1
|
Sato S, Ogawa Y, Shimizu E, Asai K, Negishi K, Tsubota K, Hirayama M. Endoplasmic reticulum stress contributes to the development of ocular graft-vs-host disease in the eyelids and the ocular surface. Ocul Surf 2025; 37:115-131. [PMID: 40127761 DOI: 10.1016/j.jtos.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND While endoplasmic reticulum (ER) stress has been implicated in various aspects of graft-versus-host disease (GVHD), its effects on the eyelids and ocular surface in patients with chronic GVHD (cGVHD) remains poorly understood. We aimed to investigate the relationship between ER stress and ocular GVHD using the ER stress suppressor, 4-phenylbutyric acid (PBA). METHODS The study used allogeneic bone marrow transplantation (BMT) and syngeneic BMT to establish a cGVHD mouse model. cGVHD mice were treated with either intraperitoneal administration of PBA or 2 % PBA eye drops following BMT. RESULTS The Intraperitoneal PBA-treated (PBAip) group retained a larger meibomian gland (MG) area and corneal epithelial damage and inflammatory and fibrotic cell infiltration in the ocular surface was attenuated compared to vehicle-treated cGVHD mice. The expression of unfolded protein response markers was significantly elevated in the vehicle group compared to the syngeneic control and the PBAip group. Electron microscopy and immunohistochemistry revealed that fibroblasts and macrophages infiltrated the eyelids and ocular surface of cGVHD mice under ER stress. The corneal fluorescein staining score was significantly lower in the PBA eye drop-treated group than in the vehicle-treated group. The numbers of leukocyte marker CD45-, T cell marker CD4-, and macrophage marker F4/80-positive cells were significantly reduced in the PBA eye drop-treated group compared to the vehicle group. CONCLUSIONS The study suggests that the ER stress response, which is triggered by cGVHD in ocular surface tissues, can be suppressed by PBA, an ER stress suppressor, potentially offering therapeutic benefits in ocular GVHD.
Collapse
Affiliation(s)
- Shinri Sato
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yoko Ogawa
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Eisuke Shimizu
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuki Asai
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazuo Tsubota
- Tsubota Laboratory, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Masatoshi Hirayama
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
2
|
Khan ES, Däinghaus T. HSP47 in human diseases: Navigating pathophysiology, diagnosis and therapy. Clin Transl Med 2024; 14:e1755. [PMID: 39135385 PMCID: PMC11319607 DOI: 10.1002/ctm2.1755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 08/16/2024] Open
Abstract
Heat shock protein 47 (HSP47) is a chaperone protein responsible for regulating collagen maturation and transport, directly impacting collagen synthesis levels. Aberrant HSP47 expression or malfunction has been associated with collagen-related disorders, most notably fibrosis. Recent reports have uncovered new functions of HSP47 in various cellular processes. Hsp47 dysregulation in these alternative roles has been linked to various diseases, such as cancer, autoimmune and neurodegenerative disorders, thereby highlighting its potential as both a diagnostic biomarker and a therapeutic target. In this review, we discuss the pathophysiological roles of HSP47 in human diseases, its potential as a diagnostic tool, clinical screening techniques and its role as a target for therapeutic interventions.
Collapse
Affiliation(s)
- Essak. S. Khan
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
- German Consortium for Translational Cancer Research (DKTK)DKFZ Frankfurt‐MainzFrankfurt am MainGermany
| | - Tobias Däinghaus
- Posttranscriptional Gene RegulationCancer Research and Experimental HemostasisUniversity Medical Center Mainz (UMCM)MainzGermany
- Center for Thrombosis and Hemostasis (CTH)UMCMMainzGermany
| |
Collapse
|
3
|
Podgórska A, Kicman A, Naliwajko S, Wacewicz-Muczyńska M, Niczyporuk M. Zinc, Copper, and Iron in Selected Skin Diseases. Int J Mol Sci 2024; 25:3823. [PMID: 38612631 PMCID: PMC11011755 DOI: 10.3390/ijms25073823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Trace elements are essential for maintaining the body's homeostasis, and their special role has been demonstrated in skin physiology. Among the most important trace elements are zinc, copper, and iron. A deficiency or excess of trace elements can be associated with an increased risk of skin diseases, so increasing their supplementation or limiting intake can be helpful in dermatological treatment. In addition, determinations of their levels in various types of biological material can be useful as additional tests in dermatological treatment. This paper describes the role of these elements in skin physiology and summarizes data on zinc, copper, and iron in the course of selected, following skin diseases: psoriasis, pemphigus vulgaris, atopic dermatitis, acne vulgaris and seborrheic dermatitis. In addition, this work identifies the potential of trace elements as auxiliary tests in dermatology. According to preliminary studies, abnormal levels of zinc, copper, and iron are observed in many skin diseases and their determinations in serum or hair can be used as auxiliary and prognostic tests in the course of various dermatoses. However, since data for some conditions are conflicting, clearly defining the potential of trace elements as auxiliary tests or elements requiring restriction/supplement requires further research.
