1
|
van Kampen A, Morningstar JE, Goudot G, Ingels N, Wenk JF, Nagata Y, Yaghoubian KM, Norris RA, Borger MA, Melnitchouk S, Levine RA, Jensen MO. Utilization of Engineering Advances for Detailed Biomechanical Characterization of the Mitral-Ventricular Relationship to Optimize Repair Strategies: A Comprehensive Review. Bioengineering (Basel) 2023; 10:601. [PMID: 37237671 PMCID: PMC10215167 DOI: 10.3390/bioengineering10050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The geometrical details and biomechanical relationships of the mitral valve-left ventricular apparatus are very complex and have posed as an area of research interest for decades. These characteristics play a major role in identifying and perfecting the optimal approaches to treat diseases of this system when the restoration of biomechanical and mechano-biological conditions becomes the main target. Over the years, engineering approaches have helped to revolutionize the field in this regard. Furthermore, advanced modelling modalities have contributed greatly to the development of novel devices and less invasive strategies. This article provides an overview and narrative of the evolution of mitral valve therapy with special focus on two diseases frequently encountered by cardiac surgeons and interventional cardiologists: ischemic and degenerative mitral regurgitation.
Collapse
Affiliation(s)
- Antonia van Kampen
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Leipzig Heart Centre, University Clinic of Cardiac Surgery, 02189 Leipzig, Germany
| | - Jordan E. Morningstar
- Department of Regenerative Medicine and Cell Biology, University of South Carolina, Charleston, SC 29425, USA
| | - Guillaume Goudot
- Cardiac Ultrasound Laboratory, Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Neil Ingels
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jonathan F. Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40508, USA;
| | - Yasufumi Nagata
- Cardiac Ultrasound Laboratory, Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Koushiar M. Yaghoubian
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, University of South Carolina, Charleston, SC 29425, USA
| | - Michael A. Borger
- Leipzig Heart Centre, University Clinic of Cardiac Surgery, 02189 Leipzig, Germany
| | - Serguei Melnitchouk
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Robert A. Levine
- Cardiac Ultrasound Laboratory, Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Morten O. Jensen
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Park MH, Pandya PK, Zhu Y, Mullis DM, Wang H, Imbrie-Moore AM, Wilkerson R, Marin-Cuartas M, Woo YJ. A Novel Rheumatic Mitral Valve Disease Model with Ex Vivo Hemodynamic and Biomechanical Validation. Cardiovasc Eng Technol 2023; 14:129-140. [PMID: 35941509 PMCID: PMC9905378 DOI: 10.1007/s13239-022-00641-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/08/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Rheumatic heart disease is a major cause of mitral valve (MV) dysfunction, particularly in disadvantaged areas and developing countries. There lacks a critical understanding of the disease biomechanics, and as such, the purpose of this study was to generate the first ex vivo porcine model of rheumatic MV disease by simulating the human pathophysiology and hemodynamics. METHODS Healthy porcine valves were altered with heat treatment, commissural suturing, and cyanoacrylate tissue coating, all of which approximate the pathology of leaflet stiffening and thickening as well as commissural fusion. Hemodynamic data, echocardiography, and high-speed videography were collected in a paired manner for control and model valves (n = 4) in an ex vivo left heart simulator. Valve leaflets were characterized in an Instron tensile testing machine to understand the mechanical changes of the model (n = 18). RESULTS The model showed significant differences indicative of rheumatic disease: increased regurgitant fractions (p < 0.001), reduced effective orifice areas (p < 0.001), augmented transmitral mean gradients (p < 0.001), and increased leaflet stiffness (p = 0.025). CONCLUSION This work represents the creation of the first ex vivo model of rheumatic MV disease, bearing close similarity to the human pathophysiology and hemodynamics, and it will be used to extensively study both established and new treatment techniques, benefitting the millions of affected victims.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Pearly K Pandya
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Robert Wilkerson
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
- University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Zhu Y, Imbrie-Moore AM, Paulsen MJ, Priromprintr B, Wang H, Lucian HJ, Farry JM, Woo YJ. Novel bicuspid aortic valve model with aortic regurgitation for hemodynamic status analysis using an ex vivo simulator. J Thorac Cardiovasc Surg 2022; 163:e161-e171. [PMID: 32747120 PMCID: PMC7769867 DOI: 10.1016/j.jtcvs.2020.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The objective was to design and evaluate a clinically relevant, novel ex vivo bicuspid aortic valve model that mimics the most common human phenotype with associated aortic regurgitation. METHODS Three bovine aortic valves were mounted asymmetrically in a previously validated 3-dimensional-printed left heart simulator. The non-right commissure and the non-left commissure were both shifted slightly toward the left-right commissure, and the left and right coronary cusps were sewn together. The left-right commissure was then detached and reimplanted 10 mm lower than its native height. Free margin shortening was used for valve repair. Hemodynamic status, high-speed videography, and echocardiography data were collected before and after the repair. RESULTS The bicuspid aortic valve model was successfully produced and repaired. High-speed videography confirmed prolapse of the fused cusp of the baseline bicuspid aortic valve models in diastole. Hemodynamic and pressure data confirmed accurate simulation of diseased conditions with aortic regurgitation and the subsequent repair. Regurgitant fraction postrepair was significantly reduced compared with that at baseline (14.5 ± 4.4% vs 28.6% ± 3.4%; P = .037). There was no change in peak velocity, peak gradient, or mean gradient across the valve pre- versus postrepair: 293.3 ± 18.3 cm/sec versus 325.3 ± 58.2 cm/sec (P = .29), 34.3 ± 4.2 mm Hg versus 43.3 ± 15.4 mm Hg (P = .30), and 11 ± 1 mm Hg versus 9.3 ± 2.5 mm Hg (P = .34), respectively. CONCLUSIONS An ex vivo bicuspid aortic valve model was designed that recapitulated the most common human phenotype with aortic regurgitation. These valves were successfully repaired, validating its potential for evaluating valve hemodynamics and optimizing surgical repair for bicuspid aortic valves.
