1
|
Liu Y, Brown CM, Erramilli S, Su YC, Guu SY, Tseng PS, Wang YJ, Duong NH, Tokarz P, Kloss B, Han CR, Chen HY, Rodrigues J, Khoo KH, Archer M, Kossiakoff AA, Lowary TL, Stansfeld PJ, Nygaard R, Mancia F. Structural insights into terminal arabinosylation of mycobacterial cell wall arabinan. Nat Commun 2025; 16:3973. [PMID: 40301320 PMCID: PMC12041299 DOI: 10.1038/s41467-025-58196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/14/2025] [Indexed: 05/01/2025] Open
Abstract
The global challenge of tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is compounded by the emergence of drug-resistant strains. A critical factor in Mtb's pathogenicity is its intricate cell envelope, which acts as a formidable barrier against immune defences and pharmacological interventions. Central to this envelope are arabinogalactan (AG) and lipoarabinomannan (LAM), two complex polysaccharides containing arabinan domains essential for maintaining cell wall structure and function. The arabinofuranosyltransferase AftB plays a pivotal role in the biosynthesis of these arabinan domains by catalyzing the addition of β-(1 → 2)-linked terminal arabinofuranose residues. Here, we present the cryo-EM structures of Mycobacterium chubuense AftB in both its apo form and bound to a donor substrate analog, resolved at 2.9 Å and 3.4 Å resolution, respectively. These structures reveal that AftB has a GT-C fold, with a transmembrane (TM) domain comprised of eleven TM helices and a periplasmic cap domain. AftB has a distinctive irregular, tube-shaped cavity that connects two proposed substrate binding sites. Through an integrated approach combining structural analysis, biochemical assays, and molecular dynamics simulations, we delineate the molecular basis of AftB's reaction mechanism and propose a model for its catalytic function.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Chelsea M Brown
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Satchal Erramilli
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Yi-Chia Su
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Shih-Yun Guu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Po-Sen Tseng
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Yu-Jen Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Nam Ha Duong
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Piotr Tokarz
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Brian Kloss
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Cheng-Ruei Han
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - Hung-Yu Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
| | - José Rodrigues
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan, ROC
| | - Margarida Archer
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan, ROC.
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan, ROC.
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, UK.
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Zinkle AP, Morgan RT, Nygaard R, Mancia F. Structural insights into polyisoprenyl-binding glycosyltransferases. Structure 2025; 33:639-651. [PMID: 39884274 PMCID: PMC11972162 DOI: 10.1016/j.str.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
Glycosyltransferases (GTs) catalyze the addition of sugars to diverse substrates facilitating complex glycoconjugate biosynthesis across all domains of life. When embedded in or associated with the membrane, these enzymes often depend on polyisoprenyl-phosphate or -pyrophosphate (PP) lipid carriers, including undecaprenyl phosphate in bacteria and dolichol phosphate in eukaryotes, to transfer glycan moieties. GTs that bind PP substrates (PP-GTs) are functionally diverse but share some common structural features within their family or subfamily, particularly with respect to how they interact with their cognate PP ligands. Recent advances in single-particle cryo-electron microscopy (cryo-EM) have provided insight into the structures of PP-GTs and the modes by which they bind their PP ligands. Here, we explore the structural landscape of PP-GTs, focusing mainly on those for which there is molecular-level information on liganded states, and highlight how PP coordination modalities may be shared or differ among members of this diverse enzyme class.
Collapse
Affiliation(s)
- Allen P Zinkle
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ryan T Morgan
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
3
|
Wang H, Li X, Li P, Feng Y, Wang J, Gao Q, Men B, Wang W, Yan Y, Zhang Y, Shi H, Wu Y, Ma F, Jia Y, Sang S, Fu X, Duan H, Zeng Q, Li X, Ma W, Li B, Liao Y. Uptake of Biomimetic Nanovesicles by Granuloma for Photodynamic Therapy of Tuberculosis. ACS OMEGA 2025; 10:6679-6688. [PMID: 40028123 PMCID: PMC11866195 DOI: 10.1021/acsomega.4c08127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025]
Abstract
The antimicrobial resistance of Mycobacterium tuberculosis (M. tuberculosis) is a challenge in the antibiotic treatment of tuberculosis (TB). Herein, we aimed to examine a photodynamic therapy for TB that has a low risk of drug resistance and involves biomimetic macrophage membranes combined with a photosensitizer, chlorin e6 (Ce6; hereinafter, C-MV). We used Mycobacterium marinum (M. marinum), a waterborne pathogen closely related to M. tuberculosis, which causes TB-like infections in ectotherms but not in humans. The mouse tail granuloma model induced by M. marinum is a relatively mature TB model developed by our team. C-MV nanoparticles were prepared and injected intravenously, showing longevity in circulation due to the properties of the macrophage membrane, which protects them from being eliminated from the blood. They were then guided to tuberculous granulomas, helping deliver precise photodynamic therapy. Ce6 is a classical photosensitizer that triggers the production of reactive oxygen species under laser irradiation, causing M. marinum death. The C-MV nanoparticles showed good compatibility and a long circulation time, effectively inhibiting the proliferation and infiltration of M. marinum, providing a new paradigm for TB treatment.
