1
|
Liu Y, Jiang Z, Yang X, Wang Y, Yang B, Fu Q. Engineering Nanoplatforms for Theranostics of Atherosclerotic Plaques. Adv Healthc Mater 2024; 13:e2303612. [PMID: 38564883 DOI: 10.1002/adhm.202303612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Atherosclerotic plaque formation is considered the primary pathological mechanism underlying atherosclerotic cardiovascular diseases, leading to severe cardiovascular events such as stroke, acute coronary syndromes, and even sudden cardiac death. Early detection and timely intervention of plaques are challenging due to the lack of typical symptoms in the initial stages. Therefore, precise early detection and intervention play a crucial role in risk stratification of atherosclerotic plaques and achieving favorable post-interventional outcomes. The continuously advancing nanoplatforms have demonstrated numerous advantages including high signal-to-noise ratio, enhanced bioavailability, and specific targeting capabilities for imaging agents and therapeutic drugs, enabling effective visualization and management of atherosclerotic plaques. Motivated by these superior properties, various noninvasive imaging modalities for early recognition of plaques in the preliminary stage of atherosclerosis are comprehensively summarized. Additionally, several therapeutic strategies are proposed to enhance the efficacy of treating atherosclerotic plaques. Finally, existing challenges and promising prospects for accelerating clinical translation of nanoplatform-based molecular imaging and therapy for atherosclerotic plaques are discussed. In conclusion, this review provides an insightful perspective on the diagnosis and therapy of atherosclerotic plaques.
Collapse
Affiliation(s)
- Yuying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zeyu Jiang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bin Yang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
2
|
Hewlin RL, Smith M, Kizito JP. Computational Assessment of Unsteady Flow Effects on Magnetic Nanoparticle Targeting Efficiency in a Magnetic Stented Carotid Bifurcation Artery. Cardiovasc Eng Technol 2023; 14:694-712. [PMID: 37723333 DOI: 10.1007/s13239-023-00681-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
PURPOSE Worldwide, cardiovascular disease is the leading cause of hospitalization and death. Recently, the use of magnetizable nanoparticles for medical drug delivery has received much attention for potential treatment of both cancer and cardiovascular disease. However, proper understanding of the interacting magnetic field forces and the hydrodynamics of blood flow is needed for effective implementation. This paper presents the computational results of simulated implant assisted medical drug targeting (IA-MDT) via induced magnetism intended for administering patient specific doses of therapeutic agents to specific sites in the cardiovascular system. The drug delivery scheme presented in this paper functions via placement of a faintly magnetizable stent at a diseased location in the carotid artery, followed by delivery of magnetically susceptible drug carriers guided by the local magnetic field. Using this method, the magnetic stent can apply high localized magnetic field gradients within the diseased artery, while only exposing the neighboring tissues, arteries, and organs to a modest magnetic field. The localized field gradients also produce the forces needed to attract and hold drug-containing magnetic nanoparticles at the implant site for delivering therapeutic agents to treat in-stent restenosis. METHODS The multi-physics computational model used in this work is from our previous work and has been slightly modified for the case scenario presented in this paper. The computational model is used to analyze pulsatile blood flow, particle motion, and particle capture efficiency in a magnetic stented region using the magnetic properties of magnetite (Fe3O4) and equations describing the magnetic forces acting on particles produced by an external cylindrical electromagnetic coil. The electromagnetic coil produces a uniform magnetic field in the computational arterial flow model domain, while both the particles and the implanted stent are paramagnetic. A Eulerian-Lagrangian technique is adopted to resolve the hemodynamic flow and the motion of particles under the influence of a range of magnetic field strengths (Br = 2T, 4T, 6T, and 8T). Particle diameter sizes of 10 nm-4 µm in diameter were evaluated. Two dimensionless numbers were evaluated in this work to characterize relative effects of Brownian motion (BM), magnetic force induced particle motion, and convective blood flow on particle motion. RESULTS The computational simulations demonstrate that the greatest particle capture efficiency results for particle diameters within the micron range of 0.7-4 µm, specifically in regions