1
|
Ye K, Yu J, Li L, Wang H, Tang B, Ni W, Zhou J, Ling Y, Lu X, Niu D, Ramalingam M, Hu J. Microvesicles from Schwann-Like Cells as a New Biomaterial Promote Axonal Growth. J Biomed Nanotechnol 2021; 17:291-302. [PMID: 33785099 DOI: 10.1166/jbn.2021.3037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Schwann cells promote axonal regeneration following peripheral nerve injury. However, in terms of clinical treatment, the therapeutic effects of Schwann cells are limited by their source. The transmission of microvesicles from neuroglia cells to axons is a novel communication mechanism in axon regeneration.To evaluate the effect of microvesicles released from Schwann-like cells on axonal regeneration, neural stem cells derived from human embryonic stem cells differentiated into Schwann-like cells, which presented a typical morphology and characteristics similar to those of schwann cells. The glial markers like MBP, P0, P75NTR, PMP-22, GFAP, HNK-1 and S100 were upregulated, whereas the neural stem markers like NESTIN, SOX1 and SOX2 were significantly downregulated in schwann-like cells. Microvesicles enhanced axonal growth in dorsal root ganglia neurons and regulated GAP43 expression in neuron-like cells (N2A and PC12) through the PTEN/PI3 K/Akt signaling pathway. A 5 mm section of sciatic nerve was transected in Sprague-Dawley rats. With microvesicles transplantation, regenerative nerves were evaluated after 6 weeks. Microvesicles increased sciatic function index scores, delayed gastrocnemius muscle atrophy and elevated βIII-tubulin-labeled axons in vivo. Schwann-like cells serve as a convenient source and promote axonal growth by secreting microvesicles, which may potentially be used as bioengineering materials for nerve tissue repair.
Collapse
Affiliation(s)
- Kai Ye
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jiahong Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Li Li
- Department of Clinical Laboratory, Yijishan Hospital of Wannan Medical College, Wuhu 241000, Anhui, China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Bin Tang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Wei Ni
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jiqin Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yating Ling
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaorui Lu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongdong Niu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Murugan Ramalingam
- Biomaterials and Organ Engineering Group, Centre for Biomaterials, Cellular and Molecular Theranostics, School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
2
|
Mehrjardi NZ, Molcanyi M, Hatay FF, Timmer M, Shahbazi E, Ackermann JP, Herms S, Heilmann-Heimbach S, Wunderlich TF, Prochnow N, Haghikia A, Lampert A, Hescheler J, Neugebauer EAM, Baharvand H, Šarić T. Acquisition of chromosome 1q duplication in parental and genome-edited human-induced pluripotent stem cell-derived neural stem cells results in their higher proliferation rate in vitro and in vivo. Cell Prolif 2020; 53:e12892. [PMID: 32918782 PMCID: PMC7574866 DOI: 10.1111/cpr.12892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/06/2023] Open
Abstract
Objectives Genetic engineering of human‐induced pluripotent stem cell‐derived neural stem cells (hiPSC‐NSC) may increase the risk of genomic aberrations. Therefore, we asked whether genetic modification of hiPSC‐NSCs exacerbates chromosomal abnormalities that may occur during passaging and whether they may cause any functional perturbations in NSCs in vitro and in vivo. Materials and Methods The transgenic cassette was inserted into the AAVS1 locus, and the genetic integrity of zinc‐finger nuclease (ZFN)‐modified hiPSC‐NSCs was assessed by the SNP‐based karyotyping. The hiPSC‐NSC proliferation was assessed in vitro by the EdU incorporation assay and in vivo by staining of brain slices with Ki‐67 antibody at 2 and 8 weeks after transplantation of ZFN‐NSCs with and without chromosomal aberration into the striatum of immunodeficient rats. Results During early passages, no chromosomal abnormalities were detected in unmodified or ZFN‐modified hiPSC‐NSCs. However, at higher passages both cell populations acquired duplication of the entire long arm of chromosome 1, dup(1)q. ZNF‐NSCs carrying dup(1)q exhibited higher proliferation rate than karyotypically intact cells, which was partly mediated by increased expression of AKT3 located on Chr1q. Compared to karyotypically normal ZNF‐NSCs, cells with dup(1)q also exhibited increased proliferation in vivo 2 weeks, but not 2 months, after transplantation. Conclusions These results demonstrate that, independently of ZFN‐editing, hiPSC‐NSCs have a propensity for acquiring dup(1)q and this aberration results in increased proliferation which might compromise downstream hiPSC‐NSC applications.