Collapse
Affiliation(s)
- Huanhuan Wang
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
- Institute
for Engineering Medicine, Kunming Medical
University, No.1168 Chunrong West Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Xiaoxue Li
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Peiran Li
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Yi Feng
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Jiamei Wang
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Qiuxia Gao
- Institute
for Engineering Medicine, Kunming Medical
University, No.1168 Chunrong West Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Bo Men
- Institute
for Engineering Medicine, Kunming Medical
University, No.1168 Chunrong West Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Wei Wang
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Yan Yan
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Yunlong Zhang
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Huimin Shi
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Yanqiu Wu
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
| | - Fei Ma
- School
of Inspection, Ningxia Medical University, No.1160 Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China
| | - Yue Jia
- School
of Inspection, Ningxia Medical University, No.1160 Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China
| | - Shuo Sang
- School
of Inspection, Ningxia Medical University, No.1160 Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China
| | - Xinting Fu
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Han Duan
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Qin Zeng
- Institute
for Engineering Medicine, Kunming Medical
University, No.1168 Chunrong West Road, Chenggong District, Kunming 650500, Yunnan, China
| | - Xiaomin Li
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Weifeng Ma
- Department
of Microbiology, School of Public Health, Southern Medical University, No.1023 South Shatai Road, Baiyun
District, Guangzhou 510515, Guangdong, China
| | - Bin Li
- School
of Inspection, Ningxia Medical University, No.1160 Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China
| | - Yuhui Liao
- Molecular
Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, No.2 Lujing Road, Yuexiu District, Guangzhou 510091, Guangdong, China
- Institute
for Engineering Medicine, Kunming Medical
University, No.1168 Chunrong West Road, Chenggong District, Kunming 650500, Yunnan, China
- School
of Inspection, Ningxia Medical University, No.1160 Shengli Street, Xingqing District, Yinchuan 750004, Ningxia, China
| |
Collapse
|
4
|
Zhou T, Hao J, Tang Q, Chandarajoti K, Ye W, Fan C, Wang X, Wang C, Zhang K, Han X, Zhou W, Ge Y. Antimicrobial activity and structure-activity relationships of molecules containing mono- or di- or oligosaccharides: An update. Bioorg Chem 2024; 148:107406. [PMID: 38728907 DOI: 10.1016/j.bioorg.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Bacterial infections are the second leading cause of death worldwide, and the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens exacerbate the threat crisis. Carbohydrates participate in bacterial infection, drug resistance and the process of host immune regulation. Numerous antimicrobials derived from carbohydrates or contained carbohydrate scaffolds that are conducive to an increase in pathogenic bacteria targeting, the physicochemical properties and druggability profiles. In the paper, according to the type and number of sugar residues contained in antimicrobial molecules collected from the literatures ranging from 2014 to 2024, the antimicrobial activities, action mechanisms and structure-activity relationships were delineated and summarized, for purpose to provide the guiding template to select the type and size of sugars in the design of oligosaccharide-based antimicrobials to fight the looming antibiotic resistance crisis.
Collapse
Affiliation(s)
- Tiantian Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat‑Yai, Songkhla, 90112, Thailand
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yuewei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
5
|
Kelly SD, Duong NH, Nothof JT, Lowary TL, Whitfield C. Three-component systems represent a common pathway for extracytoplasmic addition of pentofuranose sugars into bacterial glycans. Proc Natl Acad Sci U S A 2024; 121:e2402554121. [PMID: 38748580 PMCID: PMC11127046 DOI: 10.1073/pnas.2402554121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/18/2024] [Indexed: 05/27/2024] Open
Abstract
Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or β-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to β-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.