where flow separation and vortices are at a minimum. Similar to our previous work (which did not involve the use of a magnetic stent), it was also observed that the capture efficiency of particles decreases substantially with particle diameter, especially in the superparamagnetic regime. Contrary to our previous work, using a magnetic stent tripled the capture efficiency of superparamagnetic particles. The highest capture efficiency observed for superparamagnetic particles was 78% with an 8 T magnetic field strength and 65% with a 2 T magnetic field strength when analyzing 100 nm particles. For 10 nm particles and an 8 T magnetic field strength, the particle capture efficiency was 55% and for a 2 T magnetic field strength the particle capture efficiency was observed to be 43%. Furthermore, it was found that larger magnetic field strengths, large particle diameter sizes (1 µm and above), and slower blood flow velocity improves the particle capture efficiency. The distribution of captured particles on the vessel wall along the axial and azimuthal directions is also discussed. Results for captured particles on the vessel wall along the axial flow direction showed that the particle density decreased along the axial direction, especially after the stented region. For the entrance section of the stented region, the captured particle density distribution along the axial direction is large, corresponding to the center-symmetrical distribution of the magnetic force in that section. CONCLUSION The simulation results presented in this work have shown to yield favorable capture efficiencies for micron range particles and superparamagnetic particles using magnetized implants such as the stent discussed in this work. The results presented in this work justify further investigation of MDT as a treatment technique for cardiovascular disease.
Collapse
Affiliation(s)
- Rodward L Hewlin
- Department of Engineering Technology, University of North Carolina at Charlotte, Charlotte, USA.
- Center for Biomedical Engineering & Science (CBES), University of North Carolina at Charlotte, Charlotte, USA.
| | - Michael Smith
- Department of Engineering Technology, University of North Carolina at Charlotte, Charlotte, USA
| | - John P Kizito
- Department of Mechanical Engineering, North Carolina Agricultural and Technical State University, Greensboro, USA
| |
Collapse
|
3
|
Hewlin RL, Edwards M. Continuous Flow Separation of Red Blood Cells and Platelets in a Y-Microfluidic Channel Device with Saw-Tooth Profile Electrodes via Low Voltage Dielectrophoresis. Curr Issues Mol Biol 2023; 45:3048-3067. [PMID: 37185724 PMCID: PMC10136998 DOI: 10.3390/cimb45040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023] Open
Abstract
Cell counting and sorting is a vital step in the purification process within the area of biomedical research. It has been widely reported and accepted that the use of hydrodynamic focusing in conjunction with the application of a dielectrophoretic (DEP) force allows efficient separation of biological entities such as platelets from red blood cell (RBC) samples due to their size difference. This paper presents computational results of a multiphysics simulation modelling study on evaluating continuous separation of RBCs and platelets in a microfluidic device design with saw-tooth profile electrodes via DEP. The theoretical cell particle trajectory, particle cell counting, and particle separation distance study results reported in this work were predicted using COMSOL v6.0 Multiphysics simulation software. To validate the numerical model used in this work for the reported device design, we first developed a simple y-channel microfluidic device with square “in fluid” electrodes similar to the design reported previously in other works. We then compared the obtained simulation results for the simple y-channel device with the square in fluid electrodes to the reported experimental work done on this simple design which resulted in 98% agreement. The design reported in this work is an improvement over existing designs in that it can perform rapid separation of RBCs (estimated 99% purification) and platelets in a total time of 6–7 s at a minimum voltage setting of 1 V and at a minimum frequency of 1 Hz. The threshold for efficient separation of cells ends at 1000 kHz for a 1 V setting. The saw-tooth electrode profile appears to be an improvement over existing designs in that the sharp corners reduced the required horizontal distance needed for separation to occur and contributed to a non-uniform DEP electric field. The results of this simulation study further suggest that this DEP separation technique may potentially be applied to improve the efficiency of separation processes of biological sample scenarios and simultaneously increase the accuracy of diagnostic processes via cell counting and sorting.
