1
|
Schroeter KL, Rolfe N, Forrester TJB, Kimber MS, Seah SYK. Shy is a proteobacterial steroid hydratase which catalyzes steroid side chain degradation without requiring a catalytically inert partner domain. J Biol Chem 2024; 300:107509. [PMID: 38944126 PMCID: PMC11321319 DOI: 10.1016/j.jbc.2024.107509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Shy (side chain hydratase) and Sal (side chain aldolase), are involved in successive reactions in the pathway of bile acid side chain catabolism in Proteobacteria. Untagged Shy copurified with His-tagged Sal indicating that the two enzymes form a complex. Shy contains a MaoC and a DUF35 domain. When coexpressed with Sal, the DUF35 domain but not the MaoC domain of Shy was observed to copurify with Sal, indicating Sal interacts with Shy through its DUF35 domain. The MaoC domain of Shy (ShyMaoC) remained catalytically viable and could hydrate cholyl-enoyl-CoA with similar catalytic efficiency as in the Shy-Sal complex. Sal expressed with the DUF35 domain of Shy (Sal-ShyDUF35) was similarly competent for the retro-aldol cleavage of cholyl-3-OH-CoA. ShyMaoC showed a preference for C5 side chain bile acid substrates, exhibiting low activity toward C3 side chain substrates. The ShyMaoC structure was determined by X-ray crystallography, showing a hot dog fold with a short central helix surrounded by a twisted antiparallel β-sheet. Modeling and mutagenesis studies suggest that the bile acid substrate occupies the large open cleft formed by the truncated central helix and repositioning of the active site housing. ShyMaoC therefore contains two substrate binding sites per homodimer, making it distinct from previously characterized MaoC steroid hydratases that are (pseudo) heterodimers with one substrate binding site per dimer. The characterization of Shy provides insight into how MaoC family hydratases have adapted to accommodate large polycyclic substrates that can facilitate future engineering of these enzymes to produce novel steroid pharmaceuticals.
Collapse
Affiliation(s)
- Kurt L Schroeter
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nicolas Rolfe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Taylor J B Forrester
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Matthew S Kimber
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Y K Seah
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Luo G, Ming T, Yang L, He L, Tao T, Wang Y. Modulators targeting protein-protein interactions in Mycobacterium tuberculosis. Microbiol Res 2024; 284:127675. [PMID: 38636239 DOI: 10.1016/j.micres.2024.127675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis), mainly transmitted through droplets to infect the lungs, and seriously affecting patients' health and quality of life. Clinically, anti-TB drugs often entail side effects and lack efficacy against resistant strains. Thus, the exploration and development of novel targeted anti-TB medications are imperative. Currently, protein-protein interactions (PPIs) offer novel avenues for anti-TB drug development, and the study of targeted modulators of PPIs in M. tuberculosis has become a prominent research focus. Furthermore, a comprehensive PPI network has been constructed using computational methods and bioinformatics tools. This network allows for a more in-depth analysis of the structural biology of PPIs and furnishes essential insights for the development of targeted small-molecule modulators. Furthermore, this article provides a detailed overview of the research progress and regulatory mechanisms of PPI modulators in M. tuberculosis, the causative agent of TB. Additionally, it summarizes potential targets for anti-TB drugs and discusses the prospects of existing PPI modulators.
Collapse
Affiliation(s)
- Guofeng Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Luchuan Yang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Lei He
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Tao Tao
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China
| | - Yanmei Wang
- Institute of traditional Chinese medicine, Sichuan College of traditional Chinese Medicine (Sichuan Second Hospital of TCM), Chengdu 610031, China.
| |
Collapse
|
3
|
Bories P, Rima J, Tranier S, Marcoux J, Grimoire Y, Tomaszczyk M, Launay A, Fata K, Marrakchi H, Burlet‐Schiltz O, Mourey L, Ducoux‐Petit M, Bardou F, Bon C, Quémard A. HadBD dehydratase from Mycobacterium tuberculosis fatty acid synthase type II: A singular structure for a unique function. Protein Sci 2024; 33:e4964. [PMID: 38501584 PMCID: PMC10949391 DOI: 10.1002/pro.4964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Worldwide, tuberculosis is the second leading infectious killer and multidrug resistance severely hampers disease control. Mycolic acids are a unique category of lipids that are essential for viability, virulence, and persistence of the causative agent, Mycobacterium tuberculosis (Mtb). Therefore, enzymes involved in mycolic acid biosynthesis represent an important class of drug targets. We previously showed that the (3R)-hydroxyacyl-ACP dehydratase (HAD) protein HadD is dedicated mainly to the production of ketomycolic acids and plays a determinant role in Mtb biofilm formation and virulence. Here, we discovered that HAD activity requires the formation of a tight heterotetramer between HadD and HadB, a HAD unit encoded by a distinct chromosomal region. Using biochemical, structural, and cell-based analyses, we showed that HadB is the catalytic subunit, whereas HadD is involved in substrate binding. Based on HadBDMtb crystal structure and substrate-bound models, we identified determinants of the ultra-long-chain lipid substrate specificity and revealed details of structure-function relationship. HadBDMtb unique function is partly due to a wider opening and a higher flexibility of the substrate-binding crevice in HadD, as well as the drastically truncated central α-helix of HadD hotdog fold, a feature described for the first time in a HAD enzyme. Taken together, our study shows that HadBDMtb , and not HadD alone, is the biologically relevant functional unit. These results have important implications for designing innovative antivirulence molecules to fight tuberculosis, as they suggest that the target to consider is not an isolated subunit, but the whole HadBD complex.