Collapse
Affiliation(s)
- Steven D. Kelly
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| | - Nam Ha Duong
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Nangang, Taipei11529, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu300044, Taiwan
| | - Jeremy T. Nothof
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
| | - Todd L. Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei11529, Taiwan
- Department of Chemistry, University of Alberta, Edmonton, ABT6G 2G2, Canada
- Institute of Biochemical Sciences, National Taiwan University, Taipei10617, Taiwan
| | - Chris Whitfield
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ONN1G 2W1, Canada
| |
Collapse
|
6
|
Bhattacharje G, Ghosh A, Das AK. Deciphering the mannose transfer mechanism of mycobacterial PimE by molecular dynamics simulations. Glycobiology 2024; 34:cwad096. [PMID: 38039077 DOI: 10.1093/glycob/cwad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/21/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Phosphatidyl-myo-inositol mannosides (PIMs), Lipomannan (LM), and Lipoarabinomannan (LAM) are essential components of the cell envelopes of mycobacteria. At the beginning of the biosynthesis of these compounds, phosphatidylinositol (PI) is mannosylated and acylated by various enzymes to produce Ac1/2PIM4, which is used to synthesize either Ac1/2PIM6 or LM/LAM. The protein PimE, a membrane-bound glycosyltransferase (GT-C), catalyzes the addition of a mannose group to Ac1PIM4 to produce Ac1PIM5, using polyprenolphosphate mannose (PPM) as the mannose donor. PimE-deleted Mycobacterium smegmatis (Msmeg) showed structural deformity and increased antibiotic and copper sensitivity. Despite knowing that the mutation D58A caused inactivity in Msmeg, how PimE catalyzes the transfer of mannose from PPM to Ac1/2PIM4 remains unknown. In this study, analyzing the AlphaFold structure of PimE revealed the presence of a tunnel through the D58 residue with two differently charged gates. Molecular docking suggested PPM binds to the hydrophobic tunnel gate, whereas Ac1PIM4 binds to the positively charged tunnel gate. Molecular dynamics (MD) simulations further demonstrated the critical roles of the residues N55, F87, L89, Y163, Q165, K197, L198, R251, F277, W324, H326, and I375 in binding PPM and Ac1PIM4. The mutation D58A caused a faster release of PPM from the catalytic tunnel, explaining the loss of PimE activity. Along with a hypothetical mechanism of mannose transfer by PimE, we also observe the presence of tunnels through a negatively charged aspartate or glutamate with two differently-charged gates among most GT-C enzymes. Common hydrophobic gates of GT-C enzymes probably harbor sugar donors, whereas, differently-charged tunnel gates accommodate various sugar-acceptors.
Collapse
Affiliation(s)
- Gourab Bhattacharje
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Midnapore, WB 721302, India
| | - Amit Ghosh
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Midnapore, WB 721302, India
| | - Amit Kumar Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Midnapore, WB 721302, India
| |
Collapse
|
7
|
Capela R, Félix R, Clariano M, Nunes D, Perry MDJ, Lopes F. Target Identification in Anti-Tuberculosis Drug Discovery. Int J Mol Sci 2023; 24:10482. [PMID: 37445660 DOI: 10.3390/ijms241310482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB), a disease that, although preventable and curable, remains a global epidemic due to the emergence of resistance and a latent form responsible for a long period of treatment. Drug discovery in TB is a challenging task due to the heterogeneity of the disease, the emergence of resistance, and uncomplete knowledge of the pathophysiology of the disease. The limited permeability of the cell wall and the presence of multiple efflux pumps remain a major barrier to achieve effective intracellular drug accumulation. While the complete genome sequence of Mtb has been determined and several potential protein targets have been validated, the lack of adequate models for in vitro and in vivo studies is a limiting factor in TB drug discovery programs. In current therapeutic regimens, less than 0.5% of bacterial proteins are targeted during the biosynthesis of the cell wall and the energetic metabolism of two of the most important processes exploited for TB chemotherapeutics. This review provides an overview on the current challenges in TB drug discovery and emerging Mtb druggable proteins, and explains how chemical probes for protein profiling enabled the identification of new targets and biomarkers, paving the way to disruptive therapeutic regimens and diagnostic tools.