Collapse
Affiliation(s)
- Rodward L. Hewlin
- Center for Biomedical Engineering and Science (CBES), Department of Engineering Technology and Construction Management (ETCM), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Applied Energy and Electromechanical Systems (AEES), Department of Engineering Technology and Construction Management (ETCM), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Maegan Edwards
- Applied Energy and Electromechanical Systems (AEES), Department of Engineering Technology and Construction Management (ETCM), University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
4
|
Hewlin RL, Tindall JM. Computational Assessment of Magnetic Nanoparticle Targeting Efficiency in a Simplified Circle of Willis Arterial Model. Int J Mol Sci 2023; 24:ijms24032545. [PMID: 36768867 PMCID: PMC9916571 DOI: 10.3390/ijms24032545] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
This paper presents the methodology and computational results of simulated medical drug targeting (MDT) via induced magnetism intended for administering intravenous patient-specific doses of therapeutic agents in a Circle of Willis (CoW) model. The multi-physics computational model used in this work is from our previous works. The computational model is used to analyze pulsatile blood flow, particle motion, and particle capture efficiency in a magnetized region using the magnetic properties of magnetite (Fe3O4) and equations describing the magnetic forces acting on particles produced by an external cylindrical electromagnetic coil. A Eulerian-Lagrangian technique is implemented to resolve the hemodynamic flow and the motion of particles under the influence of a range of magnetic field strengths (Br = 2T, 4T, 6T, and 8T). Particle diameter sizes of 10 nm to 4 µm in diameter were assessed. Two dimensionless numbers are also investigated a priori in this study to characterize relative effects of Brownian motion (BM), magnetic force-induced particle motion, and convective blood flow on particle motion. Similar to our previous works, the computational simulations demonstrate that the greatest particle capture efficiency results for particle diameters within the micron range, specifically in regions where flow separation and vortices are at a minimum. Additionally, it was observed that the capture efficiency of particles decreases substantially with smaller particle diameters, especially in the superparamagnetic regime. The highest capture efficiency observed for superparamagnetic particles was 99% with an 8T magnetic field strength and 95% with a 2T magnetic field strength when analyzing 100 nm particles. For 10 nm particles and an 8T magnetic field strength, the particle capture efficiency was 48%, and for a 2T magnetic field strength the particle capture efficiency was 33%. Furthermore, it was found that larger magnetic field strengths, large particle diameter sizes (1 µm and above), and slower blood flow velocity increase the particle capture efficiency. The key finding in this work is that favorable capture efficiencies for superparamagnetic particles were observed in the CoW model for weak fields (Br < 4T) which demonstrates MDT as a possible viable treatment candidate for cardiovascular disease.
Collapse
Affiliation(s)
- Rodward L. Hewlin
- Center for Biomedical Engineering and Science (CBES), Department of Engineering Technology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
- Correspondence:
| | - Joseph M. Tindall
- Applied Energy and Electromechanical Systems (AEES), Department of Engineering Technology, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| |
Collapse
|
5
|
Aryan H, Beigzadeh B, Siavashi M. Euler-Lagrange numerical simulation of improved magnetic drug delivery in a three-dimensional CT-based carotid artery bifurcation. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 219:106778. [PMID: 35381489 DOI: 10.1016/j.cmpb.2022.106778] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Magnetic drug targeting (MDT) is a promising method to improve the therapy efficiency for cardiovascular diseases (CVDs) and cancers. In MDT, therapeutic agents are bonded to superparamagnetic iron oxide nanoparticle (SPION) cores and then are guided toward the damaged tissue through a magnetic field. Fundamentally, it's vital to steer the SPIONs to the desired location to increase the capture efficiency at the target lesion. Hence, the present study aims to enhance the drug delivery to the desired branch in a carotid bifurcation. Besides, it is tried to decrement the particles' entry to the unwanted outlet by using four different magnet configurations (with a maximum magnetic flux density of 0.4 T) implanted adjacent to the artery wall. Also, the effect of particles' diameter -ranging from 200 nm to 2 µm- on the drug delivery performance is studied in the four cases. METHODS The Eulerian-Lagrangian approach with one-way coupling is employed for numerical simulation of the problem using