotoxic impacts.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Mohamed M M Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed R Mousa
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed M Soliman
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samar M Mouneir
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Campus, 6th October City, Giza, 12588, Egypt
| | - Bayan A Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Hayat H M El-Nour
- Biology of Reproduction Department, Animal Reproduction Research Institute, Giza 3514805, Egypt
| |
Collapse
|
6
|
Cao Y, Chen J, Bian Q, Ning J, Yong L, Ou T, Song Y, Wei S. Genotoxicity Evaluation of Titanium Dioxide Nanoparticles In Vivo and In Vitro: A Meta-Analysis. TOXICS 2023; 11:882. [PMID: 37999534 PMCID: PMC10675837 DOI: 10.3390/toxics11110882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Recent studies have raised concerns about genotoxic effects associated with titanium dioxide nanoparticles (TiO2 NPs), which are commonly used. This meta-analysis aims to investigate the potential genotoxicity of TiO2 NPs and explore influencing factors. METHODS This study systematically searched Chinese and English literature. The literature underwent quality evaluation, including reliability evaluation using the toxicological data reliability assessment method and relevance evaluation using routine evaluation forms. Meta-analysis and subgroup analyses were performed using R software, with the standardized mean difference (SMD) as the combined effect value. RESULTS A total of 26 studies met the inclusion criteria and passed the quality assessment. Meta-analysis results indicated that the SMD for each genotoxic endpoint was greater than 0. This finding implies a significant association between TiO2 NP treatment and DNA damage and chromosome damage both in vivo and in vitro and gene mutation in vitro. Subgroup analysis revealed that short-term exposure to TiO2 NPs increased DNA damage. Rats and cancer cells exhibited heightened susceptibility to DNA damage triggered by TiO2 NPs (p < 0.05). CONCLUSIONS TiO2 NPs could induce genotoxicity, including DNA damage, chromosomal damage, and in vitro gene mutations. The mechanism of DNA damage response plays a key role in the genotoxicity induced by TiO2 NPs.
Collapse
Affiliation(s)
- Yue Cao
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan 430030, China
| | - Jinyao Chen
- Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Yihuan Road, Chengdu 610041, China;
| | - Qian Bian
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Jiangsu Road, Nanjing 210009, China;
| | - Junyu Ning
- Institute of Toxicology, Beijing Center for Disease Prevention and Control, Hepingli Middle Street, Beijing 100013, China;
| | - Ling Yong
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Tong Ou
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Yan Song
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People’s Republic of China (China National Center for Food Safety Risk Assessment), Guangqu Road, Beijing 100022, China; (Y.C.); (L.Y.); (T.O.)
| | - Sheng Wei
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road, Wuhan 430030, China
| |
Collapse
|
7
|
A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul Toxicol Pharmacol 2022; 136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
|
8
|
Rolo D, Assunção R, Ventura C, Alvito P, Gonçalves L, Martins C, Bettencourt A, Jordan P, Vital N, Pereira J, Pinto F, Matos P, Silva MJ, Louro H. Adverse Outcome Pathways Associated with the Ingestion of Titanium Dioxide Nanoparticles-A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12193275. [PMID: 36234403 PMCID: PMC9565478 DOI: 10.3390/nano12193275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 05/15/2023]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) are widely used, and humans are exposed through food (E171), cosmetics (e.g., toothpaste), and pharmaceuticals. The oral and gastrointestinal (GIT) tract are the first contact sites, but it may be systemically distributed. However, a robust adverse outcome pathway (AOP) has not been developed upon GIT exposure to TiO2-NPs. The aim of this review was to provide an integrative analysis of the published data on cellular and molecular mechanisms triggered after the ingestion of TiO2-NPs, proposing plausible AOPs that may drive policy decisions. A systematic review according to Prisma Methodology was performed in three databases of peer-reviewed literature: Pubmed, Scopus, and Web of Science. A total of 787 records were identified, screened in title/abstract, being 185 used for data extraction. The main endpoints identified were oxidative stress, cytotoxicity/apoptosis/cell death, inflammation, cellular and systemic uptake, genotoxicity, and carcinogenicity. From the results, AOPs were proposed where colorectal cancer, liver injury, reproductive toxicity, cardiac and kidney damage, as well as hematological effects stand out as possible adverse outcomes. The recent transgenerational studies also point to concerns with regard to population effects. Overall, the findings further support a limitation of the use of TiO2-NPs in food, announced by the European Food Safety Authority (EFSA).