Collapse
Affiliation(s)
- Pascaline Bories
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Julie Rima
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Samuel Tranier
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Julien Marcoux
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Yasmina Grimoire
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Mathilde Tomaszczyk
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Anne Launay
- Service de TP de BiochimieUniversité de Toulouse, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Karine Fata
- Service de TP de BiochimieUniversité de Toulouse, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Hedia Marrakchi
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Odile Burlet‐Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Lionel Mourey
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Manuelle Ducoux‐Petit
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Fabienne Bardou
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Cécile Bon
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| | - Annaïk Quémard
- Institut de Pharmacologie et de Biologie Structurale (IPBS)Université de Toulouse, CNRS, Université Toulouse III ‐ Paul Sabatier (UPS)ToulouseFrance
| |
Collapse
|
4
|
Green AG, Vargas R, Marin MG, Freschi L, Xie J, Farhat MR. Analysis of Genome-Wide Mutational Dependence in Naturally Evolving Mycobacterium tuberculosis Populations. Mol Biol Evol 2023; 40:msad131. [PMID: 37352142 PMCID: PMC10292908 DOI: 10.1093/molbev/msad131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/25/2023] Open
Abstract
Pathogenic microorganisms are in a perpetual struggle for survival in changing host environments, where host pressures necessitate changes in pathogen virulence, antibiotic resistance, or transmissibility. The genetic basis of phenotypic adaptation by pathogens is difficult to study in vivo. In this work, we develop a phylogenetic method to detect genetic dependencies that promote pathogen adaptation using 31,428 in vivo sampled Mycobacterium tuberculosis genomes, a globally prevalent bacterial pathogen with increasing levels of antibiotic resistance. We find that dependencies between mutations are enriched in antigenic and antibiotic resistance functions and discover 23 mutations that potentiate the development of antibiotic resistance. Between 11% and 92% of resistant strains harbor a dependent mutation acquired after a resistance-conferring variant. We demonstrate the pervasiveness of genetic dependency in adaptation of naturally evolving populations and the utility of the proposed computational approach.
Collapse
Affiliation(s)
- Anna G Green
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Roger Vargas
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Maximillian G Marin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Luca Freschi
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jiaqi Xie
- Department of Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maha R Farhat
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
5
|
Singh V, Grzegorzewicz AE, Fienberg S, Müller R, Khonde LP, Sanz O, Alfonso S, Urones B, Drewes G, Bantscheff M, Ghidelli-Disse S, Ioerger TR, Angala B, Liu J, Lee RE, Sacchettini JC, Krieger IV, Jackson M, Chibale K, Ghorpade SR. 1,3-Diarylpyrazolyl-acylsulfonamides Target HadAB/BC Complex in Mycobacterium tuberculosis. ACS Infect Dis 2022; 8:2315-2326. [PMID: 36325756 PMCID: PMC9673142 DOI: 10.1021/acsinfecdis.2c00392] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 11/05/2022]
Abstract
Alternative mode-of-inhibition of clinically validated targets is an effective strategy for circumventing existing clinical drug resistance. Herein, we report 1,3-diarylpyrazolyl-acylsulfonamides as potent inhibitors of HadAB/BC, a 3-hydroxyl-ACP dehydratase complex required to iteratively elongate the meromycolate chain of mycolic acids in Mycobacterium tuberculosis (Mtb). Mutations in compound 1-resistant Mtb mutants mapped to HadC (Rv0637; K157R), while chemoproteomics confirmed the compound's binding to HadA (Rv0635), HadB (Rv0636), and HadC. The compounds effectively inhibited the HadAB and HadBC enzyme activities and affected mycolic acid biosynthesis in Mtb, in a concentration-dependent manner. Unlike known 3-hydroxyl-ACP dehydratase complex inhibitors of clinical significance, isoxyl and thioacetazone, 1,3-diarylpyrazolyl-acylsulfonamides did not require activation by EthA and thus are not liable to EthA-mediated resistance. Further, the crystal structure of a key compound in a complex with Mtb HadAB revealed unique binding interactions within the active site of HadAB, providing a useful tool for further structure-based optimization of the series.
Collapse
Affiliation(s)
- Vinayak Singh
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, Department of Chemistry and Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Rondebosch7701, South Africa
| | - Anna E. Grzegorzewicz
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado80523-1682, United States
| | - Stephen Fienberg
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch7701, South Africa
| | - Rudolf Müller
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch7701, South Africa
| | - Lutete Peguy Khonde
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch7701, South Africa
| | - Olalla Sanz
- Global
Health Pharma Research Unit, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid28760, Spain
| | - Salvatore Alfonso
- Global
Health Pharma Research Unit, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid28760, Spain
| | - Beatriz Urones
- Global