the finite element method (FEM). The dominant forces acting on particles are drag and magnetophoretic. A computed tomography (CT) model of the carotid bifurcation is adopted to have a 3D realistic geometry. The blood flow is considered to be laminar, incompressible, pulsatile, and non-Newtonian. Boundary conditions are applied using the three-element Windkessel equation. RESULTS Results are presented in terms of velocity, pressure, magnetic field flux density, wall shear stress, and streamlines. Also, the number of particles in each direction is presented for the four studied cases. The results show that using proper magnets configurations makes it possible to guide more particles to the desired branch (up to 4%) while preventing particles from entering the unwanted branch (up to 13%). By defining connectivity between oscillatory shear index (OSI) value and magnetic drug delivery efficacy, it becomes clear that places with lower OSI values are more proper to place the magnets than areas with higher OSI values. CONCLUSIONS It was observed that increasing the diameter of particles does not necessarily result in a higher drug delivery efficiency. The configuration of the magnets and the size of particles are the main affecting parameters that should be chosen precisely to meet the most efficient drug delivery performance. Magnetic drug targeting (MDT) is a promising method to improve the therapy efficiency for cardiovascular diseases (CVDs) and cancers. Fundamentally, it's vital to steer the superparamagnetic iron oxide nanoparticles (SPIONs) to the target lesion location to increase the capture efficiency. Hence, the present study aims to enhance the drug delivery to the desired branch in a 3D carotid bifurcation. Besides, it is tried to decrement the particles' entry to the unwanted outlet by using four different magnet configurations implanted adjacent to the artery wall. The Eulerian-Lagrangian approach with one-way coupling is employed for numerical simulation of the problem using the finite element method (FEM). The dominant forces acting on particles are drag and magnetophoretic. The blood flow is laminar, incompressible, pulsatile, and non-Newtonian. The results show that it is possible to guide more particles to the desired branch (up to 4%) while preventing particles from entering the unwanted branch (up to 13%). By defining connectivity between oscillatory shear index (OSI) value and magnetic drug delivery efficacy, it becomes clear that places with lower OSI values are more proper to place the magnets than areas with higher OSI values.
Collapse
Affiliation(s)
- Hiwa Aryan
- Biomechatronics and Cognitive Engineering Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran; Applied Multi-Phase Fluid Dynamics Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Borhan Beigzadeh
- Biomechatronics and Cognitive Engineering Research Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
| | - Majid Siavashi
- Applied Multi-Phase Fluid Dynamics Laboratory, School of Mechanical Engineering, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
6
|
Ma T, Zhang Z, Chen Y, Su H, Deng X, Liu X, Fan Y. Delivery of Nitric Oxide in the Cardiovascular System: Implications for Clinical Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms222212166. [PMID: 34830052 PMCID: PMC8625126 DOI: 10.3390/ijms222212166] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) is a key molecule in cardiovascular homeostasis and its abnormal delivery is highly associated with the occurrence and development of cardiovascular disease (CVD). The assessment and manipulation of NO delivery is crucial to the diagnosis and therapy of CVD, such as endothelial dysfunction, atherosclerotic progression, pulmonary hypertension, and cardiovascular manifestations of coronavirus (COVID-19). However, due to the low concentration and fast reaction characteristics of NO in the cardiovascular system, clinical applications centered on NO delivery are challenging. In this tutorial review, we first summarized the methods to estimate the in vivo NO delivery process, based on computational modeling and flow-mediated dilation, to assess endothelial function and vulnerability of atherosclerotic plaque. Then, emerging bioimaging technologies that have the potential to experimentally measure arterial NO concentration were discussed, including Raman spectroscopy and electrochemical sensors. In addition to diagnostic methods, therapies aimed at controlling NO delivery to regulate CVD were reviewed, including the NO release platform to treat endothelial dysfunction and atherosclerosis and inhaled NO therapy to treat pulmonary hypertension and COVID-19. Two potential methods to improve the effectiveness of existing NO therapy were also discussed, including the combination of NO release platform and computational modeling, and stem cell therapy, which currently remains at the laboratory stage but has clinical potential for the treatment of CVD.