Collapse
Affiliation(s)
- Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA,Department of Bioengineering, Stanford University, Stanford, CA
| | - Annabel M. Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA,Department of Mechanical Engineering, Stanford University, Stanford, CA
| | | | - Bryant Priromprintr
- Department of Pediatrics, Division of Pediatric Cardiology, Stanford University, Stanford, CA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA
| | - Haley J. Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA
| | - Justin M. Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA,Department of Bioengineering, Stanford University, Stanford, CA
| |
Collapse
|
4
|
Imbrie-Moore AM, Zhu Y, Bandy-Vizcaino T, Park MH, Wilkerson RJ, Woo YJ. Ex Vivo Model of Ischemic Mitral Regurgitation and Analysis of Adjunctive Papillary Muscle Repair. Ann Biomed Eng 2021; 49:3412-3424. [PMID: 34734363 DOI: 10.1007/s10439-021-02879-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/15/2021] [Indexed: 01/24/2023]
Abstract
Ischemic mitral regurgitation (IMR) is particularly challenging to repair with lasting durability due to the complex valvular and subvalvular pathologies resulting from left ventricular dysfunction. Ex vivo simulation is uniquely suited to quantitatively analyze the repair biomechanics, but advancements are needed to model the nuanced IMR disease state. Here we present a novel IMR model featuring a dilation device with precise dilatation control that preserves annular elasticity to enable accurate ex vivo analysis of surgical repair. Coupled with augmented papillary muscle head positioning, the enhanced heart simulator system successfully modeled IMR pre- and post-surgical intervention and enabled the analysis of adjunctive subvalvular papillary muscle repair to alleviate regurgitation recurrence. The model resulted in an increase in regurgitant fraction: 11.6 ± 1.7% to 36.1 ± 4.4% (p < 0.001). Adjunctive papillary muscle head fusion was analyzed relative to a simple restrictive ring annuloplasty repair and, while both repairs successfully eliminated regurgitation initially, the addition of the adjunctive subvalvular repair reduced regurgitation recurrence: 30.4 ± 5.7% vs. 12.5 ± 2.6% (p = 0.002). Ultimately, this system demonstrates the success of adjunctive papillary muscle head fusion in repairing IMR as well as provides a platform to optimize surgical techniques for increased repair durability.
Collapse
Affiliation(s)
- Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Robert J Wilkerson
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Falk Cardiovascular Research Building CV-235, 300 Pasteur Drive, Stanford, CA, 94305-5407, USA. .,Department of Bioengineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
5
|
Park MH, Zhu Y, Imbrie-Moore AM, Wang H, Marin-Cuartas M, Paulsen MJ, Woo YJ. Heart Valve Biomechanics: The Frontiers of Modeling Modalities and the Expansive Capabilities of Ex Vivo Heart Simulation. Front Cardiovasc Med 2021; 8:673689. [PMID: 34307492 PMCID: PMC8295480 DOI: 10.3389/fcvm.2021.673689] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/17/2021] [Indexed: 01/05/2023] Open
Abstract
The field of heart valve biomechanics is a rapidly expanding, highly clinically relevant area of research. While most valvular pathologies are rooted in biomechanical changes, the technologies for studying these pathologies and identifying treatments have largely been limited. Nonetheless, significant advancements are underway to better understand the biomechanics of heart valves, pathologies, and interventional therapeutics, and these advancements have largely been driven by crucial in silico, ex vivo, and in vivo modeling technologies. These modalities represent cutting-edge abilities for generating novel insights regarding native, disease, and repair physiologies, and each has unique advantages and limitations for advancing study in this field. In particular, novel ex vivo modeling technologies represent an especially promising class of translatable research that leverages the advantages from both in silico and in vivo modeling to provide deep quantitative and qualitative insights on valvular biomechanics. The frontiers of this work are being discovered by innovative research groups that have used creative, interdisciplinary approaches toward recapitulating in vivo physiology, changing the landscape of clinical understanding and practice for cardiovascular surgery and medicine.