Health Pharma Research Unit, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos, Madrid28760, Spain
| | - Gerard Drewes
- Cellzome
GmbH · A GSK Company, Meyerhofstrasse 1, Heidelberg69117, Germany
| | - Marcus Bantscheff
- Cellzome
GmbH · A GSK Company, Meyerhofstrasse 1, Heidelberg69117, Germany
| | | | - Thomas R. Ioerger
- Department
of Computer Science and Engineering, Texas
A&M University, College
Station, Texas77843, United States
| | - Bhanupriya Angala
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado80523-1682, United States
| | - Jiuyu Liu
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee38105, United States
| | - Richard E. Lee
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee38105, United States
| | - James C. Sacchettini
- Texas A&M
University, Department of Biochemistry and
Biophysics, ILSB 2138,
301 Old Main Dr, College Station, Texas77843-3474, United States
| | - Inna V. Krieger
- Texas A&M
University, Department of Biochemistry and
Biophysics, ILSB 2138,
301 Old Main Dr, College Station, Texas77843-3474, United States
| | - Mary Jackson
- Mycobacteria
Research Laboratories, Department of Microbiology, Immunology and
Pathology, Colorado State University, Fort Collins, Colorado80523-1682, United States
| | - Kelly Chibale
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch7701, South Africa
- South
African Medical Research Council Drug Discovery and Development Research
Unit, Department of Chemistry and Institute of Infectious Disease
and Molecular Medicine, University of Cape
Town, Rondebosch7701, South Africa
| | - Sandeep R. Ghorpade
- Drug
Discovery and Development Centre (H3D), University of Cape Town, Rondebosch7701, South Africa
| |
Collapse
|
6
|
Singh BK, Biswas R, Bhattacharyya S, Basak A, Das AK. The C‐terminal end of mycobacterial HadBC regulates AcpM interaction during the FAS‐II pathway: a structural perspective. FEBS J 2022; 289:4963-4980. [DOI: 10.1111/febs.16405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/22/2022] [Accepted: 02/15/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Bina Kumari Singh
- School of Biosciences Indian Institute of Technology Kharagpur India
| | - Rupam Biswas
- Department of Biotechnology Indian Institute of Technology Kharagpur India
| | - Sudipta Bhattacharyya
- Department of Bioscience & Bioengineering Indian Institute of Technology Jodhpur India
| | - Amit Basak
- Department of Chemistry Indian Institute of Technology Kharagpur India
| | - Amit K. Das
- Department of Biotechnology Indian Institute of Technology Kharagpur India
| |
Collapse
|
7
|
Bioassay’s Directed Isolation-Structure Elucidation and Molecular Docking of Triterpenes from Persea duthiei against Biologically Important Microbial Proteins. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3839271. [PMID: 35668783 PMCID: PMC9166971 DOI: 10.1155/2022/3839271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 11/25/2022]
Abstract
The research work presented in this study is mainly concerned with the bioactivity-directed phytochemical and biological evaluation of Persea duthiei. Persea duthiei is a typical medicinal plant used to treat a variety of ailments such as asthma, edema, and bronchitis. Ethyl acetate, n-hexane, n-butanol, and compounds that are soluble in water were used to examine the antibacterial as well as antifungal capacities of the plant. The antibacterial activity of the soluble parts of ethyl acetate and n-hexane against Escherichia coli, Staphylococcus aureus, Salmonella typhi, and Bacillus subtilis was high, even though there was no activity against Pseudomonas aeruginosa. Likewise, the n-hexane and ethyl acetate fractions were found to have substantial efficacy against several fungal strains such as Aspergillus flavus, Aspergillus fumigates, Fusarium solani, and Aspergillus niger, but not against Candida glabrata. Among the studied fractions, the ethyl acetate soluble fraction had potent antibacterial activity against all of the tested species. This fraction was submitted to phytochemical analysis utilizing various chromatographic methods for the extraction of various pure components. As a consequence, four compounds were isolated, and their structures were elucidated using various spectroscopic methods such as IR, EIMS, HR-EIMS, 1H-NMR, 13C-NMR, NOESY, COSY, HMBC, and HMQC. Urs-12-en-3β-ol (α-amyrine) (1), Urs-12-ene-2α-3β-diol (chamaedrydiol) (2), 3β-hydroxyurs-12-en-28-aldehyde (ursolic aldehyde) (3), and 12-oleanex-3β-ol (β-amyrine) (4) were extracted. Compounds 1, 2, 3, and 4 were examined for antibacterial and antifungal activity and found to have zones of inhibition ranging from 0 to 11 mm against tested bacteria strains and percent inhibition ranging from 0 to 25 percent against fungus strains. Compounds 1 and 4 showed strong efficacy against the investigated fungal species, with a 25% inhibition rate. In the case of antibacterial activity, compounds 4 and 1 showed potent activity with zones of inhibition of 11 mm and 10 mm, respectively. Compounds 2 and 3 were observed to have nonsignificant antimicrobial activity. However, docking studies reflected the complex formation of compound 1 with beta-hydroxyacyl-ACP dehydratase HadAB and S. aureus tyrosyl-tRNA synthetase and compound 2 with topoisomerase II DNA gyrase complex, and they were reported to have antibacterial properties. Similarly, compound 4 was discovered to be well compatible with the lanosterol 14-demethylase (fungal enzyme) and is thus regarded as having antifungal capabilities. Chimera software was used to identify the binding pockets of these complexes. These results indicated that Persea duthiei is a valuable source of medicinal compounds for medication development.