Collapse
Affiliation(s)
- Aleksandra Podgórska
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland; (A.P.); (A.K.); (M.N.)
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland; (A.P.); (A.K.); (M.N.)
| | - Sylwia Naliwajko
- Department of Bromatology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | | | - Marek Niczyporuk
- Department of Aesthetic Medicine, Medical University of Bialystok, 15-267 Bialystok, Poland; (A.P.); (A.K.); (M.N.)
| |
Collapse
|
4
|
Chang YT, Huang TH, Alalaiwe A, Hwang E, Fang JY. Small interfering RNA-based nanotherapeutics for treating skin-related diseases. Expert Opin Drug Deliv 2023:1-16. [PMID: 37088710 DOI: 10.1080/17425247.2023.2206646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
INTRODUCTION RNA interference (RNAi) has demonstrated great potential in treating skin-related diseases, as small interfering RNA (siRNA) can efficiently silence specific genes. The design of skin delivery systems for siRNA is important to protect the nucleic acid while facilitating both skin targeting and cellular ingestion. Entrapment of siRNA into nanocarriers can accomplish these aims, contributing to improved targeting, controlled release, and increased transfection. AREAS COVERED The siRNA-based nanotherapeutics for treating skin disorders are summarized. First, the mechanisms of RNAi are presented, followed by the introduction of challenges for skin therapy. Then, the different nanoparticle types used for siRNA skin delivery are described. Subsequently, we introduce the mechanisms of how nanoparticles enhance siRNA skin penetration. Finally, the current investigations associated with nanoparticulate siRNA application in skin disease management are reviewed. EXPERT OPINION The potential application of nanotherapeutic RNAi allows for a novel skin application strategy. Further clinical studies are required to confirm the findings in the cell-based or animal experiments. The capability of large-scale production and reproducibility of nanoparticle products are also critical for translation to commercialization. siRNA delivery by nanocarriers should be optimized to attain cutaneous targeting without the risk of toxicity.
Collapse
Affiliation(s)
- Yen-Tzu Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Tse-Hung Huang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Linkou and Keelung, Taiwan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Chemical Engineering and Graduate Institute of Biochemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
5
|
Jiang M, Wang J, Shen Y, Zhu J, Liu Z, Gong W, Yu Y, Zhang S, Zhou X, He S, Song Y, Zhu Z, Jin L, Cong W. Ribosomal S6 Protein Kinase 2 Aggravates the Process of Systemic Scleroderma. J Invest Dermatol 2022; 142:3175-3183.e5. [PMID: 35853487 DOI: 10.1016/j.jid.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023]
Abstract
Systemic sclerosis is a complex process of pathogenesis, and the contributions of inherited genes, infections, and chemicals remain largely unknown. In this study, we showed that p90 ribosomal S6 protein kinase 2 (RSK2) was selectively upregulated in fibrotic skin and fibroblasts treated with the profibrotic cytokine TGF-β. Moreover, knockout of Rsk2 specifically in skin fibroblasts or pharmacological inhibition of RSK2 attenuated skin fibrosis in a mouse model. Mechanistically, RSK2 directly interacted with glycogen synthase kinase 3β in vivo and in vitro and thereby induced phosphorylation of glycogen synthase kinase 3β at Ser9 to inhibit ubiquitination and degradation of GLI1, which promoted fibroblast differentiation and skin fibrosis. Consequently, RSK2 plays an important role in the dermal skin of systemic sclerosis. These findings provided a potential therapeutic target for systemic sclerosis.