Collapse
Affiliation(s)
- Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Mechanical Engineering, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Mateo Marin-Cuartas
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,University Department of Cardiac Surgery, Leipzig Heart Center, Leipzig, Germany
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
6
|
Imbrie-Moore AM, Park MH, Paulsen MJ, Sellke M, Kulkami R, Wang H, Zhu Y, Farry JM, Bourdillon AT, Callinan C, Lucian HJ, Hironaka CE, Deschamps D, Joseph Woo Y. Biomimetic six-axis robots replicate human cardiac papillary muscle motion: pioneering the next generation of biomechanical heart simulator technology. J R Soc Interface 2020; 17:20200614. [PMID: 33259750 DOI: 10.1098/rsif.2020.0614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Papillary muscles serve as attachment points for chordae tendineae which anchor and position mitral valve leaflets for proper coaptation. As the ventricle contracts, the papillary muscles translate and rotate, impacting chordae and leaflet kinematics; this motion can be significantly affected in a diseased heart. In ex vivo heart simulation, an explanted valve is subjected to physiologic conditions and can be adapted to mimic a disease state, thus providing a valuable tool to quantitatively analyse biomechanics and optimize surgical valve repair. However, without the inclusion of papillary muscle motion, current simulators are limited in their ability to accurately replicate cardiac biomechanics. We developed and implemented image-guided papillary muscle (IPM) robots to mimic the precise motion of papillary muscles. The IPM robotic system was designed with six degrees of freedom to fully capture the native motion. Mathematical analysis was used to avoid singularity conditions, and a supercomputing cluster enabled the calculation of the system's reachable workspace. The IPM robots were implemented in our heart simulator with motion prescribed by high-resolution human computed tomography images, revealing that papillary muscle motion significantly impacts the chordae force profile. Our IPM robotic system represents a significant advancement for ex vivo simulation, enabling more reliable cardiac simulations and repair optimizations.
Collapse
Affiliation(s)
- Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Matthew H Park
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Mark Sellke
- Department of Mathematics, Stanford University, Stanford, CA, USA
| | - Rohun Kulkami
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | | | - Christine Callinan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Camille E Hironaka
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Daniela Deschamps
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.,Department of Bioengineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
A Novel Aortic Regurgitation Model from Cusp Prolapse with Hemodynamic Validation Using an Ex Vivo Left Heart Simulator. J Cardiovasc Transl Res 2020; 14:283-289. [PMID: 32495264 DOI: 10.1007/s12265-020-10038-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Although ex vivo simulation is a valuable tool for surgical optimization, a disease model that mimics human aortic regurgitation (AR) from cusp prolapse is needed to accurately examine valve biomechanics. To simulate AR, four porcine aortic valves were explanted, and the commissure between the two largest leaflets was detached and re-implanted 5 mm lower to induce cusp prolapse. Four additional valves were tested in their native state as controls. All valves were tested in a heart simulator while hemodynamics, high-speed videography, and echocardiography data were collected. Our AR model successfully reproduced cusp prolapse with significant increase in regurgitant volume compared with that of the controls (23.2 ± 8.9 versus 2.8 ± 1.6 ml, p = 0.017). Hemodynamics data confirmed the simulation of physiologic disease conditions. Echocardiography and color flow mapping demonstrated the presence of mild to moderate eccentric regurgitation in our AR model. This novel AR model has enormous potential in the evaluation of valve biomechanics and surgical repair techniques. Graphical Abstract.
Collapse
|
8
|
Wang H, Paulsen MJ, Imbrie-Moore AM, Tada Y, Bergamasco H, Baker SW, Shudo Y, Ma M, Woo YJ. In Vivo Validation of Restored Chordal Biomechanics After Mitral Ring Annuloplasty in a Rare Ovine Case of Natural Chronic Functional Mitral Regurgitation. J Cardiovasc Dev Dis 2020; 7:jcdd7020017. [PMID: 32429298 PMCID: PMC7344614 DOI: 10.3390/jcdd7020017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/11/2023] Open
Abstract
Mitral valve chordae tendineae forces are elevated in the setting of mitral regurgitation (MR). Ring annuloplasty is an essential component of surgical repair for MR, but whether chordal forces are reduced after mitral annuloplasty has never been validated in vivo. Here, we present an extremely rare ovine case of natural, severe chronic functional MR, in which we used force-sensing fiber Bragg grating neochordae to directly measure chordal forces in the baseline setting of severe MR, as well as after successful mitral ring annuloplasty repair. Overall, our report is the first to confirm in vivo that mitral ring annuloplasty reduces elevated chordae tendineae forces associated with chronic functional MR.
Collapse
Affiliation(s)
- Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (H.W.); (M.J.P.); (A.M.I.-M.); (H.B.); (Y.S.); (M.M.)
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA;
| | - Michael J. Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (H.W.); (M.J.P.); (A.M.I.-M.); (H.B.); (Y.S.); (M.M.)
| | - Annabel M. Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (H.W.); (M.J.P.); (A.M.I.-M.); (H.B.); (Y.S.); (M.M.)