Collapse
|
8
|
Mandelic acid-based spirothiazolidinones targeting M. tuberculosis: Synthesis, in vitro and in silico investigations. Bioorg Chem 2022; 121:105688. [DOI: 10.1016/j.bioorg.2022.105688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/09/2022] [Accepted: 02/13/2022] [Indexed: 01/01/2023]
|
9
|
Pretelín-Castillo G, Silva Miranda M, Espitia C, Chávez-Santos RM, Suárez-Castro A, Chacón-García L, Aguayo-Ortiz R, Martinez R. ( 2Z)-3-Hydroxy-3-(4-R-Phenyl)-Prop-2-Enedithioic Acids as New Antituberculosis Compounds. Infect Drug Resist 2021; 14:4323-4332. [PMID: 34707377 PMCID: PMC8543028 DOI: 10.2147/idr.s328132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Background Tuberculosis is an infectious disease caused by the bacillus Mycobacterium tuberculosis. Compounds including a sulfur-containing scaffold have been shown to be key scaffolds in various antituberculosis agents. Interestingly, the 3-hydroxy-3-phenyl-prop-2-enedithioic acids 11a-j have, to the best of our knowledge, not been previously described as antituberculosis agents. Purpose In the present study, we investigated the role of substituents attached to the phenyl ring of a 3-hydroxy-3-phenyl-prop-2-enedithioic acid scaffold (compounds 11a–j) in inhibiting the growth of M. tuberculosis strain H37Rv. Methods (Z)-3-hydroxy-3-(4-R-phenyl)-prop-2-enedithioic acids 11b–j, with R groups including various electron-donating or electron-withdrawing groups, were designed by structurally modifying the lead compound 11a. The syntheses of 11a–j involved each one-step procedure starting from the corresponding substituted acetophenone. Compounds 11a–j were tested against M. tuberculosis strain H37Rv to evaluate their bacterial growth inhibitory activities. ADMET profiles were predicted by employing three different methods. In addition, molecular docking studies were carried out, based on the molecular similarities of the synthesized compounds with ethionamide (5), on the active site of the M. tuberculosis H37Rv (3R)-hydroxyacyl-ACP (HadAB) dehydratase heterodimer. Results The antituberculosis activities of compounds 11a–j could be explained in terms of the presence of electron-donating or electron-withdrawing substituents on the aromatic ring of the substituted 3-hydroxy-3-phenyl)-prop-2-enedithioic acid core. The activity and selectivity index (SI) value of (Z)-3-hydroxy-3-(4-nitrophenyl)-prop-2-enedithioic acid 11e suggested that this compound could be used for the design of novel antituberculosis agents. Most of the synthesized molecules showed an acceptable ADME profile and a low probability of being toxic. Docking studies of 11d and 11e showed them forming hydrogen bonds with the ACys61 residue of the HadAB enzyme. Conclusion Our results suggested that the antituberculosis compound 11e could be used for the design of novel antituberculosis agents.
Collapse
Affiliation(s)
- Gustavo Pretelín-Castillo
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Cd. México, 04510, México
| | - Mayra Silva Miranda
- Catedrática CONACYT adscrita al Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cd. México, 04510, México.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Departamento de Inmunología, Ciudad Universitaria, Cd. México, 04510, México
| | - Clara Espitia
- Catedrática CONACYT adscrita al Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Cd. México, 04510, México.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Departamento de Inmunología, Ciudad Universitaria, Cd. México, 04510, México
| | - Rosa María Chávez-Santos
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Cd. México, 04510, México
| | - Abel Suárez-Castro
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-1, Ciudad Universitaria, Morelia Michoacán, 58030, México
| | - Luis Chacón-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B-1, Ciudad Universitaria, Morelia Michoacán, 58030, México
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Cd. México, 04510, México
| | - Roberto Martinez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Cd. México, 04510, México
| |
Collapse
|
10
|
Singh BK, Biswas R, Basak A, Das AK. Mycobacterial crypto-AcpM as a tool to investigate the consequence of drug binding on its key FAS II partner enzyme HadAB. Biochim Biophys Acta Gen Subj 2021; 1865:129964. [PMID: 34252514 DOI: 10.1016/j.bbagen.2021.129964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/20/2021] [Accepted: 07/06/2021] [Indexed: 01/18/2023]
Abstract
Background Mycobacterial FASII pathway is governed by the Protein-Protein Interaction mediated dynamics existent between Acyl Carrier Protein and its partner enzymes. The dehydratase HadAB, involved in the third step of FASII synthesis has remained a key target of drugs like Thiacetazone (TAC) and its consequence on AcpM binding is yet to be deciphered. Owing to the transient nature of these interactions, analysing their implications as a drug target has been exhausting. Methods In this context, we have developed an in vitro method to study the effect of thiocarbamide-containing compounds, TAC and SPA0355 (a thiourea analogue) against mycobacterial HadAB. Additionally, by utilizing crypto-ACP (NBD-tagged Acyl Carrier Protein) as a tool of our choice, we attempted at exploring the effect of TAC and SPA0355 on mycobacterial HadAB. Results SPA0355 behaves at par with TAC and undergoes activation in the presence of monooxygenase EthA thus, bringing about a covalent modification in HadA subunit of HadAB. The crypto-ACP method provides insights into the altered substrate housing capability in HadAB associated with the impediment of its AcpM mediated functionality; an outcome attributed to the repercussions associated with the binding of the aforementioned thiourea compounds. Conclusion This investigation has assisted in unveiling a two-step mechanism undertaken by AcpM for interacting with its corresponding partner protein during acyl chain transfer. General significance This study highlights the alterations brought about by drug binding in the interplay between ACP and HadAB. Additionally, this work for the first time establishes the role of SPA0355 as a promising drug candidate against dehydratase HadAB.