Collapse
Affiliation(s)
- Rita Capela
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Rita Félix
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Marta Clariano
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Diogo Nunes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Maria de Jesus Perry
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Francisca Lopes
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
8
|
Italia A, Shaik MM, Peri F. Emerging Extracellular Molecular Targets for Innovative Pharmacological Approaches to Resistant Mtb Infection. Biomolecules 2023; 13:999. [PMID: 37371579 PMCID: PMC10296423 DOI: 10.3390/biom13060999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Emerging pharmacological strategies that target major virulence factors of antibiotic-resistant Mycobacterium tuberculosis (Mtb) are presented and discussed. This review is divided into three parts corresponding to structures and functions important for Mtb pathogenicity: the cell wall, the lipoarabinomannan, and the secretory proteins. Within the cell wall, we further focus on three biopolymeric sub-components: mycolic acids, arabinogalactan, and peptidoglycan. We present a comprehensive overview of drugs and drug candidates that target cell walls, envelopes, and secretory systems. An understanding at a molecular level of Mtb pathogenesis is provided, and potential future directions in therapeutic strategies are suggested to access new drugs to combat the growing global threat of antibiotic-resistant Mtb infection.
Collapse
Affiliation(s)
| | | | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy; (A.I.); (M.M.S.)
| |
Collapse
|
9
|
Bloch JS, John A, Mao R, Mukherjee S, Boilevin J, Irobalieva RN, Darbre T, Scott NE, Reymond JL, Kossiakoff AA, Goddard-Borger ED, Locher KP. Structure, sequon recognition and mechanism of tryptophan C-mannosyltransferase. Nat Chem Biol 2023; 19:575-584. [PMID: 36604564 PMCID: PMC10154233 DOI: 10.1038/s41589-022-01219-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/28/2022] [Indexed: 01/07/2023]
Abstract
C-linked glycosylation is essential for the trafficking, folding and function of secretory and transmembrane proteins involved in cellular communication processes. The tryptophan C-mannosyltransferase (CMT) enzymes that install the modification attach a mannose to the first tryptophan of WxxW/C sequons in nascent polypeptide chains by an unknown mechanism. Here, we report cryogenic-electron microscopy structures of Caenorhabditis elegans CMT in four key states: apo, acceptor peptide-bound, donor-substrate analog-bound and as a trapped ternary complex with both peptide and a donor-substrate mimic bound. The structures indicate how the C-mannosylation sequon is recognized by this CMT and its paralogs, and how sequon binding triggers conformational activation of the donor substrate: a process relevant to all glycosyltransferase C superfamily enzymes. Our structural data further indicate that the CMTs adopt an unprecedented electrophilic aromatic substitution mechanism to enable the C-glycosylation of proteins. These results afford opportunities for understanding human disease and therapeutic targeting of specific CMT paralogs.
Collapse
Affiliation(s)
- Joël S Bloch
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland
- Laboratory of Molecular Neurobiology and Biophysics and Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Alan John
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Runyu Mao
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Jérémy Boilevin
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | | | - Tamis Darbre
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ethan D Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
10
|
Synthesis, crystal structure, molecular dynamics, docking and in-vitro studies of cyclododecanonethiosemicarbazone, a promising anti tuberculosis agent. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
|
11
|
Habtamu M, Miheret A, Spurkland A. Editorial: Host immune evasion by Mycobacterium tuberculosis: Current updates. Front Immunol 2022; 13:1102415. [PMID: 36582236 PMCID: PMC9793081 DOI: 10.3389/fimmu.2022.1102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Meseret Habtamu
- Department of Mycobacteria diseases Research, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia,*Correspondence: Meseret Habtamu,
| | - Adane Miheret
- Department of Bacterial and Viral Diseases Research, Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Li YY, Liu HM, Wang D, Lu Y, Ding C, Zhou LS, Wu XY, Zhou ZW, Xu SQ, Lin C, Qin LH, Li Y, Liu J, Liu HP, Zhang L. Arabinogalactan enhances Mycobacterium marinum virulence by suppressing host innate immune responses. Front Immunol 2022; 13:879775. [PMID: 36090984 PMCID: PMC9459032 DOI: 10.3389/fimmu.2022.879775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Arabinogalactan (AG) participates in forming the cell wall core of mycobacteria, a structure known as the mAGP complex. Few studies have reported the virulence of inartificial AG or its interaction with the host immune system. Using clustered regularly interspaced short palindromic repeats interference gene editing technology, conditional Mycobacterium marinum mutants were constructed with a low expression of embA or glfT2 (EmbA_KD or GlfT2_KD), which are separately involved in the biosynthesis of AG arabinose and galactose domains. High-performance gel permeation chromatography and high-performance liquid chromatography assays confirmed that the EmbA_KD strain showed a remarkable decrease in AG content with fragmentary arabinose chains, and the GlfT2_KD strain displayed less reduction in content with cut-down galactose