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yuko Tada
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA;
- Department of Cardiovascular Medicine, Stanford University, Stanford, CA 94305, USA
| | - Hunter Bergamasco
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (H.W.); (M.J.P.); (A.M.I.-M.); (H.B.); (Y.S.); (M.M.)
| | - Sam W. Baker
- Department of Comparative Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (H.W.); (M.J.P.); (A.M.I.-M.); (H.B.); (Y.S.); (M.M.)
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA;
| | - Michael Ma
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (H.W.); (M.J.P.); (A.M.I.-M.); (H.B.); (Y.S.); (M.M.)
| | - Y. Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA 94305, USA; (H.W.); (M.J.P.); (A.M.I.-M.); (H.B.); (Y.S.); (M.M.)
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA;
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-650-725-3828
| |
Collapse
|
9
|
Ross CJ, Zheng J, Ma L, Wu Y, Lee CH. Mechanics and Microstructure of the Atrioventricular Heart Valve Chordae Tendineae: A Review. Bioengineering (Basel) 2020; 7:E25. [PMID: 32178262 PMCID: PMC7148526 DOI: 10.3390/bioengineering7010025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
The atrioventricular heart valves (AHVs) are responsible for directing unidirectional blood flow through the heart by properly opening and closing the valve leaflets, which are supported in their function by the chordae tendineae and the papillary muscles. Specifically, the chordae tendineae are critical to distributing forces during systolic closure from the leaflets to the papillary muscles, preventing leaflet prolapse and consequent regurgitation. Current therapies for chordae failure have issues of disease recurrence or suboptimal treatment outcomes. To improve those therapies, researchers have sought to better understand the mechanics and microstructure of the chordae tendineae of the AHVs. The intricate structures of the chordae tendineae have become of increasing interest in recent literature, and there are several key findings that have not been comprehensively summarized in one review. Therefore, in this review paper, we will provide a summary of the current state of biomechanical and microstructural characterizations of the chordae tendineae, and also discuss perspectives for future studies that will aid in a better understanding of the tissue mechanics-microstructure linking of the AHVs' chordae tendineae, and thereby improve the therapeutics for heart valve diseases caused by chordae failures.
Collapse
Affiliation(s)
- Colton J. Ross
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; (C.J.R.); (Y.W.)
| | - Junnan Zheng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310058, China; (J.Z.); (L.M.)
| | - Liang Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, Hangzhou 310058, China; (J.Z.); (L.M.)
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; (C.J.R.); (Y.W.)
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory, School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA; (C.J.R.); (Y.W.)
- Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
10
|
Imbrie-Moore AM, Paulsen MJ, Zhu Y, Wang H, Lucian HJ, Farry JM, MacArthur JW, Ma M, Woo YJ. A novel cross-species model of Barlow's disease to biomechanically analyze repair techniques in an ex vivo left heart simulator. J Thorac Cardiovasc Surg 2020; 161:1776-1783. [PMID: 32249088 DOI: 10.1016/j.jtcvs.2020.01.086] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/17/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Barlow's disease remains challenging to repair, given the complex valvular morphology and lack of quantitative data to compare techniques. Although there have been recent strides in ex vivo evaluation of cardiac mechanics, to our knowledge, there is no disease model that accurately simulates the morphology and pathophysiology of Barlow's disease. The purpose of this study was to design such a model. METHODS To simulate Barlow's disease, a cross-species ex vivo model was developed. Bovine mitral valves (n = 4) were sewn into a porcine annulus mount to create excess leaflet tissue and elongated chordae. A heart simulator generated physiologic conditions while hemodynamic data, high-speed videography, and chordal force measurements were collected. The regurgitant valves were repaired using nonresectional repair techniques such as neochord placement. RESULTS The model successfully imitated the complexities of Barlow's disease, including redundant, billowing bileaflet tissues with notable regurgitation. After repair, hemodynamic data confirmed reduction of mitral leakage volume (25.9 ± 2.9 vs 2.1 ± 1.8 mL, P < .001) and strain gauge analysis revealed lower primary chordae forces (0.51 ± 0.17 vs 0.10 ± 0.05 N, P < .001). In addition, the maximum rate of change of force was significantly lower postrepair for both primary (30.80 ± 11.38 vs 8.59 ± 4.83 N/s, P < .001) and secondary chordae (33.52 ± 10.59 vs 19.07 ± 7.00 N/s, P = .006). CONCLUSIONS This study provides insight into the biomechanics of Barlow's disease, including sharply fluctuating force profiles experienced by elongated chordae prerepair, as well as restoration of primary chordae forces postrepair. Our disease model facilitates further in-depth analyses to optimize the repair of Barlow's disease.