Collapse
Affiliation(s)
- Bina K Singh
- School of Biosciences, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rupam Biswas
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Basak
- School of Biosciences, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit K Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
11
|
Title of the manuscript: Mechanistic insights into chalcone butein-induced inhibition of α-synuclein fibrillation: Biophysical and insilico studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Isolation, Structure Elucidation and In Silico Prediction of Potential Drug-Like Flavonoids from Onosma chitralicum Targeted towards Functionally Important Proteins of Drug-Resistant Bad Bugs. Molecules 2021; 26:molecules26072048. [PMID: 33918531 PMCID: PMC8038373 DOI: 10.3390/molecules26072048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/22/2021] [Accepted: 03/30/2021] [Indexed: 11/29/2022] Open
Abstract
Admittedly, the disastrous emergence of drug resistance in prokaryotic and eukaryotic human pathogens has created an urgent need to develop novel chemotherapeutic agents. Onosma chitralicum is a source of traditional medicine with cooling, laxative, and anthelmintic effects. The objective of the current research was to analyze the biological potential of Onosma chitralicum, and to isolate and characterize the chemical constituents of the plant. The crude extracts of the plant prepared with different solvents, such as aqueous, hexane, chloroform, ethyl acetate, and butanol, were subjected to antimicrobial activities. Results corroborate that crude (methanol), EtoAc, and n-C6H14 fractions were more active against bacterial strains. Among these fractions, the EtoAc fraction was found more potent. The EtoAc fraction was the most active against the selected microbes, which was subjected to successive column chromatography, and the resultant compounds 1 to 7 were isolated. Different techniques, such as UV, IR, and NMR, were used to characterize the structures of the isolated compounds 1–7. All the isolated pure compounds (1–7) were tested for their antimicrobial potential. Compounds 1 (4′,8-dimethoxy-7-hydroxyisoflavone), 6 (5,3′,3-trihydroxy-7,4′-dimethoxyflavanone), and 7 (5′,7,8-trihydroxy-6,3′,4′-trimethoxyflavanone) were found to be more active against Staphylococcus aureus and Salmonella Typhi. Compound 1 inhibited S. typhi and S. aureus to 10 ± 0.21 mm and 10 ± 0.45 mm, whereas compound 6 showed inhibition to 10 ± 0.77 mm and 9 ± 0.20 mm, respectively. Compound 7 inhibited S. aureus to 6 ± 0.36 mm. Compounds 6 and 7 showed significant antibacterial potential, and the structure–activity relationship also justifies their binding to the bacterial enzymes, i.e., beta-hydroxyacyl dehydratase (HadAB complex) and tyrosyl-tRNA synthetase. Both bacterial enzymes are potential drug targets. Further, the isolated compounds were found to be active against the tested fungal strains. Whereas docking identified compound 7, the best binder to the lanosterol 14α-demethylase (an essential fungal cell membrane synthesizing enzyme), reported as an antifungal fluconazole binding enzyme. Based on our isolation-linked preliminary structure-activity relationship (SAR) data, we conclude that O. chitralicum can be a good source of natural compounds for drug development against some potential enzyme targets.
Collapse
|
13
|
Yu X, Zhang F, Liu T, Liu Z, Dong Q, Li D. Exploring efficacy of natural-derived acetylphenol scaffold inhibitors for α-glucosidase: Synthesis, in vitro and in vivo biochemical studies. Bioorg Med Chem Lett 2020; 30:127528. [PMID: 32920141 DOI: 10.1016/j.bmcl.2020.127528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022]
Abstract
The discovery of novel α-glucosidase inhibitors and anti-diabetic candidates from natural or natural-derived products represents an attractive therapeutic option. Here, a collection of acetylphenol analogues derived from paeonol and acetophenone were synthesized and evaluated for their α-glucosidase inhibitory activity. Most of derivatives, such as 9a-9e, 9i, 9m-9n and 11d-1e, (IC50 = 0.57 ± 0.01 μM to 8.45 ± 0.57 μM), exhibited higher inhibitory activity than the parent natural products and were by far more potent than the antidiabetic drug acarbose (IC50 = 57.01 ± 0.03 μM). Among these, 9e and 11d showed the most potent activity in a non-competitive manner. The binding processes between the two most potent compounds and α-glucosidase were spontaneous. Hydrophobic interactions were the main forces for the formation and stabilization of the enzyme - acetylphenol scaffold inhibitor complex, and induced the topography image changes and aggregation of α-glucosidase. In addition, everted intestinal sleeves in vitro and the maltose loading test in vivo further demonstrated the α-glucosidase inhibition of the two compounds, and our findings proved that they have significant postprandial hypoglycemic effects.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Ting Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Zhigang Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China
| | - Qingjian Dong
- Department of Nuclear Medicine and PET, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ding Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, Shaanxi Engineering Center of Bioresource Chemistry & Sustainable Utilization, College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Genetic Variation Putatively Associated with Mycobacterium tuberculosis Resistance to Perchlozone, a New Thiosemicarbazone: Clues from Whole Genome Sequencing and Implications for Treatment of Multidrug-Resistant Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9100669. [PMID: 33022959 PMCID: PMC7601826 DOI: 10.3390/antibiotics9100669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 11/16/2022] Open
Abstract
Perchlozone ([PCZ] 4-thioureido-iminomethylpyridinium perchlorate) is a new thiosemicarbazone approved for the treatment of multidrug-resistant tuberculosis (MDR-TB) in Russia and some other countries. The ethA and hadABC mutations may confer PCZ resistance. At the same time, ethA mutations are known to mediate resistance to ethionamide (ETH) and prothionamide (PTH). We aimed to study the genetic variation underlying Mycobacterium tuberculosis resistance to PCZ through whole genome sequencing (WGS) of consecutive isolates recovered during long-term treatment. This prospective study included patients admitted in 2018–2019 to the regional tuberculosis dispensary, Kaliningrad, Russia, whose treatment regimen included PCZ. Multiple M. tuberculosis isolates were recovered during PCZ treatment, and the bacterial DNA was subjected to WGS followed by bioinformatics analysis. We identified mutations in the genes putatively associated with PCZ resistance, ethA, and hadA. The most frequent one was a frameshift ethA 106 GA > G (seven of nine patients) and most of the other mutations were also likely present before PCZ treatment. In one patient, a frameshift mutation ethA 702 CT > C emerged after six months of PCZ treatment. A frequent presence of cross-resistance mutations to PCZ and ETH/PTH should be taken into consideration when PCZ is included in the treatment regimen of MDR-TB patients.