Collapse
Affiliation(s)
- Mengying Jiang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Jianan Wang
- Department of Pharmacy, Hwa Mei Hospital, University of Chinese Academy of Sciences (Ningbo No.2 Hospital), Ningbo, China
| | - Yingjie Shen
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Junjie Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Zhili Liu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Wenjie Gong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Ying Yu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Siyi Zhang
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Xuan Zhou
- Ningbo First Hospital, Ningbo, China
| | - Shengqu He
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Yonghuan Song
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhongxin Zhu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
6
|
Hsp47 acts as a bridge between NLRP3 inflammasome and hepatic stellate cells activation in arsenic-induced liver fibrosis. Toxicol Lett 2022; 370:7-14. [PMID: 35963424 DOI: 10.1016/j.toxlet.2022.07.816] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 10/31/2022]
Abstract
The activation of hepatic stellate cells (HSCs) is a key event during the progression of liver fibrosis (LF). We have previously indicated that NLRP3 inflammasome plays a crucial role in arsenic-induced HSCs activation. However, the mechanism of cascade responses between NLRP3 inflammasome and HSCs activation is unclear. Here, we showed that the transcription and protein level of Hsp47 was upregulated after 4μM arsenic treatment, both in vivo and in vitro. Additionally, arsenic-induced HSCs activation was remarkably alleviated by the interference of Hsp47. Furthermore, blockage of NLRP3 significantly mitigated the activation of the NLRP3 inflammasome and decreased the expression of Hsp47, thereby attenuating the arsenic-induced HSCs activation. However, the ablation of Hsp47 did not affect the activation of the NLRP3 inflammasome. Notably, the protein-protein interaction between NLRP3 and Hsp47 was observed both in vivo and in vitro, and the target amino acid sequences were further identified. In summary, the present study indicated that NaAsO2 induced HSCs activation via the NLRP3 inflammasome-Hsp47 pathway. These findings provide direct evidence that Hsp47 may be a potential therapeutic target for arsenic-induced LF.
Collapse
|
7
|
Lønsmann I, Gudmann NS, Manon-Jensen T, Thiele M, Moreno YM, Langholm LL, Nielsen MJ, Detlefsen S, Karsdal MA, Krag AA, Leeming DJ. Serologically assessed heat shock protein 47 is related to fibrosis stage in early compensated alcohol-related liver disease. Clin Biochem 2021; 104:36-43. [DOI: 10.1016/j.clinbiochem.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
|
8
|
Bellaye PS, Burgy O, Bonniaud P, Kolb M. HSP47: a potential target for fibrotic diseases and implications for therapy. Expert Opin Ther Targets 2021; 25:49-62. [PMID: 33287600 DOI: 10.1080/14728222.2021.1861249] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction: Chronic fibrotic disorders are challenging clinical problems. The major challenge is the identification of specific targets expressed selectively in fibrotic tissues. Collagen accumulation is the hallmark fibrosis. HSP47 is a collagen-specific chaperon with critical role in collagen folding. This review discusses the anti-fibrotic potential of HSP47. Areas covered: This review compiles data retrieved from the PubMed database with keywords 'HSP47+fibrosis' from 01/2005 to 06/2020. We examined 1) collagen biology and its role in fibrotic diseases, 2) HSP47 role in fibrosis, 3) HSP47 inhibition strategies and 4) clinical investigations. The identification of the HSP47-collagen binding site led to the development of methods to screen HSP47 inhibitors with anti-fibrotic potential. Specific in vivo delivery systems of HSP47 siRNA to fibrotic tissue reduced collagen production/secretion associated with fibrosis inhibition in preclinical models. This strategy is about to be tested in clinical trials. Expert opinion: As a collagen-specific chaperon, HSP47 is a promising therapeutic target in fibrosis. Preclinical models have shown encouraging anti-fibrotic results. Anti-HSP47 strategies need to be further evaluated in clinical trials. The increase in circulating-HSP47 in lung fibrosis patients highlights the potential of HSP47 as a noninvasive biomarker and may represent an important step toward personalized medicine in fibrotic disorders.