Collapse
Affiliation(s)
- Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Department of Mechanical Engineering, Stanford University, Stanford, Calif
| | - Michael J Paulsen
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Department of Bioengineering, Stanford University, Stanford, Calif
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Haley J Lucian
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Justin M Farry
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - John W MacArthur
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Michael Ma
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, Calif; Department of Bioengineering, Stanford University, Stanford, Calif.
| |
Collapse
|
11
|
A novel 3D-Printed preferential posterior mitral annular dilation device delineates regurgitation onset threshold in an ex vivo heart simulator. Med Eng Phys 2020; 77:10-18. [PMID: 32008935 DOI: 10.1016/j.medengphy.2020.01.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/21/2019] [Accepted: 01/12/2020] [Indexed: 12/17/2022]
Abstract
Mitral regurgitation (MR) due to annular dilation occurs in a variety of mitral valve diseases and is observed in many patients with heart failure due to mitral regurgitation. To understand the biomechanics of MR and ultimately design an optimized annuloplasty ring, a representative disease model with asymmetric dilation of the mitral annulus is needed. This work shows the design and implementation of a 3D-printed valve dilation device to preferentially dilate the posterior mitral valve annulus. Porcine mitral valves (n = 3) were sewn into the device and mounted within a left heart simulator that generates physiologic pressures and flows through the valves, while chordal forces were measured. The valves were incrementally dilated, inducing MR, while hemodynamic and force data were collected. Flow analysis demonstrated that MR increased linearly with respect to percent annular dilation when dilation was greater than a 25.6% dilation threshold (p < 0.01). Pre-threshold, dilation did not cause significant increases in regurgitant fraction. Forces on the chordae tendineae increased as dilation increased prior to the identified threshold (p < 0.01); post-threshold, the MR resulted in highly variable forces. Ultimately, this novel dilation device can be used to more accurately model a wide range of MR disease states and their corresponding repair techniques using ex vivo experimentation. In particular, this annular dilation device provides the means to investigate the design and optimization of novel annuloplasty rings.
Collapse
|
12
|
Vekilov DP, Singh M, Aglyamov SR, Larin KV, Grande-Allen KJ. Mapping the spatial variation of mitral valve elastic properties using air-pulse optical coherence elastography. J Biomech 2019; 93:52-59. [PMID: 31300156 PMCID: PMC10575695 DOI: 10.1016/j.jbiomech.2019.06.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/18/2019] [Accepted: 06/14/2019] [Indexed: 10/26/2022]
Abstract
The mitral valve is a highly heterogeneous tissue composed of two leaflets, anterior and posterior, whose unique composition and regional differences in material properties are essential to overall valve function. While mitral valve mechanics have been studied for many decades, traditional testing methods limit the spatial resolution of measurements and can be destructive. Optical coherence elastography (OCE) is an emerging method for measuring viscoelastic properties of tissues in a noninvasive, nondestructive manner. In this study, we employed air-pulse OCE to measure the spatial variation in mitral valve elastic properties with micro-scale resolution at 1 mm increments along the radial length of the leaflets. We analyzed differences between the leaflets, as well as between regions of the valve. We found that the anterior leaflet has a higher elastic wave velocity, which is reported as a surrogate for stiffness, than the posterior leaflet, most notably at the annular edge of the sample. In addition, we found a spatial elastic gradient in the anterior leaflet, where the annular edge was found to have a greater elastic wave velocity than the free edge. This gradient was less pronounced in the posterior leaflet. These patterns were confirmed using established uniaxial tensile testing methods. Overall, the anterior leaflet was stiffer and had greater heterogeneity in its mechanical properties than the posterior leaflet. This study measures differences between the two mitral leaflets with greater resolution than previously feasible and demonstrates a method that may be suitable for assessing valve mechanics following repair or during the engineering of synthetic valve replacements.
Collapse
Affiliation(s)
| | - Manmohan Singh
- University of Houston, Department of Biomedical Engineering, Houston, TX, United States
| | - Salavat R Aglyamov
- University of Houston, Department of Mechanical Engineering, Houston, TX, United States; University of Texas at Austin, Department of Biomedical Engineering, Austin, TX, United States
| | - Kirill V Larin
- University of Houston, Department of Biomedical Engineering, Houston, TX, United States
| | | |
Collapse
|
13
|
Grinberg D, Le MQ, Kwon YJ, Fernandez MA, Audigier D, Ganet F, Capsal JF, Obadia JF, Cottinet PJ. Mitral valve repair based on intraoperative objective measurement. Sci Rep 2019; 9:4677. [PMID: 30886234 PMCID: PMC6423320 DOI: 10.1038/s41598-019-41173-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/19/2019] [Indexed: 01/15/2023] Open
Abstract
In this paper, we propose a very innovative designed system that enables optimal length adjustment during transapical neochordae implantation for mitral valve repair, increasing accuracy and reproducibility of neochordae length adjustment. Also, such a new device allowed real-time measurement and recording of chordae tension, producing original physiological data. To the best of our knowledge, the tension of chordae had never been measured previously as precisely, especially in in vivo human clinical trials. Preliminary experimental data have been collected on 10 selected patients, giving us the opportunity to assess for the first time the tension applied on the chordae implanted in beating human hearts. The final goal of our measuring device is to provide reliable objective intraoperative data to improve the understanding of changes occurring after mitral valve repair (MVR). This novel measuring instrument may bring change in the paradigm of MVR by allowing repair with strong objective and quantitative, instead of qualitative anatomical analysis.