Collapse
|
7
|
Lindemann MC, Luttke T, Nottrodt N, Schmitz-Rode T, Slabu I. FEM based simulation of magnetic drug targeting in a multibranched vessel model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 210:106354. [PMID: 34464768 DOI: 10.1016/j.cmpb.2021.106354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Magnetic drug targeting (MDT) is a promising technology to improve cancer therapy. MDT describes the accumulation of drug loaded superparamagnetic iron oxide nanoparticles (SPIONs) at a desired location, e. g. a tumor, by application of a magnetic field. Here, we evaluate the effectivity of MDT for an endoscopic placement of two different configurations of magnet arrays, i. e. six magnets with same poles facing each other and a Halbach array. Compared to conventional magnet setups outside the body, this endoscopic placement gives the possibility to achieve higher magnetic field gradients inside the tumor. METHODS For such a MDT concept, we present FEM based simulations of MDT tracing single SPIONs in a 3D geometry of eight multibranched vessels with sizes in the range of capillaries. In these simulations, the effect of the magnetic field gradient as well as of magnet distance to the vessel geometry, magnetic flux density of the magnets, SPIONs hydrodynamic diameter and magnetic moment on the MDT effectivity is calculated. The blood flow is modelled as an incompressible Newtonian fluid and the SPIONs are suspended in the blood flow. Statistical significance of the targeting effectivity results is tested with the Mann-Whitney-U-Test. RESULTS The results show that the magnetic targeting effectivity is up to 32 % higher than the one calculated without the presence of a magnetic field. In the investigated vessel network, this effect on the targeting effectivity is dependent on the number of local magnetic field maxima that are approached with a high gradient and is noticeable up to 200 µm distance of the magnet to the vessel geometry. CONCLUSIONS We conclude that for an effective application of MDT, the magnet configuration needs to be placed close to the tumor and should yield a large number of magnetic field maxima that are approached with a high gradient.
Collapse
Affiliation(s)
- Max C Lindemann
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Till Luttke
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Nadine Nottrodt
- Fraunhofer Institute for Laser Technology ILT Aachen, Steinbachstr. 15, 52074 Aachen, Germany
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Ioana Slabu
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| |
Collapse
|
8
|
Meschi SS, Farghadan A, Arzani A. Flow topology and targeted drug delivery in cardiovascular disease. J Biomech 2021; 119:110307. [PMID: 33676269 DOI: 10.1016/j.jbiomech.2021.110307] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Targeted drug delivery is a promising technique to direct the drug to the specific diseased region. Nanoparticles have provided an attractive approach for this purpose. In practice, the major focus of targeted delivery has been on targeting cell receptors. However, the complex fluid mechanics in diseased biomedical flows questions if a sufficient number of nanoparticles can reach the desired region. In this paper, we propose that hidden topological structures in cardiovascular flows identified with Lagrangian coherent structures (LCS) control drug transport and provide valuable information for optimizing targeted drug delivery efficiency. We couple image-based computational fluid dynamics (CFD) with continuum transport models to study nanoparticle transport in coronary artery disease. We simulate nanoparticle transport as well as the recently proposed shear targeted drug delivery system that couples micro-carriers with nanoparticle drugs. The role of the LCS formed near the stenosed artery in controlling drug transport is discussed. Our results motivate the design of smart micro-needles guided by flow topology, which could achieve optimal drug delivery efficiency.
Collapse
Affiliation(s)
- Sara S Meschi
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA
| | - Ali Farghadan
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Amirhossein Arzani
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|