1
|
Palomino Lago E, Baird A, Blott SC, McPhail RE, Ross AC, Durward-Akhurst SA, Guest DJ. A Functional Single-Nucleotide Polymorphism Upstream of the Collagen Type III Gene Is Associated with Catastrophic Fracture Risk in Thoroughbred Horses. Animals (Basel) 2023; 14:116. [PMID: 38200847 PMCID: PMC10778232 DOI: 10.3390/ani14010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Fractures caused by bone overloading are a leading cause of euthanasia in Thoroughbred racehorses. The risk of fatal fracture has been shown to be influenced by both environmental and genetic factors but, to date, no specific genetic mechanisms underpinning fractures have been identified. In this study, we utilised a genome-wide polygenic risk score to establish an in vitro cell system to study bone gene regulation in horses at high and low genetic risk of fracture. Candidate gene expression analysis revealed differential expression of COL3A1 and STAT1 genes in osteoblasts derived from high- and low-risk horses. Whole-genome sequencing of two fracture cases and two control horses revealed a single-nucleotide polymorphism (SNP) upstream of COL3A1 that was confirmed in a larger cohort to be significantly associated with fractures. Bioinformatics tools predicted that this SNP may impact the binding of the transcription factor SOX11. Gene modulation demonstrated SOX11 is upstream of COL3A1, and the region binds to nuclear proteins. Furthermore, luciferase assays demonstrated that the region containing the SNP has promoter activity. However, the specific effect of the SNP depends on the broader genetic background of the cells and suggests other factors may also be involved in regulating COL3A1 expression. In conclusion, we have identified a novel SNP that is significantly associated with fracture risk and provide new insights into the regulation of the COL3A1 gene.
Collapse
Affiliation(s)
- Esther Palomino Lago
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (E.P.L.); (A.C.R.)
| | - Arabella Baird
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
| | - Sarah C. Blott
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Rhona E. McPhail
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, UK
| | - Amy C. Ross
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (E.P.L.); (A.C.R.)
| | - Sian A. Durward-Akhurst
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Deborah J. Guest
- Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK; (E.P.L.); (A.C.R.)
| |
Collapse
|
2
|
Karagyaur M, Primak A, Efimenko A, Skryabina M, Tkachuk V. The Power of Gene Technologies: 1001 Ways to Create a Cell Model. Cells 2022; 11:cells11203235. [PMID: 36291103 PMCID: PMC9599997 DOI: 10.3390/cells11203235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Modern society faces many biomedical challenges that require urgent solutions. Two of the most important include the elucidation of mechanisms of socially significant diseases and the development of prospective drug treatments for these diseases. Experimental cell models are a convenient tool for addressing many of these problems. The power of cell models is further enhanced when combined with gene technologies, which allows the examination of even more subtle changes within the structure of the genome and permits testing of proteins in a native environment. The list and possibilities of these recently emerging technologies are truly colossal, which requires a rethink of a number of approaches for obtaining experimental cell models. In this review, we analyze the possibilities and limitations of promising gene technologies for obtaining cell models, and also give recommendations on the development and creation of relevant models. In our opinion, this review will be useful for novice cell biologists, as it provides some reference points in the rapidly growing universe of gene and cell technologies.
Collapse
Affiliation(s)
- Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
- Correspondence:
| | - Alexandra Primak
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Anastasia Efimenko
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Mariya Skryabina
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| | - Vsevolod Tkachuk
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, 27/10, Lomonosovsky Ave., 119192 Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, 27/1, Lomonosovsky Ave., 119192 Moscow, Russia
| |
Collapse
|
3
|
Cell models for Alzheimer’s and Parkinson’s disease: At the interface of biology and drug discovery. Biomed Pharmacother 2022; 149:112924. [PMID: 36068783 DOI: 10.1016/j.biopha.2022.112924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022] Open
|
4
|
Hjelm BE, Salhia B, Kurdoglu A, Szelinger S, Reiman RA, Sue LI, Beach TG, Huentelman MJ, Craig DW. In vitro-differentiated neural cell cultures progress towards donor-identical brain tissue. Hum Mol Genet 2013; 22:3534-46. [PMID: 23666530 DOI: 10.1093/hmg/ddt208] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Multiple research groups have observed neuropathological phenotypes and molecular symptoms in vitro using induced pluripotent stem cell (iPSC)-derived neural cell cultures (i.e. patient-specific neurons and glia). However, the global differences/similarities that may exist between in vitro neural cells and their tissue-derived counterparts remain largely unknown. In this study, we compared temporal series of iPSC-derived in vitro neural cell cultures to endogenous brain tissue from the same autopsy donor. Specifically, we utilized RNA sequencing (RNA-Seq) to evaluate the transcriptional progression of in vitro-differentiated neural cells (over a timecourse of 0, 35, 70, 105 and 140 days), and compared this with donor-identical temporal lobe tissue. We observed in vitro progression towards the reference brain tissue, and the following three results support this conclusion: (i) there was a significant increasing monotonic correlation between the days of our timecourse and the number of actively transcribed protein-coding genes and long intergenic non-coding RNAs (lincRNAs) (P < 0.05), consistent with the transcriptional complexity of the brain; (ii) there was an increase in CpG methylation after neural differentiation that resembled the epigenomic signature of the endogenous tissue; and (iii) there was a significant decreasing monotonic correlation between the days of our timecourse and the percent of in vitro to brain-tissue differences (P < 0.05) for tissue-specific protein-coding genes and all putative lincRNAs. Taken together, these results are consistent with in vitro neural development and physiological progression occurring predominantly by transcriptional activation of downregulated genes rather than deactivation of upregulated genes.