Collapse
Affiliation(s)
- Daniel Grinberg
- Department of adult cardiac surgery, Hopital cardiologique Louis Pradel - LYON medical school, 28, Avenue du Doyen Lépine, 69677 CEDEX, Bron, France. .,Université Lyon, INSA-Lyon, LGEF, EA682, F-69621, Villeurbanne, France. .,Department of cardiovascular surgery at Mount Sinai Hospital, Mount Sinai Health System, 1190 5th Avenue, 10029, New York City, NY, USA.
| | - Minh-Quyen Le
- Université Lyon, INSA-Lyon, LGEF, EA682, F-69621, Villeurbanne, France
| | - Young Joon Kwon
- Department of cardiovascular surgery at Mount Sinai Hospital, Mount Sinai Health System, 1190 5th Avenue, 10029, New York City, NY, USA
| | - Miguel A Fernandez
- French Institute for Research in Computer Science and Automation (INRIA), 2 Rue Simone IFF, 75012, Paris, France
| | - David Audigier
- Université Lyon, INSA-Lyon, LGEF, EA682, F-69621, Villeurbanne, France
| | - Florent Ganet
- Université Lyon, INSA-Lyon, LGEF, EA682, F-69621, Villeurbanne, France
| | | | - Jean François Obadia
- Department of adult cardiac surgery, Hopital cardiologique Louis Pradel - LYON medical school, 28, Avenue du Doyen Lépine, 69677 CEDEX, Bron, France
| | | |
Collapse
|
14
|
Grinberg D, Cottinet PJ, Thivolet S, Audigier D, Capsal JF, Le MQ, Obadia JF. Measuring chordae tension during transapical neochordae implantation: Toward understanding objective consequences of mitral valve repair. J Thorac Cardiovasc Surg 2018; 158:746-755. [PMID: 30454983 DOI: 10.1016/j.jtcvs.2018.10.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/17/2018] [Accepted: 10/02/2018] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Complex structure of mitral valve and its central position in the heart limit assessment of mitral function to standardized calculated parameters assessed using medical imaging (echocardiography). Novel techniques, which allow mitral valve repair (MVr) in a beating heart, offer the opportunity for innovative objective assessment in physiologic and pathologic conditions. We report, to our knowledge, the first data of real-time chordal tension measurement during a transapical neochordae implantation. METHODS Seven patients with severe degenerative mitral regurgitation due to posterior prolapse underwent transapical MVr using the NeoChord DS 1000 (NeoChord Inc, Minneapolis, Minn). During prolapse correction, the tension applied on the neochordae was measured in addition to hemodynamic and echocardiographic parameters. RESULTS The traction applied on 1 chorda sustaining the P2 segment was measured at between 0.7 and 0.9 N, and oscillated with respiration. When several neochordae were set in tension, this initial tension was spread homogeneously on each chorda (mean sum of the amplitude of tension 0.98 ± 0.08 N). To achieve an optimal echocardiographic correction, a complementary synchronous traction on all chordae was required. During this adjustment, the sum of the tension decreased (mean 12 ± 2%; P = .018), suggesting that when normal physiology was restored, the valvular apparatus was in a low-stress state. This method allowed us to apply a precise and reproducible technique, leading to a good procedural success rate with a low morbidity and mortality rate. CONCLUSIONS The tension applied on chordae during transapical implantation of neochordae for degenerative mitral regurgitation can be measured, providing original data about the objective consequences of MVr on the mitral apparatus.
Collapse
Affiliation(s)
- Daniel Grinberg
- Department of Adult Cardiac Surgery, Hôpital cardiologique Louis Pradel, Lyon Medical School, Bron, France; Univ Lyon, INSA-Lyon, LGEF (Lab of electrical engineering and ferroelectricity), Villeurbanne, France; Department of Cardiovascular Surgery, Mount Sinai Hospital, New York, NY.