Collapse
Affiliation(s)
- Pierre-Simon Bellaye
- Centre George-Franrçois Leclerc, Nuclear Medicine department, Plateforme d'imagerie et de radiothérapie préclinique, 1 rue du professeur Marion, Dijon, France.,Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adultes de Dijon, Réseau OrphaLung, Filère RespiFil, Centre Hospitalier Universitaire de Bourgogne , Dijon,France
| | - Olivier Burgy
- Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adultes de Dijon, Réseau OrphaLung, Filère RespiFil, Centre Hospitalier Universitaire de Bourgogne , Dijon,France.,INSERM U1231 Department HSP-pathies 7 Boulevard Jeanne d'Arc ,Dijon France
| | - Philippe Bonniaud
- Centre de Référence Constitutif des Maladies Pulmonaires Rares de l'Adultes de Dijon, Réseau OrphaLung, Filère RespiFil, Centre Hospitalier Universitaire de Bourgogne , Dijon,France
| | - Martin Kolb
- McMaster University, Department of medicine, FIRH, 50 Charlton Avenue East, Hamilton , Ontario, Canada
| |
Collapse
|
9
|
Zhang X, Zhang X, Huang W, Ge X. The role of heat shock proteins in the regulation of fibrotic diseases. Biomed Pharmacother 2020; 135:111067. [PMID: 33383375 DOI: 10.1016/j.biopha.2020.111067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022] Open
Abstract
Heat shock proteins (HSPs) are key players to restore cell homeostasis and act as chaperones by assisting the folding and assembly of newly synthesized proteins and preventing protein aggregation. Recently, evidence has been accumulating that HSPs have been proven to have other functions except for the classical molecular chaperoning in that they play an important role in a wider range of fibrotic diseases via modulating cytokine induction and inflammation response, including lung fibrosis, liver fibrosis, and idiopathic pulmonary fibrosis. The recruitment of inflammatory cells, a large number of secretion of pro-fibrotic cytokines such as transforming growth factor-β1 (TGF-β1) and increased apoptosis, oxidative stress, and proteasomal system degradation are all events occurring during fibrogenesis, which might be associated with HSPs. However, their role on fibrotic process is not yet fully understood. In this review, we discuss new discoveries regarding the involvement of HSPs in the regulation of organ and tissue fibrosis, and note recent findings suggesting that HSPs may be a promising therapeutic target for improving the current frustrating outcome of fibrotic disorders.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, 226019, PR China.
| | - Xiaoyan Zhang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Wenmin Huang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China
| | - Xiaoqun Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, PR China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China.
| |
Collapse
|
10
|
Huang Y, Lu J, Xu Y, Xiong C, Tong D, Hu N, Yang H. Xiaochaihu decorction relieves liver fibrosis caused by Schistosoma japonicum infection via the HSP47/TGF-β pathway. Parasit Vectors 2020; 13:254. [PMID: 32410640 PMCID: PMC7227055 DOI: 10.1186/s13071-020-04121-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatic fibrosis caused by chronic infection with Schistosoma japonica remains a serious public health problem in the world. Symptoms include inflammation, liver granuloma and fibrosis, whilst treatment options are still limited. This study aims to investigate whether and how traditional Chinese medicine Xiaochaihu decoction (XCH) could mitigate liver fibrosis caused by S. japonicum infection. Methods BALB/c mice were infected with S. japonicum cercariae and treated with XCH for 16 weeks. Liver pathological changes were assessed by H&E and Masson staining. NIH3T3 and Raw264.7 cells were treated with S. japonicum egg antigens with or without XCH treatment. Quantitative real-time PCR, western blot, immunfluorescence and ELISA were performed to determine the changes of levels of fibrogenic markers. Results XCH protected mouse liver from injuries and fibrosis caused by S. japonicum infection and considerably reduced egg burden in a dose-dependent manner. Infection with S. japonicum caused elevation of serum ALT, AST, ALP, HA and PIIINP levels and reduction of ALB and GLOB levels, which was markedly suppressed by XCH. The upregulation of TGF-β1, Hsp47, α-SMA, Col1A1 and Col3A1 in S. japonicum-infected mouse liver was also significantly inhibited by XCH. Schistosoma japonicum egg antigens promoted the expression of Hsp47, TGF-β1, Timp-1, α-SMA, Col1A1 and Col3A1 in NIH3T3 cells, and TGF-β1, CTGF, IL-13, IL-17 and IL-6 in Raw264.7 cells, which was inhibited by XCH, LY2157299 and shRNA-Hsp47. Conclusions These results demonstrated that the hepatic protective effects of Xiaochaihu decoction were mediated by HSP47/TGF-β axis.![]()
Collapse
Affiliation(s)
- Yuzheng Huang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China. .,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Jin Lu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yongliang Xu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chunrong Xiong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Deshen Tong
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Nannan Hu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China.,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Haitao Yang
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, 117 Meiyuan Yangxiang, Wuxi, 214064, Jiangsu, China. .,Public Health Research Center, Jiangnan University, Wuxi, 214122, Jiangsu Province, China. .,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