chains. Based on transmission and scanning electron microscopy observations, the cell walls of the two mutants were found to be dramatically thickened, and the boundaries of different layers were more distinct. Phenotypes including the over-secretion of extracellular substances and enhanced spreading motility with a concomitant decreased resistance to ethambutol appeared in the EmbA_KD strain. The EmbA_KD and GlfT2_KD strains displayed limited intracellular proliferation after infecting murine J774A.1 macrophages. The disease progression infected with the EmbA_KD or GlfT2_KD strain significantly slowed down in zebrafish/murine tail infection models as well. Through transcriptome profiling, macrophages infected by EmbA_KD/GlfT2_KD strains showed enhanced oxidative metabolism. The cell survival measured using the CCK8 assay of macrophages exposed to the EmbA_KD strain was upregulated and consistent with the pathway enrichment analysis of differentially expressed genes in terms of cell cycle/apoptosis. The overexpression of C/EBPβ and the increasing secretion of proinflammatory cytokines were validated in the macrophages infected by the EmbA_KD mutant. In conclusion, the AG of Mycobacterium appears to restrain the host innate immune responses to enhance intracellular proliferation by interfering with oxidative metabolism and causing macrophage death. The arabinose chains of AG influence the Mycobacterium virulence and pathogenicity to a greater extent.
Collapse
Affiliation(s)
- Ye-yu Li
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Han-Mei Liu
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Decheng Wang
- School of Medicine, China Three Gorges University, Yichang, China
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Cairong Ding
- School of Medicine, China Three Gorges University, Yichang, China
| | - Li-Shuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiang-Yang Wu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zi-Wei Zhou
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Shu-qin Xu
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Chen Lin
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
| | - Lian-Hua Qin
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yao Li
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| | - Hai-Peng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| | - Lu Zhang
- Department of Microbiology, School of Life Science, Fudan University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, China
- *Correspondence: Jun Liu, ; Hai-Peng Liu, ; Lu Zhang,
| |
Collapse
|
13
|
Tan YZ, Mancia F. Structure and Function of Mycobacterial Arabinofuranosyltransferases. Subcell Biochem 2022; 99:379-391. [PMID: 36151383 DOI: 10.1007/978-3-031-00793-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The mycobacteria genus is responsible for numerous infectious diseases that have afflicted the human race since antiquity-tuberculosis and leprosy in particular. An important contributor to their evolutionary success is their unique cell envelope, which constitutes a quasi-impermeable barrier, protecting the microorganism from external threats, antibiotics included. The arabinofuranosyltransferases are a family of enzymes, unique to the Actinobacteria family that mycobacteria genus belongs to, that are critical to building of this cell envelope. In this chapter, we will analyze available structures of members of the mycobacterial arabinofuranosyltransferase, clarify their function, as well as explore the common themes present amongst this family of enzymes, as revealed by recent research.
Collapse
Affiliation(s)
- Yong Zi Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Disease Intervention Technology Laboratory (DITL), Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, NY, USA
| |
Collapse
|
14
|
Wu X, Wu Y, Zheng R, Tang F, Qin L, Lai D, Zhang L, Chen L, Yan B, Yang H, Wang Y, Li F, Zhang J, Wang F, Wang L, Cao Y, Ma M, Liu Z, Chen J, Huang X, Wang J, Jin R, Wang P, Sun Q, Sha W, Lyu L, Moura‐Alves P, Dorhoi A, Pei G, Zhang P, Chen J, Gao S, Randow F, Zeng G, Chen C, Ye X, Kaufmann SHE, Liu H, Ge B. Sensing of mycobacterial arabinogalactan by galectin-9 exacerbates mycobacterial infection. EMBO Rep 2021; 22:e51678. [PMID: 33987949 PMCID: PMC8256295 DOI: 10.15252/embr.202051678] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 04/10/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial arabinogalactan (AG) is an essential cell wall component of mycobacteria and a frequent structural and bio-synthetical target for anti-tuberculosis (TB) drug development. Here, we report that mycobacterial AG is recognized by galectin-9 and exacerbates mycobacterial infection. Administration of AG-specific aptamers inhibits cellular infiltration caused by Mycobacterium tuberculosis (Mtb) or Mycobacterium bovis BCG, and moderately increases survival of Mtb-infected mice or Mycobacterium marinum-infected zebrafish. AG interacts with carbohydrate recognition domain (CRD) 2 of galectin-9 with high affinity, and galectin-9 associates with transforming growth factor β-activated kinase 1 (TAK1) via CRD2 to trigger subsequent activation of extracellular signal-regulated kinase (ERK) as well as induction of the expression of matrix metalloproteinases (MMPs). Moreover, deletion of galectin-9 or inhibition of MMPs blocks AG-induced pathological impairments in the lung, and the AG-galectin-9 axis aggravates the process of Mtb infection in mice. These results demonstrate that AG is an important virulence factor of mycobacteria and galectin-9 is a novel receptor for Mtb and other mycobacteria, paving the way for the development of novel effective TB immune modulators.