| | - Pierre-Jean Cottinet
- Univ Lyon, INSA-Lyon, LGEF (Lab of electrical engineering and ferroelectricity), Villeurbanne, France
| | - Sophie Thivolet
- Department of Adult Cardiac Surgery, Hôpital cardiologique Louis Pradel, Lyon Medical School, Bron, France
| | - David Audigier
- Univ Lyon, INSA-Lyon, LGEF (Lab of electrical engineering and ferroelectricity), Villeurbanne, France
| | - Jean-Fabien Capsal
- Univ Lyon, INSA-Lyon, LGEF (Lab of electrical engineering and ferroelectricity), Villeurbanne, France
| | - Minh-Quyen Le
- Univ Lyon, INSA-Lyon, LGEF (Lab of electrical engineering and ferroelectricity), Villeurbanne, France
| | - Jean-François Obadia
- Department of Adult Cardiac Surgery, Hôpital cardiologique Louis Pradel, Lyon Medical School, Bron, France
| |
Collapse
|
15
|
Rausch MK, Malinowski M, Meador WD, Wilton P, Khaghani A, Timek TA. The Effect of Acute Pulmonary Hypertension on Tricuspid Annular Height, Strain, and Curvature in Sheep. Cardiovasc Eng Technol 2018; 9:365-376. [DOI: 10.1007/s13239-018-0367-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/24/2018] [Indexed: 12/16/2022]
|
16
|
Pierce EL, Rabbah JPM, Thiele K, Wei Q, Vidakovic B, Jensen MO, Hung J, Yoganathan AP. Three-Dimensional Field Optimization Method: Gold-Standard Validation of a Novel Color Doppler Method for Quantifying Mitral Regurgitation. J Am Soc Echocardiogr 2016; 29:917-925. [PMID: 27354250 DOI: 10.1016/j.echo.2016.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Accurate diagnosis of mitral regurgitation (MR) severity is central to proper treatment. Although numerous approaches exist, an accurate, gold-standard clinical technique remains elusive. The authors previously reported on the initial development and demonstration of the automated three-dimensional (3D) field optimization method (FOM) algorithm, which exploits 3D color Doppler ultrasound imaging and builds on existing MR quantification techniques. The aim of the present study was to extensively validate 3D FOM in terms of accuracy, ease of use, and repeatability. METHODS Three-dimensional FOM was applied to five explanted ovine mitral valves in a left heart simulator, which were systematically perturbed to yield a total of 29 unique regurgitant geometries. Three-dimensional FOM was compared with a gold-standard flow probe, as well as the most clinically prevalent MR volume quantification technique, the two-dimensional (2D) proximal isovelocity surface area (PISA) method. RESULTS Overall, 3D FOM overestimated and 2D PISA underestimated MR volume, but 3D FOM error had smaller magnitude (5.2 ± 9.9 mL) than 2D PISA error (-6.9 ± 7.7 mL). Two-dimensional PISA remained superior in diagnosis for round orifices and especially mild MR, as predicted by ultrasound physics theory. For slit-type orifices and severe MR, 3D FOM showed significant improvement over 2D PISA. Three-dimensional FOM processing was technically simpler and significantly faster than 2D PISA and required fewer ultrasound acquisitions. Three-dimensional FOM did not show significant interuser variability, whereas 2D PISA did. CONCLUSIONS Three-dimensional FOM may provide increased clinical value compared with 2D PISA because of increased accuracy in the case of complex or severe regurgitant orifices as well as its greater repeatability and simpler work flow.
Collapse
Affiliation(s)
- Eric L Pierce
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Jean Pierre M Rabbah
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | | | - Qifeng Wei
- Philips Health Tech, Andover, Massachusetts
| | - Brani Vidakovic
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Morten O Jensen
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Judy Hung
- Echocardiography Laboratory of the Massachusetts General Hospital, Boston, Massachusetts
| | - Ajit P Yoganathan
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| |
Collapse
|
17
|
Dal-Bianco JP, Bartko PE, Beaudoin J, Aikawa E, Bischoff J, Levine RA. 3D Ultrasound: seeing is understanding-from imaging to pathophysiology to developing therapies in secondary MR. Eur Heart J Cardiovasc Imaging 2016; 17:510-1. [PMID: 26976355 DOI: 10.1093/ehjci/jew029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jacob P Dal-Bianco
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Yawkey 5B, Boston, MA 02114, USA
| | - Philipp E Bartko
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Yawkey 5B, Boston, MA 02114, USA
| | - Jonathan Beaudoin
- Quebec Heart & Lung Institute, Laval University, Quebec City, Quebec, Canada
| | - Elena Aikawa
- Center for Excellence in Vascular Biology, Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joyce Bischoff
- Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert A Levine
- Cardiac Ultrasound Laboratory, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Yawkey 5B, Boston, MA 02114, USA
| |
Collapse
|
18
|
Siefert AW, Siskey RL. Bench Models for Assessing the Mechanics of Mitral Valve Repair and Percutaneous Surgery. Cardiovasc Eng Technol 2015; 6:193-207. [PMID: 26577235 DOI: 10.1007/s13239-014-0196-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/19/2014] [Indexed: 01/01/2023]
Abstract
Rapid preclinical evaluations of mitral valve (MV) mechanics are currently best facilitated by bench models of the left ventricle (LV). This review aims to provide a comprehensive assessment of these models to aid interpretation of their resulting data, inform future experimental evaluations, and further the translation of results to procedure and device development. For this review, two types of experimental bench models were evaluated. Rigid LV models were characterized as fluid-mechanical systems capable of testing explanted MVs under static and or pulsatile left heart hemodynamics. Passive LV models were characterized as explanted hearts whose left side is placed in series with a static or pulsatile flow-loop. In both systems, MV function and mechanics can be quantitatively evaluated. Rigid and passive LV models were characterized and evaluated. The materials and methods involved in their construction, function, quantitative capabilities, and disease modeling were described. The advantages and disadvantages of each model are compared to aid the interpretation of their resulting data and inform future experimental evaluations. Repair and percutaneous studies completed in these models were additionally summarized with perspective on future advances discussed. Bench models of the LV provide excellent platforms for quantifying MV repair mechanics and function. While exceptional work has been reported, more research and development is necessary to improve techniques and devices for repair and percutaneous surgery. Continuing efforts in this field will significantly contribute to the further development of procedures and devices, predictions of long-term performance, and patient safety.