Collapse
|
15
|
Mycobacterial Cell Wall: A Source of Successful Targets for Old and New Drugs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072278] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Eighty years after the introduction of the first antituberculosis (TB) drug, the treatment of drug-susceptible TB remains very cumbersome, requiring the use of four drugs (isoniazid, rifampicin, ethambutol and pyrazinamide) for two months followed by four months on isoniazid and rifampicin. Two of the drugs used in this “short”-course, six-month chemotherapy, isoniazid and ethambutol, target the mycobacterial cell wall. Disruption of the cell wall structure can enhance the entry of other TB drugs, resulting in a more potent chemotherapy. More importantly, inhibition of cell wall components can lead to mycobacterial cell death. The complexity of the mycobacterial cell wall offers numerous opportunities to develop drugs to eradicate Mycobacterium tuberculosis, the causative agent of TB. In the past 20 years, researchers from industrial and academic laboratories have tested new molecules to find the best candidates that will change the face of TB treatment: drugs that will shorten TB treatment and be efficacious against active and latent, as well as drug-resistant TB. Two of these new TB drugs block components of the mycobacterial cell wall and have reached phase 3 clinical trial. This article reviews TB drugs targeting the mycobacterial cell wall in use clinically and those in clinical development.
Collapse
|
16
|
Grzegorzewicz AE, Gee C, Das S, Liu J, Belardinelli JM, Jones V, McNeil MR, Lee RE, Jackson M. Mechanisms of Resistance Associated with the Inhibition of the Dehydration Step of Type II Fatty Acid Synthase in Mycobacterium tuberculosis. ACS Infect Dis 2020; 6:195-204. [PMID: 31775512 DOI: 10.1021/acsinfecdis.9b00162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isoxyl (ISO) and thiacetazone (TAC) are two antitubercular prodrugs that abolish mycolic acid biosynthesis and kill Mycobacterium tuberculosis (Mtb) through the inhibition of the essential type II fatty acid synthase (FAS-II) dehydratase HadAB. While mutations preventing ISO and TAC either from being converted to their active form or from covalently modifying their target are the most frequent spontaneous mutations associated with high-level resistance to both drugs, the molecular mechanisms underlying the high-level ISO and TAC resistance of Mtb strains harboring missense mutations in the second, nonessential, FAS-II dehydratase HadBC have remained unexplained. Using a combination of genetic, biochemical, and biophysical approaches and molecular dynamics simulation, we here show that all four reported resistance mutations in the HadC subunit of HadBC alter the stability and/or specific activity of the enzyme, allowing it in two cases (HadBCV85I and HadBCK157R) to compensate for a deficiency in HadAB in whole Mtb bacilli. The analysis of the mycolic acid profiles of Mtb strains expressing the mutated forms of HadC further points to alterations in the activity of the mycolic acid biosynthetic complex and suggests an additional contributing resistance mechanism whereby HadC mutations may reduce the accessibility of HadAB to ISO and TAC. Collectively, our results highlight the importance of developing optimized inhibitors of the dehydration step of FAS-II capable of inhibiting both dehydratases simultaneously, a goal that may be achievable given the structural resemblance of the two enzymes and their reliance on the same catalytic subunit HadB.
Collapse
Affiliation(s)
- Anna E. Grzegorzewicz
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, Wroclaw PL-53-114, Poland
| | - Clifford Gee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Sourav Das
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Jiuyu Liu
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Juan Manuel Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Michael R. McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523-1682, United States
| |
Collapse
|
17
|
Discovery of a novel dehydratase of the fatty acid synthase type II critical for ketomycolic acid biosynthesis and virulence of Mycobacterium tuberculosis. Sci Rep 2020; 10:2112. [PMID: 32034201 PMCID: PMC7005898 DOI: 10.1038/s41598-020-58967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 01/20/2020] [Indexed: 02/07/2023] Open
Abstract
The fatty acid synthase type II (FAS-II) multienzyme system builds the main chain of mycolic acids (MAs), important lipid pathogenicity factors of Mycobacterium tuberculosis (Mtb). Due to their original structure, the identification of the (3 R)-hydroxyacyl-ACP dehydratases, HadAB and HadBC, of Mtb FAS-II complex required in-depth work. Here, we report the discovery of a third dehydratase protein, HadDMtb (Rv0504c), whose gene is non-essential and sits upstream of cmaA2 encoding a cyclopropane synthase dedicated to keto- and methoxy-MAs. HadDMtb deletion triggered a marked change in Mtb keto-MA content and size distribution, deeply impacting the production of full-size molecules. Furthermore, abnormal MAs, likely generated from 3-hydroxylated intermediates, accumulated. These data strongly suggest that HadDMtb catalyzes the 3-hydroxyacyl dehydratation step of late FAS-II elongation cycles during keto-MA biosynthesis. Phenotyping of Mtb hadD deletion mutant revealed the influence of HadDMtb on the planktonic growth, colony morphology and biofilm structuration, as well as on low temperature tolerance. Importantly, HadDMtb has a strong impact on Mtb virulence in the mouse model of infection. The effects of the lack of HadDMtb observed both in vitro and in vivo designate this protein as a bona fide target for the development of novel anti-TB intervention strategies.
Collapse
|
18
|
Moulishankar A, Lakshmanan K. Data on molecular docking of naturally occurring flavonoids with biologically important targets. Data Brief 2020; 29:105243. [PMID: 32072001 PMCID: PMC7016233 DOI: 10.1016/j.dib.2020.105243] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 11/18/2022] Open
Abstract
Flavonoids in nature are known to possess various activities such as anti-inflammatory, antimicrobial, anticancer, antioxidant, neuroprotective, anti-HIV activities etc., The molecular docking was performed by 26 naturally occurring flavonoids with selected targets COX-2, hydroxyacyl-ACP dehydratase, tyrosinase from Agaricus bisporus, isomaltase from Saccharomyces cerevisiae, Human IkB kinase beta, Human ABC transporter, topoisomerase II, topoisomerase IV, N-myristoyltransferase from Candida albicans, Peptide deformylase from Pseudomonas aeruginosa, polypeptide deformylase from Streptococcus pneumoniae. The analysis was based on docking score, glide energy, interactions type (bond type and distance) and interaction with amino acids. The top 5 flavonoids with best docking score was reported. The in-silico results provided for 26 naturally occurring flavonoid shows that they reduce the risk of inflammation, cancer and infectious disease if people have taken in diet continuously. The provided docking data of flavonoids may be useful to synthesis novel drug candidate for the mentioned targets.