Collapse
Affiliation(s)
- Dora Rolo
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence:
| | - Ricardo Assunção
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
- IUEM, Instituto Universitário Egas Moniz, Egas Moniz-Cooperativa de Ensino Superior, CRL, 2829-511 Monte de Caparica, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paula Alvito
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- CESAM, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Carla Martins
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- NOVA National School of Public Health, Public Health Research Centre, Universidade NOVA de Lisboa, 1600-560 Lisbon, Portugal
- Comprehensive Health Research Center (CHRC), 1169-056 Lisbon, Portugal
| | - Ana Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | - Peter Jordan
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Joana Pereira
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Fátima Pinto
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Paulo Matos
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
9
|
Vieira A, Gramacho A, Rolo D, Vital N, Silva MJ, Louro H. Cellular and Molecular Mechanisms of Toxicity of Ingested Titanium Dioxide Nanomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1357:225-257. [DOI: 10.1007/978-3-030-88071-2_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractAn exponential increase in products containing titanium dioxide nanomaterials (TiO2), in agriculture, food and feed industry, lead to increased oral exposure to these nanomaterials (NMs). Thus, the gastrointestinal tract (GIT) emerges as a possible route of exposure that may drive systemic exposure, if the intestinal barrier is surpassed. NMs have been suggested to produce adverse outcomes, such as genotoxic effects, that are associated with increased risk of cancer, leading to a concern for public health. However, to date, the differences in the physicochemical characteristics of the NMs studied and other variables in the test systems have generated contradictory results in the literature. Processes like human digestion may change the NMs characteristics, inducing unexpected toxic effects in the intestine. Using TiO2 as case-study, this chapter provides a review of the works addressing the interactions of NMs with biological systems in the context of intestinal tract and digestion processes, at cellular and molecular level. The knowledge gaps identified suggest that the incorporation of a simulated digestion process for in vitro studies has the potential to improve the model for elucidating key events elicited by these NMs, advancing the nanosafety studies towards the development of an adverse outcome pathway for intestinal effects.
Collapse
|
10
|
Younes M, Aquilina G, Castle L, Engel K, Fowler P, Frutos Fernandez MJ, Fürst P, Gundert‐Remy U, Gürtler R, Husøy T, Manco M, Mennes W, Moldeus P, Passamonti S, Shah R, Waalkens‐Berendsen I, Wölfle D, Corsini E, Cubadda F, De Groot D, FitzGerald R, Gunnare S, Gutleb AC, Mast J, Mortensen A, Oomen A, Piersma A, Plichta V, Ulbrich B, Van Loveren H, Benford D, Bignami M, Bolognesi C, Crebelli R, Dusinska M, Marcon F, Nielsen E, Schlatter J, Vleminckx C, Barmaz S, Carfí M, Civitella C, Giarola A, Rincon AM, Serafimova R, Smeraldi C, Tarazona J, Tard A, Wright M. Safety assessment of titanium dioxide (E171) as a food additive. EFSA J 2021; 19:e06585. [PMID: 33976718 PMCID: PMC8101360 DOI: 10.2903/j.efsa.2021.6585] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present opinion deals with an updated safety assessment of the food additive titanium dioxide (E 171) based on new relevant scientific evidence considered by the Panel to be reliable, including data obtained with TiO2 nanoparticles (NPs) and data from an extended one-generation reproductive toxicity (EOGRT) study. Less than 50% of constituent particles by number in E 171 have a minimum external dimension < 100 nm. In addition, the Panel noted that constituent particles < 30 nm amounted to less than 1% of particles by number. The Panel therefore considered that studies with TiO2 NPs < 30 nm were of limited relevance to the safety assessment of E 171. The Panel concluded that although gastrointestinal absorption of TiO2 particles is low, they may accumulate in the body. Studies on general and organ toxicity did not indicate adverse effects with either E 171 up to a dose of 1,000 mg/kg body weight (bw) per day or with TiO2 NPs (> 30 nm) up to the highest dose tested of 100 mg/kg bw per day. No effects on reproductive and developmental toxicity were observed up to a dose of 1,000 mg E 171/kg bw per day, the highest dose tested in the EOGRT study. However, observations of potential immunotoxicity and inflammation with E 171 and potential neurotoxicity with TiO2 NPs, together with the potential induction of aberrant crypt foci with E 171, may indicate adverse effects. With respect to genotoxicity, the Panel concluded that TiO2 particles have the potential to induce DNA strand breaks and chromosomal damage, but not gene mutations. No clear correlation was observed between the physico-chemical properties of TiO2 particles and the outcome of either in vitro or in vivo genotoxicity assays. A concern for genotoxicity of TiO2 particles that may be present in E 171 could therefore not be ruled out. Several modes of action for the genotoxicity may operate in parallel and the relative contributions of different molecular mechanisms elicited by TiO2 particles are not known. There was uncertainty as to whether a threshold mode of action could be assumed. In addition, a cut-off value for TiO2 particle size with respect to genotoxicity could not be identified. No appropriately designed study was available to investigate the potential carcinogenic effects of TiO2 NPs. Based on all the evidence available, a concern for genotoxicity could not be ruled out, and given the many uncertainties, the Panel concluded that E 171 can no longer be considered as safe when used as a food additive.
Collapse
|
11
|
Wani MR, Shadab GGHA. Titanium dioxide nanoparticle genotoxicity: A review of recent in vivo and in vitro studies. Toxicol Ind Health 2020; 36:514-530. [DOI: 10.1177/0748233720936835] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs, size <100 nm) find applications in a wide range of products including food and cosmetics. Studies have found that exposure to TiO2 NPs can cause inflammation, cytotoxicity, genotoxicity and cell apoptosis. In this article, we have reviewed the recent literature on the potential of TiO2 NPs to cause genotoxicity and summarized the results of two standard genotoxicity assays, the comet and micronucleus (MN) assays. Analysis of these peer-reviewed publications shows that the comet assay is the most common genotoxicity test, followed by MN, Ames, and chromosome aberration tests. These assays have reported positive as well as negative results, although there is inconsistency in some results that need to be confirmed further by well-designed experiments. We also discuss the possible mechanisms of TiO2 NP genotoxicity and point out areas that warrant further research.
Collapse
Affiliation(s)
- Mohammad Rafiq Wani
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - GGHA Shadab
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| |
Collapse
|