Collapse
Affiliation(s)
- Andrew W Siefert
- Exponent Failure Analysis Associates, 3440 Market Street Suite 600, Philadelphia, PA, 19104, USA.
| | - Ryan L Siskey
- Exponent Failure Analysis Associates, 3440 Market Street Suite 600, Philadelphia, PA, 19104, USA
| |
Collapse
|
19
|
Characterisation of the fatigue life, dynamic creep and modes of damage accumulation within mitral valve chordae tendineae. Acta Biomater 2015; 24:193-200. [PMID: 26087111 DOI: 10.1016/j.actbio.2015.06.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 11/21/2022]
Abstract
Mitral valve prolapse is often caused by either elongated or ruptured chordae tendineae (CT). In many cases, rupture is spontaneous, meaning there is no underlying cause. We hypothesised that spontaneous rupture may be due to mechanical fatigue. To investigate this hypothesis, we tested porcine marginal CT: in uniaxial tension, and in fatigue at a range of peak stresses (n=12 at 15, 10 and 7.5MPa respectively, n=6 at 5MPa). The rupture surfaces of failed CT were observed histologically, under polarised light microscopy, and SEM. The cycles to failure for 15, 10, 7.5 and 5 MPa peak stresses were: (average±SD): 5077±4366, 49513±56414, 99927±108908, 197099±69103. A Weibull plot was constructed and from this, the number of cycles at 50% probability of failure was established in order to approximate the fatigue life, which was found to be 2.43MPa at 10 million cycles. The rate of creep increases exponentially with increasing peak stress. Under histological examination it was observed that CT which have been fatigued at low stress partially lose their organised collagen structure and can sustain micro-cracks that can be linked to increases in the creep rate. Furthermore our SEM images closely matched descriptions from the literature of spontaneous in vivo rupture. In conclusion, we believe that the mechanical test results we present strongly suggest that spontaneous chordal rupture and chordal elongation in vivo can be caused by mechanical fatigue.
Collapse
|
20
|
Functional and Biomechanical Effects of the Edge-to-Edge Repair in the Setting of Mitral Regurgitation: Consolidated Knowledge and Novel Tools to Gain Insight into Its Percutaneous Implementation. Cardiovasc Eng Technol 2014; 6:117-40. [PMID: 26577231 DOI: 10.1007/s13239-014-0208-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Mitral regurgitation is the most prevalent heart valve disease in the western population. When severe, it requires surgical treatment, repair being the preferred option. The edge-to-edge repair technique treats mitral regurgitation by suturing the leaflets together and creating a double-orifice valve. Due to its relative simplicity and versatility, it has become progressively more widespread. Recently, its percutaneous version has become feasible, and has raised interest thanks to the positive results of the Mitraclip(®) device. Edge-to-edge features and evolution have stimulated debate and multidisciplinary research by both clinicians and engineers. After providing an overview of representative studies in the field, here we propose a novel computational approach to the most recent percutaneous evolution of the edge-to-edge technique. Image-based structural finite element models of three mitral valves affected by posterior prolapse were derived from cine-cardiac magnetic resonance imaging. The models accounted for the patient-specific 3D geometry of the valve, including leaflet compound curvature pattern, patient-specific motion of annulus and papillary muscles, and hyperelastic and anisotropic mechanical properties of tissues. The biomechanics of the three valves throughout the entire cardiac cycle was simulated before and after Mitraclip(®) implantation, assessing the biomechanical impact of the procedure. For all three simulated MVs, Mitraclip(®) implantation significantly improved systolic leaflets coaptation, without inducing major alterations in systolic peak stresses. Diastolic orifice area was decreased, by up to 58.9%, and leaflets diastolic stresses became comparable, although lower, to systolic ones. Despite established knowledge on the edge-to-edge surgical repair, latest technological advances make its percutanoues implementation a challenging field of research. The modeling approach herein proposed may be expanded to analyze clinical scenarios that are currently critical for Mitraclip(®) implantation, helping the search for possible solutions.
Collapse
|
21
|
Pokorny S, Huenges K, Engel A, Gross J, Frank D, Morlock MM, Cremer J, Lutter G. In Vivo Quantification of the Apical Fixation Forces of Different Mitral Valved Stent Designs in the Beating Heart. Ann Biomed Eng 2014; 43:1201-9. [DOI: 10.1007/s10439-014-1165-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/15/2014] [Indexed: 12/26/2022]
|