Shang Y, Zhang Z, Ba H, Wang D, Qi X, Li C. S100A4: a novel partner for heat shock protein 47 in antler stem cells and insight into the calcium ion-induced conformational changes. J Biomol Struct Dyn 2020; 38:2068-2079. [PMID: 31204596 DOI: 10.1080/07391102.2019.1630002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 05/20/2019] [Indexed: 10/26/2022]
Abstract
S100A4 is a multiple-function protein highly expressed in tumor or stem cells. We found S100A4 was a novel protein partner for heat shock protein 47 (HSP47) in deer antlerogenic periosteum cells (AP cells), indicating that S100A4 could bind with HSP47. S100A4 had both calcium-dependent and calcium-independent patterns (labeled as SCd and SCi, respectively) to execute different biological activities. Homology models of HSP47, SCd and SCi were constructed. HSP47:collagen model, HSP47:collagen I-V, HSP47:SCd and HSP47:SCi complexes were built using ZDOCK software. Together with free SCd and SCi, 200 ns molecular dynamic (MD) simulations were performed to analyze binding free energies and SCi/SCd conformational changes. The energetic results showed that SCi had the strongest affinity to HSP47, and followed by collagens. SCd had little interaction with HSP47. Decomposition energy results showed that collagen model interacted with HSP47 mainly though neutral amino acids. When SCi bound with HSP47, the majority of mediated amino acids were charged. These results indicated that SCi could compete with collagen on the binding site of HSP47. Root mean square fluctuation (RMSF) values and cross-correlation matrices of principal component analysis (PCA) were calculated to evaluate the SCi/SCd structural variation during MD simulation. Both HSP47 and Ca2+ could stabilize the conformation of SCi/SCd. The loops interacting with Ca2+s and linking the two EF-hand motifs were impacted particularly. The relative moving directions of α-helices in EF-hands were distinct by the binding effect of HSP47 and Ca2+. We found that SCi may regulate the differentiation of AP cells by disturbing the interaction between HSP47 and collagen. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yudong Shang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, and State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, People's Republic of China
| | - Zhengyao Zhang
- School of Life Science and Medicine, Dalian University of Technology, Panjin, People's Republic of China
| | - Hengxing Ba
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, and State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, People's Republic of China
| | - Datao Wang
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, and State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, People's Republic of China
| | - Xiaoyan Qi
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, and State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, People's Republic of China
| | - Chunyi Li
- Institute of Special Wild Economic Animals and Plants, Chinese Academy of Agricultural Sciences, and State Key Laboratory for Molecular Biology of Special Economic Animals, Changchun, People's Republic of China
| |
Collapse
|
12
|
Yang T, Zhang X, Chen A, Xiao Y, Sun S, Yan J, Cao Y, Chen J, Li F, Zhang Q, Huang K. Progranulin Promotes Bleomycin-Induced Skin Sclerosis by Enhancing Transforming Growth Factor–β/Smad3 Signaling through Up-Regulation of Transforming Growth Factor–β Type I Receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1582-1593. [DOI: 10.1016/j.ajpath.2019.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/30/2019] [Accepted: 04/24/2019] [Indexed: 01/02/2023]
|
13
|
Shi X, Liu Q, Li N, Tu W, Luo R, Mei X, Ma Y, Xu W, Chu H, Jiang S, Du Z, Zhao H, Zhao L, Jin L, Wu W, Wang J. MiR-3606-3p inhibits systemic sclerosis through targeting TGF-β type II receptor. Cell Cycle 2018; 17:1967-1978. [PMID: 30145936 PMCID: PMC6224271 DOI: 10.1080/15384101.2018.1509621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 12/24/2022] Open
Abstract
Systemic sclerosis (SSc) is a multisystemic fibrotic disease characterized by excessive collagen deposition and extracellular matrix synthesis. Though transforming growth factor-β (TGF-β) plays a fundamental role in the pathogenesis of SSc, the mechanism by which TGF-β signaling acts in SSc remains largely unclear. Here, we showed that TGF-β type II receptor (TGFBR2) was significantly upregulated in both human SSc dermal tissues and primary fibroblasts. In fibroblasts, siRNA-induced knockdown of TGFBR2 resulted in a reduction of p-SMAD2/3 levels and reduced production of type I collagen. Additionally, functional experiments revealed that downregulation of TGFBR2 yielded an anti-growth effect on fibroblasts through inhibiting cell cycle progression. Further studies showed that miR-3606-3p could directly target the 3'-UTR of TGFBR2 and significantly decrease the levels of both TGFBR2 mRNA and protein. Furthermore, SSc dermal tissues and primary fibroblasts contain significantly reduced amounts of miR-3606-3p, and the overexpression of miR-3606-3p in fibroblasts replicates the phenotype of TGFBR2 downregulation. Collectively, our findings demonstrated that increased TGFBR2 could be responsible for the hyperactive TGF-β signaling observed in SSc. Moreover, we identified a pivotal role for miR-3606-3p in SSc, which acts, at least partly, through the attenuation of TGF-β signaling via TGFBR2 repression, suggesting that the regulation of miR-3606-3p/TGFBR2 could be a promising therapeutic target that could improve the treatment strategy for fibrosis.