Collapse
|
19
|
Zhang Q, Liu H, Liu X, Jiang D, Zhang B, Tian H, Yang C, Guddat LW, Yang H, Mi K, Rao Z. Discovery of the first macrolide antibiotic binding protein in Mycobacterium tuberculosis: a new antibiotic resistance drug target. Protein Cell 2019; 9:971-975. [PMID: 29350349 PMCID: PMC6208485 DOI: 10.1007/s13238-017-0502-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Qingqing Zhang
- College of Life Sciences, Nankai University, Tianjin, 300071, China.,Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, 300457, China
| | - Huijuan Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiang Liu
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Dunquan Jiang
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Bingjie Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongliang Tian
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Cheng Yang
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Haitao Yang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zihe Rao
- College of Life Sciences, Nankai University, Tianjin, 300071, China. .,College of Pharmacy, Nankai University, Tianjin, 300071, China. .,Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
20
|
Oppong YEA, Phelan J, Perdigão J, Machado D, Miranda A, Portugal I, Viveiros M, Clark TG, Hibberd ML. Genome-wide analysis of Mycobacterium tuberculosis polymorphisms reveals lineage-specific associations with drug resistance. BMC Genomics 2019; 20:252. [PMID: 30922221 PMCID: PMC6440112 DOI: 10.1186/s12864-019-5615-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Continuing evolution of the Mycobacterium tuberculosis (Mtb) complex genomes associated with resistance to anti-tuberculosis drugs is threatening tuberculosis disease control efforts. Both multi- and extensively drug resistant Mtb (MDR and XDR, respectively) are increasing in prevalence, but the full set of Mtb genes involved are not known. There is a need for increased sensitivity of genome-wide approaches in order to elucidate the genetic basis of anti-microbial drug resistance and gain a more detailed understanding of Mtb genome evolution in a context of widespread antimicrobial therapy. Population structure within the Mtb complex, due to clonal expansion, lack of lateral gene transfer and low levels of recombination between lineages, may be reducing statistical power to detect drug resistance associated variants. RESULTS To investigate the effect of lineage-specific effects on the identification of drug resistance associations, we applied genome-wide association study (GWAS) and convergence-based (PhyC) methods to multiple drug resistance phenotypes of a global dataset of Mtb lineages 2 and 4, using both lineage-wise and combined approaches. We identify both well-established drug resistance variants and novel associations; uniquely identifying associations for both lineage-specific and -combined GWAS analyses. We report 17 potential novel associations between antimicrobial resistance phenotypes and Mtb genomic variants. CONCLUSIONS For GWAS, both lineage-specific and -combined analyses are useful, whereas PhyC may perform better in contexts of greater diversity. Unique associations with XDR in lineage-specific analyses provide evidence of diverging evolutionary trajectories between lineages 2 and 4 in response to antimicrobial drug therapy.
Collapse
Affiliation(s)
- Yaa E. A. Oppong
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - Jody Phelan
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| | - João Perdigão
- iMed.ULisboa – Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Machado
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Anabela Miranda
- National Mycobacterium Reference Laboratory, Porto, Portugal
| | - Isabel Portugal
- iMed.ULisboa – Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, UNL, Lisbon, Portugal
| | - Taane G. Clark
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
- Faculty of Epidemiology and Population Health, LSHTM, London, UK
| | - Martin L. Hibberd
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT UK
| |
Collapse
|
21
|
Lefebvre C, Boulon R, Ducoux M, Gavalda S, Laval F, Jamet S, Eynard N, Lemassu A, Cam K, Bousquet MP, Bardou F, Burlet-Schiltz O, Daffé M, Quémard A. HadD, a novel fatty acid synthase type II protein, is essential for alpha- and epoxy-mycolic acid biosynthesis and mycobacterial fitness. Sci Rep 2018; 8:6034. [PMID: 29662082 PMCID: PMC5902629 DOI: 10.1038/s41598-018-24380-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/03/2018] [Indexed: 02/05/2023] Open
Abstract
Mycolic acids (MAs) have a strategic location within the mycobacterial envelope, deeply influencing its architecture and permeability, and play a determinant role in the pathogenicity of mycobacteria. The fatty acid synthase type II (FAS-II) multienzyme system is involved in their biosynthesis. A combination of pull-downs and proteomics analyses led to the discovery of a mycobacterial protein, HadD, displaying highly specific interactions with the dehydratase HadAB of FAS-II. In vitro activity assays and homology modeling showed that HadD is, like HadAB, a hot dog folded (R)-specific hydratase/dehydratase. A hadD knockout mutant of Mycobacterium smegmatis produced only the medium-size alpha’-MAs. Data strongly suggest that HadD is involved in building the third meromycolic segment during the late FAS-II elongation cycles, leading to the synthesis of the full-size alpha- and epoxy-MAs. The change in the envelope composition induced by hadD inactivation strongly altered the bacterial fitness and capacities to aggregate, assemble into colonies or biofilms and spread by sliding motility, and conferred a hypersensitivity to the firstline antimycobacterial drug rifampicin. This showed that the cell surface properties and the envelope integrity were greatly affected. With the alarmingly increasing case number of nontuberculous mycobacterial diseases, HadD appears as an attractive target for drug development.