Collapse
Affiliation(s)
- Brooke E Hjelm
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Gu Q, Hao J, Zhao XY, Li W, Liu L, Wang L, Liu ZH, Zhou Q. Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions. Protein Cell 2012; 3:71-9. [PMID: 22271597 DOI: 10.1007/s13238-012-2007-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 01/03/2012] [Indexed: 01/01/2023] Open
Abstract
The pluripotent state between human and mouse embryonic stem cells is different. Pluripotent state of human embryonic stem cells (ESCs) is believed to be primed and is similar with that of mouse epiblast stem cells (EpiSCs), which is different from the naïve state of mouse ESCs. Human ESCs could be converted into a naïve state through exogenous expression of defined transcription factors (Hanna et al., 2010). Here we report a rapid conversion of human ESCs to mouse ESC-like naïve states only by modifying the culture conditions. These converted human ESCs, which we called mhESCs (mouse ESC-like human ESCs), have normal karyotype, allow single cell passage, exhibit domed morphology like mouse ESCs and express some pluripotent markers similar with mouse ESCs. Thus the rapid conversion established a naïve pluripotency in human ESCs like mouse ESCs, and provided a new model to study the regulation of pluripotency.
Collapse
Affiliation(s)
- Qi Gu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
A novel xeno-free and feeder-cell-free system for human pluripotent stem cell culture. Protein Cell 2012; 3:51-9. [PMID: 22259120 DOI: 10.1007/s13238-012-2002-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/29/2011] [Indexed: 12/31/2022] Open
Abstract
While human induced pluripotent stem cells (hiPSCs) have promising applications in regenerative medicine, most of the hiPSC lines available today are not suitable for clinical applications due to contamination with nonhuman materials, such as sialic acid, and potential pathogens from animal-product-containing cell culture systems. Although several xeno-free cell culture systems have been established recently, their use of human fibroblasts as feeders reduces the clinical potential of hiPSCs due to batch-to-batch variation in the feeders and time-consuming preparation processes. In this study, we have developed a xeno-free and feeder-cell-free human embryonic stem cell (hESC)/hiPSC culture system using human plasma and human placenta extracts. The system maintains the self-renewing capacity and pluripotency of hESCs for more than 40 passages. Human iPSCs were also derived from human dermal fibroblasts using this culture system by overexpressing three transcription factors-Oct4, Sox2 and Nanog. The culture system developed here is inexpensive and suitable for large scale production.
Collapse
|
7
|
Hjelm BE, Rosenberg JB, Szelinger S, Sue LI, Beach TG, Huentelman MJ, Craig DW. Induction of pluripotent stem cells from autopsy donor-derived somatic cells. Neurosci Lett 2011; 502:219-24. [PMID: 21839145 PMCID: PMC3195418 DOI: 10.1016/j.neulet.2011.07.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 11/22/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) have become an intriguing approach for neurological disease modeling, because neural lineage-specific cell types that retain the donors' complex genetics can be established in vitro. The statistical power of these iPSC-based models, however, is dependent on accurate diagnoses of the somatic cell donors; unfortunately, many neurodegenerative diseases are commonly misdiagnosed in live human subjects. Postmortem histopathological examination of a donor's brain, combined with premortem clinical criteria, is often the most robust approach to correctly classify an individual as a disease-specific case or unaffected control. In this study, we describe iPSCs generated from a skin biopsy collected postmortem during the rapid autopsy of a 75-year-old male, whole body donor, defined as an unaffected neurological control by both clinical and histopathological criteria. These iPSCs were established in a feeder-free system by lentiviral transduction of the Yamanaka factors, Oct3/4, Sox2, Klf4, and c-Myc. Selected iPSC clones expressed both nuclear and surface antigens recognized as pluripotency markers of human embryonic stem cells (hESCs) and were able to differentiate in vitro into neurons and glia. Statistical analysis also demonstrated that fibroblast proliferation was significantly affected by biopsy site, but not donor age (within an elderly cohort). These results provide evidence that autopsy donor-derived fibroblasts can be successfully reprogrammed into iPSCs, and may provide an advantageous approach for generating iPSC-based neurological disease models.
Collapse
Affiliation(s)
- Brooke E. Hjelm
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ
- Arizona Alzheimer's Consortium, Phoenix, AZ
- Molecular and Cellular Biology Interdisciplinary Graduate Program, School of Life Sciences, Arizona State University, Tempe, AZ
| | - Jon B. Rosenberg
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ
- Arizona Alzheimer's Consortium, Phoenix, AZ
| | - Szabolcs Szelinger
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ
- Arizona Alzheimer's Consortium, Phoenix, AZ
- Molecular and Cellular Biology Interdisciplinary Graduate Program, School of Life Sciences, Arizona State University, Tempe, AZ
| | - Lucia I. Sue
- Arizona Alzheimer's Consortium, Phoenix, AZ
- Brain and Body Donation Program, Civin Laboratory for Neuropathology, Banner Sun Health Research Institute (BSHRI), Sun City, AZ
| | - Thomas G. Beach
- Arizona Alzheimer's Consortium, Phoenix, AZ
- Brain and Body Donation Program, Civin Laboratory for Neuropathology, Banner Sun Health Research Institute (BSHRI), Sun City, AZ
| | - Matthew J. Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ
- Arizona Alzheimer's Consortium, Phoenix, AZ
| | - David W. Craig
- Neurogenomics Division, The Translational Genomics Research Institute (TGen), Phoenix, AZ
- Arizona Alzheimer's Consortium, Phoenix, AZ
| |
Collapse
|