Collapse
Affiliation(s)
- Xiangguang Shi
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingmei Liu
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Na Li
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Wenzhen Tu
- Division of Rheumatology, Shanghai TCM-Integrated Hospital, Shanghai, China
| | - Ruoyu Luo
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Xueqian Mei
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Yanyun Ma
- Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Weihong Xu
- The Clinical Laboratory of Shanghai Tongren Hosipital, Jiaotong University, Shanghai, China
| | - Haiyan Chu
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Zhimin Du
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Han Zhao
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Liang Zhao
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, P. R. China
- Human Phenome Institute, Fudan University, Shanghai, China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Rizk FH, Sarhan NI, Soliman NA, Ibrahim MAA, Abd-Elsalam M, Abd-Elsalam S. Heat shock protein 47 as indispensible participant in liver fibrosis: Possible protective effect of lactoferrin. IUBMB Life 2018; 70:795-805. [PMID: 30092114 DOI: 10.1002/iub.1884] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/22/2018] [Accepted: 05/02/2018] [Indexed: 01/18/2023]
Abstract
Lactoferrin (LF) was previously suggested to have a protective effect against liver fibrosis by preventing hepatic stellate cells (HSCs) activation. The effect of LF on heat shock protein 47 (HSP47) has not yet been studied so this study was designed to investigate LF effect on HSP47 as a potential target for management of liver fibrosis and comparing it with silymarin (SM) in a thioacetamide (TAA)-induced liver fibrosis model. Rats were divided into four groups; normal control, TAA (TAA-treated), LF (LF + TAA-treated), and SM (SM + TAA-treated). After 6 weeks, both LF and SM improved the grade of cirrhosis, reduced collagen fibers deposition, inactivated HSCs, significantly decreased elevated liver enzymes, HSP47, hydroxyproline content, transforming growth factor-beta 1, matrix metalloproteinase-2, 8-hydroxydeoxyguanosine, malondialdehyde, nitric oxide levels and the percentage of alpha smooth muscle actin positive HSCs compared with TAA group. Moreover, LF significantly increased the total antioxidant capacity compared with TAA group. It could be concluded that LF is a promising antifibrotic drug and could be considered as one of the HSP47 inhibitors but SM is still more potent. © 2018 IUBMB Life, 70(8):795-805, 2018.
Collapse
Affiliation(s)
- Fatma H Rizk
- Departments of Physiology, Tanta University, Egypt
| | | | - Nema A Soliman
- Departments of Medical Biochemistry, Tanta University, Egypt
| | | | - Marwa Abd-Elsalam
- Histology Department Faculty of Medicine, Kafr Elsheikh University, Egypt
| | | |
Collapse
|
15
|
Ibrahim FH, Abd Latip N, Abdul‐Wahab MF. Heat Shock Protein 47 (
HSP47
). ELS 2018:1-7. [DOI: 10.1002/9780470015902.a0028005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
16
|
Vitamin A–coupled liposomes containing siRNA against HSP47 ameliorate skin fibrosis in chronic graft-versus-host disease. Blood 2018; 131:1476-1485. [DOI: 10.1182/blood-2017-04-779934] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
Key Points
HSP47+ myofibroblasts are accumulated in the fibrotic lesions of chronic GVHD and promote fibrosis in a CSF-1R+ macrophage-dependent manner. Vitamin A–coupled liposomes containing HSP47 siRNA abrogate HSP47 expression in myofibroblasts and ameliorate fibrosis in chronic GVHD.