Collapse
Affiliation(s)
- Cyril Lefebvre
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Richard Boulon
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Manuelle Ducoux
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Sabine Gavalda
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Françoise Laval
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Stevie Jamet
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Nathalie Eynard
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Anne Lemassu
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Kaymeuang Cam
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Marie-Pierre Bousquet
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Fabienne Bardou
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Odile Burlet-Schiltz
- Département Biologie Structurale & Biophysique, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Mamadou Daffé
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France
| | - Annaïk Quémard
- Département Tuberculose & Biologie des Infections, Institut de Pharmacologie et de Biologie Structurale, UMR5089, Université de Toulouse, CNRS, UPS, 31077, Toulouse Cedex 04, France.
| |
Collapse
|
22
|
Crystal structure of l -glutamate N -acetyltransferase ArgA from Mycobacterium tuberculosis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1800-1807. [DOI: 10.1016/j.bbapap.2017.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/18/2017] [Accepted: 09/20/2017] [Indexed: 11/22/2022]
|
23
|
Tailored-pharmacophore model to enhance virtual screening and drug discovery: a case study on the identification of potential inhibitors against drug-resistant Mycobacterium tuberculosis (3R)-hydroxyacyl-ACP dehydratases. Future Med Chem 2017. [DOI: 10.4155/fmc-2017-0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Virtual screening (VS) is powerful tool in discovering molecular inhibitors that are most likely to bind to drug targets of interest. Herein, we introduce a novel VS approach, so-called ‘tailored-pharmacophore’, in order to explore inhibitors that overcome drug resistance. Methodology & results: The emergence and spread of drug resistance strains of tuberculosis is one of the most critical issues in healthcare. A tailored-pharmacophore approach was found promising to identify in silico predicted hit with better binding affinities in case of the resistance mutations in MtbHadAB as compared with thiacetazone, a prodrug used in the clinical treatment of tuberculosis. Conclusion: This approach can potentially be enforced for the discovery and design of drugs against a wide range of resistance targets.
Collapse
|
24
|
Padmavathi G, Roy NK, Bordoloi D, Arfuso F, Mishra S, Sethi G, Bishayee A, Kunnumakkara AB. Butein in health and disease: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 25:118-127. [PMID: 28190465 DOI: 10.1016/j.phymed.2016.12.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/03/2016] [Accepted: 12/11/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The risk of suffering from many chronic diseases seems to have made no improvement despite the advancement in medications available in the modern world. Moreover, the use of synthetic chemicals as medications has proved to worsen the scenario due to the various adverse side effects associated with them. PURPOSE Extensive research on natural medicines provides ample evidence on the safety and efficacy of phytochemicals and nutraceuticals against diverse chronic ailments. Therefore, it is advisable to use natural products in the management of such diseases. This article aims to present a comprehensive and critical review of known pharmacological and biological effects of butein, an important chalcone polyphenol first isolated from Rhus verniciflua Stokes, implicated in the prevention and treatment of various chronic disease conditions. METHODS An extensive literature search was conducted using PubMed, ScienceDirect, Scopus and Web of ScienceTM core collections using key words followed by evaluation of the bibliographies of relevant articles. RESULTS Butein has been preclinically proven to be effective against several chronic diseases because it possesses a wide range of biological properties, including antioxidant, anti-inflammatory, anticancer, antidiabetic, hypotensive and neuroprotective effects. Furthermore, it has been shown to affect multiple molecular targets, including the master transcription factor nuclear factor-κB and its downstream molecules. Moreover, since it acts on multiple pathways, the chances of non-responsiveness and resistance development is reduced, supporting the use of butein as a preferred treatment option. CONCLUSION Based on numerous preclinical studies, butein shows significant therapeutic potential against various diseases. Nevertheless, well-designed clinical studies are urgently needed to validate the preclinical findings.
Collapse
Affiliation(s)
- Ganesan Padmavathi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, West Australia 6009, Australia
| | - Srishti Mishra
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Western Australia 6009, Australia.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL 33169, USA.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam 781 039, India.
| |
Collapse
|
25
|
Quémard A. New Insights into the Mycolate-Containing Compound Biosynthesis and Transport in Mycobacteria. Trends Microbiol 2016; 24:725-738. [DOI: 10.1016/j.tim.2016.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/14/2016] [Accepted: 04/29/2016] [Indexed: 12/15/2022]
|
26
|
Deletion of a dehydratase important for intracellular growth and cording renders rough Mycobacterium abscessus avirulent. Proc Natl Acad Sci U S A 2016; 113:E4228-37. [PMID: 27385830 PMCID: PMC4961194 DOI: 10.1073/pnas.1605477113] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus (Mabs) is a rapidly growing Mycobacterium and an emerging pathogen in humans. Transitioning from a smooth (S) high-glycopeptidolipid (GPL) producer to a rough (R) low-GPL producer is associated with increased virulence in zebrafish, which involves the formation of massive serpentine cords, abscesses, and rapid larval death. Generating a cord-deficient Mabs mutant would allow us to address the contribution of cording in the physiopathological signs of the R variant. Herein, a deletion mutant of MAB_4780, encoding a dehydratase, distinct from the β-hydroxyacyl-ACP dehydratase HadABC complex, was constructed in the R morphotype. This mutant exhibited an alteration of the mycolic acid composition and a pronounced defect in cording. This correlated with an extremely attenuated phenotype not only in wild-type but also in immunocompromised zebrafish embryos lacking either macrophages or neutrophils. The abolition of granuloma formation in embryos infected with the dehydratase mutant was associated with a failure to replicate in macrophages, presumably due to limited inhibition of the phagolysosomal fusion. Overall, these results indicate that MAB_4780 is required for Mabs to successfully establish acute and lethal infections. Therefore, targeting MAB_4780 may represent an attractive antivirulence strategy to control Mabs infections, refractory to most standard chemotherapeutic interventions. The combination of a dehydratase assay with a high-resolution crystal structure of MAB_4780 opens the way to identify such specific inhibitors.
Collapse
|