Collapse
Affiliation(s)
- Narges Zare Mehrjardi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marek Molcanyi
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Firuze Fulya Hatay
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marco Timmer
- Department of Neurosurgery, University Hospital Cologne, Cologne, Germany
| | - Ebrahim Shahbazi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Justus P Ackermann
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Stefan Herms
- Department of Genomics, Life & Brain Center, Institute for Human Genetics, University of Bonn, Bonn, Germany.,Department of Biomedicine, Medical Genetics, Research Group Genomics, University Hospital Basel, Basel, Switzerland
| | - Stefanie Heilmann-Heimbach
- Department of Genomics, Life & Brain Center, Institute for Human Genetics, University of Bonn, Bonn, Germany
| | - Thomas F Wunderlich
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Max Planck Institute for Metabolism Research and Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Nora Prochnow
- Clinic for Neurology, St. Josef-Hospital, Clinic of the Ruhr-University Bochum, Bochum, Germany
| | - Aiden Haghikia
- Clinic for Neurology, St. Josef-Hospital, Clinic of the Ruhr-University Bochum, Bochum, Germany
| | - Angelika Lampert
- Institute of Physiology, Uniklinik, RWTH Aachen University, Aachen, Germany
| | - Jürgen Hescheler
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Edmund A M Neugebauer
- Medizinische Hochschule Brandenburg Theodor Fontane, Campus Neuruppin, Neuruppin, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Tomo Šarić
- Center for Physiology and Pathophysiology, Institute for Neurophysiology, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Chen X, Ye K, Yu J, Gao J, Zhang L, Ji X, Chen T, Wang H, Dai Y, Tang B, Xu H, Sun X, Hu J. Regeneration of sciatic nerves by transplanted microvesicles of human neural stem cells derived from embryonic stem cells. Cell Tissue Bank 2020; 21:233-248. [PMID: 32052220 DOI: 10.1007/s10561-020-09816-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022]
Abstract
Injured nerves cannot regenerate on their own, and a lack of engraftable human nerves has been a major obstacle in cell-based therapies for regenerating damaged nerves. A monolayer culture approach to obtain adherent neural stem cells from human embryonic stem cells (hESC-NSCs) was established, and the greatest number of stemness characteristics were achieved by the eighth generation of hESC-NSCs (P8 hESC-NSCs). To overcome deficits in cell therapy, we used microvesicles secreted from P8 hESC-NSCs (hESC-NSC-MVs) instead of entire hESC-NSCs. To investigate the therapeutic efficacy of hESC-NSC-MVs in vitro, hESC-NSC-MVs were cocultured with dorsal root ganglia to determine the length of axons. In vivo, we transected the sciatic nerve in SD rats and created a 5-mm gap. A sciatic nerve defect was bridged using a silicone tube filled with hESC-NSC-MVs (45 μg) in the MVs group, P8 hESC-NSCs (1 × 106 single cells) in the cell group and PBS in the control group. The hESC-NSC-MVs group showed better morphological recovery and a significantly greater number of regenerated axons than the hESC-NSCs group 12 weeks after nerve injury. These results indicated that the hESC-NSC-MVs group had the greatest ability to repair and reconstruct nerve structure and function. As a result, hESC-NSC-MVs may have potential for applications in the field of nerve regenerative repair.
Collapse
Affiliation(s)
- Xiang Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
- Department of Clinical Laboratory, Nantong First People's Hospital, Nantong, 226000, Jiangsu, China
| | - Kai Ye
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Jiahong Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Jianyi Gao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Lei Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Xianyan Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Tianyan Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Yao Dai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Bin Tang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Hong Xu
- Department of Clinical Laboratory, Zhenjiang Centre for Disease Prevention and Control, Zhenjiang, 212003, Jiangsu, China
| | - Xiaochun Sun
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China
| | - Jiabo Hu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Jingkou District, Zhenjiang City, 212013, Jiangsu Province, China.
| |
Collapse
|
4
|
Quantification of dopaminergic neuron differentiation and neurotoxicity via a genetic reporter. Sci Rep 2016; 6:25181. [PMID: 27121904 PMCID: PMC4848568 DOI: 10.1038/srep25181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/12/2016] [Indexed: 12/03/2022] Open
Abstract
Human pluripotent stem cells provide a powerful human-genome based system for modeling human diseases in vitro and for potentially identifying novel treatments. Directed differentiation of pluripotent stem cells produces many specific cell types including dopaminergic neurons. Here, we generated a genetic reporter assay in pluripotent stem cells using newly-developed genome editing technologies in order to monitor differentiation efficiency and compare dopaminergic neuron survival under different conditions. We show that insertion of a luciferase reporter gene into the endogenous tyrosine hydroxylase (TH) locus enables rapid and easy quantification of dopaminergic neurons in cell culture throughout the entire differentiation process. Moreover, we demonstrate that the cellular assay is effective in assessing neuron response to different cytotoxic chemicals and is able to be scaled for high throughput applications. These results suggest that stem cell-derived terminal cell types can provide an alternative to traditional immortal cell lines or primary cells as a quantitative cellular model for toxin evaluation and drug discovery.
Collapse
|
5
|
Zhu S, Rong Z, Lu X, Xu Y, Fu X. Gene Targeting Through Homologous Recombination in Monkey Embryonic Stem Cells Using CRISPR/Cas9 System. Stem Cells Dev 2015; 24:1147-9. [PMID: 25579438 DOI: 10.1089/scd.2014.0507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Shengyun Zhu
- 1 Shenzhen Children's Hospital , Shenzhen, Guangdong, China
| | | | | | | | | |
Collapse
|