Collapse
|
15
|
Bendre AD, Peters PJ, Kumar J. Recent Insights into the Structure and Function of Mycobacterial Membrane Proteins Facilitated by Cryo-EM. J Membr Biol 2021; 254:321-341. [PMID: 33954837 PMCID: PMC8099146 DOI: 10.1007/s00232-021-00179-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is one of the deadliest pathogens encountered by humanity. Over the decades, its characteristic membrane organization and composition have been understood. However, there is still limited structural information and mechanistic understanding of the constituent membrane proteins critical for drug discovery pipelines. Recent advances in single-particle cryo-electron microscopy and cryo-electron tomography have provided the much-needed impetus towards structure determination of several vital Mtb membrane proteins whose structures were inaccessible via X-ray crystallography and NMR. Important insights into membrane composition and organization have been gained via a combination of electron tomography and biochemical and biophysical assays. In addition, till the time of writing this review, 75 new structures of various Mtb proteins have been reported via single-particle cryo-EM. The information obtained from these structures has improved our understanding of the mechanisms of action of these proteins and the physiological pathways they are associated with. These structures have opened avenues for structure-based drug design and vaccine discovery programs that might help achieve global-TB control. This review describes the structural features of selected membrane proteins (type VII secretion systems, Rv1819c, Arabinosyltransferase, Fatty Acid Synthase, F-type ATP synthase, respiratory supercomplex, ClpP1P2 protease, ClpB disaggregase and SAM riboswitch), their involvement in physiological pathways, and possible use as a drug target. Tuberculosis is a deadly disease caused by Mycobacterium tuberculosis. The Cryo-EM and tomography have simplified the understanding of the mycobacterial membrane organization. Some proteins are located in the plasma membrane; some span the entire envelope, while some, like MspA, are located in the mycomembrane. Cryo-EM has made the study of such membrane proteins feasible.
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, The Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University Campus, Ganeshkhind, Pune, Maharashtra, 411007, India.
| |
Collapse
|
16
|
Bai L, Li H. Protein N-glycosylation and O-mannosylation are catalyzed by two evolutionarily related GT-C glycosyltransferases. Curr Opin Struct Biol 2021; 68:66-73. [PMID: 33445129 PMCID: PMC8222153 DOI: 10.1016/j.sbi.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
The structural folds of glycosyltransferases are categorized into three superfamilies: GT-A, GT-B, and GT-C. Few structures of GT-C fold existed in the Protein Data Bank prior to the recent advent of high-resolution cryo-EM, because the glycosyltransferases are large membrane proteins that are difficult to crystallize. The use of cryo-EM has resulted in the structures of several key GT-C glycosyltransferases. Here we summarize the latest structural features of and mechanistic insights into these membrane enzyme complexes.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100083, PR China.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI 49503, United States.
| |
Collapse
|
17
|
High Throughput Expression Screening of Arabinofuranosyltransferases from Mycobacteria. Processes (Basel) 2021. [DOI: 10.3390/pr9040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Studies on membrane proteins can help to develop new drug targets and treatments for a variety of diseases. However, membrane proteins continue to be among the most challenging targets in structural biology. This uphill endeavor can be even harder for membrane proteins from Mycobacterium species, which are notoriously difficult to express in heterologous systems. Arabinofuranosyltransferases are involved in mycobacterial cell wall synthesis and thus potential targets for antituberculosis drugs. A set of 96 mycobacterial genes coding for Arabinofuranosyltransferases was selected, of which 17 were successfully expressed in E. coli and purified by metal-affinity chromatography. We herein present an efficient high-throughput strategy to screen in microplates a large number of targets from Mycobacteria and select the best conditions for large-scale protein production to pursue functional and structural studies. This methodology can be applied to other targets, is cost and time effective and can be implemented in common laboratories.
Collapse
|