Collapse
|
17
|
Zhao Y, Dang Z, Xu S, Chong S. Heat shock protein 47 effects on hepatic stellate cell-associated receptors in hepatic fibrosis of Schistosoma japonicum-infected mice. Biol Chem 2017; 398:1357-1366. [DOI: 10.1515/hsz-2017-0177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/04/2017] [Indexed: 12/16/2022]
Abstract
AbstractThe study aimed to explore the regulation of heat shock protein 47 (HSP47) on expressions of receptors associated with hepatic stellate cell (HSC) in liver fibrosis mouse models induced bySchistosoma japonicum(S. japonicum). Mouse fibroblasts (NIH/3T3) were transfected with HSP47 shRNA plasmid by lipofectamine transfection, and experimental fibrosis in HSCs was studied inS. japonicummouse models treated with HSP47 shRNAin vivo. HSP47 expression was assessed using Western blot and real-time PCR. Flow cytometry was adopted to determine the expression of cell membrane receptors. HSP47-shRNA could markedly down-regulate the expression of collagen (Col1a1 and Col3a1). The expressions of HSP47, endothelin receptor A (ETAR) and endothelin receptor B (ETBR) significantly increased in the liver tissue of infected mice. However, the expressions of ETAR and HSP47 and ETBR remarkably decreased after the administration of HSP47 shRNAin vitroandin vivo. ETAR and ETBR levels were found to be positively correlated with HSP47 expression. HSP47 might exert influence on liver fibrosis via the regulation of ETAR and ETBR.
Collapse
|
18
|
Chu H, Shi Y, Jiang S, Zhong Q, Zhao Y, Liu Q, Ma Y, Shi X, Ding W, Zhou X, Cui J, Jin L, Guo G, Wang J. Treatment effects of the traditional Chinese medicine Shenks in bleomycin-induced lung fibrosis through regulation of TGF-beta/Smad3 signaling and oxidative stress. Sci Rep 2017; 7:2252. [PMID: 28533545 PMCID: PMC5440393 DOI: 10.1038/s41598-017-02293-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary fibrosis is a kind of devastating interstitial lung disease due to the limited therapeutic strategies. Traditional Chinese medicine (TCM) practices have put forth Shenks as a promising treatment approach. Here, we performed in vivo study and in vitro study to delineate the anti-fibrotic mechanisms behind Shenks treatment for pulmonary fibrosis. We found that regardless of the prophylactic or therapeutic treatment, Shenks was able to attenuate BLM-induced-fibrosis in mice, down regulate extracellular matrix genes expression, and reduce collagen production. The aberrantly high Smad3 phosphorylation levels and SBE activity in TGF-β-induced fibroblasts were dramatically decreased as a result of Shenks treatment. At the same time, Shenks was able to increase the expression of antioxidant-related genes, including Gclc and Ec-sod, while reduce the transcription levels of oxidative-related genes, such as Rac1 and Nox4 demonstrated by both in vivo and in vitro studies. Further investigations found that Shenks could decrease the oxidative productions of protein (3-nitrotyrosine) and lipid (malondialdehyde) and increase GSH content both in bleomycin treated mouse lungs and TGF-β stimulated fibroblasts, as well as inhibit the production of ROS stimulated by TGF-β to fight against oxidative stress. Overall, Shenks inhibited fibrosis by blocking TGF-β pathway and modulating the oxidant/antioxidant balance.
Collapse
Affiliation(s)
- Haiyan Chu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Ying Shi
- Department of Rheumatology and Immunology, Yiling Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050091, China
- Department of Traditional Chinese Medicine, Geriatric Hospital of Hebei Province, Shijiazhuang, 050011, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Qicheng Zhong
- Department of Rheumatology and Immunology, Yiling Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050091, China
| | - Yongqiang Zhao
- Department of Rheumatology and Immunology, Yiling Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050091, China
| | - Qingmei Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Xiangguang Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Weifeng Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Xiaodong Zhou
- University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Jimin Cui
- Department of Rheumatology and Immunology, Yiling Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050091, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Gang Guo
- Department of Rheumatology and Immunology, Yiling Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050091, China.
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, 200040, P. R. China.
| |
Collapse
|