1
|
Corti A, Dal Ferro L, Akyildiz AC, Migliavacca F, McGinty S, Chiastra C. Plaque heterogeneity influences in-stent restenosis following drug-eluting stent implantation: Insights from patient-specific multiscale modelling. J Biomech 2025; 179:112485. [PMID: 39736224 DOI: 10.1016/j.jbiomech.2024.112485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/13/2024] [Accepted: 12/15/2024] [Indexed: 01/01/2025]
Abstract
In-stent restenosis represents a major cause of failure of percutaneous coronary intervention with drug-eluting stent implantation. Computational multiscale models have recently emerged as powerful tools for investigating the mechanobiological mechanisms underlying vascular adaptation processes during in-stent restenosis. However, to date, the interplay between intervention-induced inflammation, drug delivery and drug retention has been under-investigated. Here, an original patient-specific multiscale agent-based modelling framework was developed to investigate the interplay between drug release, plaque composition and intervention-induced inflammation on in-stent restenosis following drug-eluting stent implantation. The framework integrated a finite element simulation of stent expansion, with a drug transport simulation and an agent-based model of cellular dynamics. A patient-specific coronary cross-section with heterogeneous diseased tissue was considered and rigorously analyzed through a variety of scenarios, including different plaque compositions and different inflammatory responses. The analysis revealed three significant findings: (i) calcifications substantially impeded drug transport, resulting in drug-depleted regions and reduced stent efficacy; (ii) by impacting drug transport, variations in plaque composition influenced arterial wall response, with the fully-calcific scenario showing the greatest lumen area reduction; (iii) the impact of different drug receptor saturation conditions (obtained with different plaque compositions) was particularly evident under conditions of persistent inflammatory state. This study represents a significant advancement in multiscale modelling of in-stent restenosis following drug-eluting stent implantation. The results obtained provided deeper insights into the complex interactions among patient-specific plaque composition, inflammation and drug retention, suggesting a patient-specific management of the intervention, particularly in cases of complex disease.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy.
| | - Lucia Dal Ferro
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy; Division of Biomedical Engineering, University of Glasgow, Glasgow, UK; Glasgow Computational Engineering Centre, University of Glasgow, Glasgow, UK
| | - Ali C Akyildiz
- Department of Cardiology, Biomedical Engineering, Cardiovascular Institute, Thorax Center, Erasmus MC, Rotterdam, the Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK; Glasgow Computational Engineering Centre, University of Glasgow, Glasgow, UK
| | - Claudio Chiastra
- PoliTo(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
2
|
Corti A, Marradi M, Çelikbudak Orhon C, Boccafoschi F, Büchler P, Rodriguez Matas JF, Chiastra C. Impact of Tissue Damage and Hemodynamics on Restenosis Following Percutaneous Transluminal Angioplasty: A Patient-Specific Multiscale Model. Ann Biomed Eng 2024; 52:2203-2220. [PMID: 38702558 PMCID: PMC11247064 DOI: 10.1007/s10439-024-03520-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/17/2024] [Indexed: 05/06/2024]
Abstract
Multiscale agent-based modeling frameworks have recently emerged as promising mechanobiological models to capture the interplay between biomechanical forces, cellular behavior, and molecular pathways underlying restenosis following percutaneous transluminal angioplasty (PTA). However, their applications are mainly limited to idealized scenarios. Herein, a multiscale agent-based modeling framework for investigating restenosis following PTA in a patient-specific superficial femoral artery (SFA) is proposed. The framework replicates the 2-month arterial wall remodeling in response to the PTA-induced injury and altered hemodynamics, by combining three modules: (i) the PTA module, consisting in a finite element structural mechanics simulation of PTA, featuring anisotropic hyperelastic material models coupled with a damage formulation for fibrous soft tissue and the element deletion strategy, providing the arterial wall damage and post-intervention configuration, (ii) the hemodynamics module, quantifying the post-intervention hemodynamics through computational fluid dynamics simulations, and (iii) the tissue remodeling module, based on an agent-based model of cellular dynamics. Two scenarios were explored, considering balloon expansion diameters of 5.2 and 6.2 mm. The framework captured PTA-induced arterial tissue lacerations and the post-PTA arterial wall remodeling. This remodeling process involved rapid cellular migration to the PTA-damaged regions, exacerbated cell proliferation and extracellular matrix production, resulting in lumen area reduction up to 1-month follow-up. After this initial reduction, the growth stabilized, due to the resolution of the inflammatory state and changes in hemodynamics. The similarity of the obtained results to clinical observations in treated SFAs suggests the potential of the framework for capturing patient-specific mechanobiological events occurring after PTA intervention.
Collapse
Affiliation(s)
- Anna Corti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133, Milan, Italy.
| | - Matilde Marradi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Cemre Çelikbudak Orhon
- Laboratory of Hemodynamics and Cardiovascular Technology, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Philippe Büchler
- ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Jose F Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Claudio Chiastra
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
3
|
Qi W, Ooi A, Grayden DB, Opie NL, John SE. Haemodynamics of stent-mounted neural interfaces in tapered and deformed blood vessels. Sci Rep 2024; 14:7212. [PMID: 38532013 DOI: 10.1038/s41598-024-57460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 03/18/2024] [Indexed: 03/28/2024] Open
Abstract
The endovascular neural interface provides an appealing minimally invasive alternative to invasive brain electrodes for recording and stimulation. However, stents placed in blood vessels have long been known to affect blood flow (haemodynamics) and lead to neointimal growth within the blood vessel. Both the stent elements (struts and electrodes) and blood vessel wall geometries can affect the mechanical environment on the blood vessel wall, which could lead to unfavourable vascular remodelling after stent placement. With increasing applications of stents and stent-like neural interfaces in venous blood vessels in the brain, it is necessary to understand how stents affect blood flow and tissue growth in veins. We explored the haemodynamics of a stent-mounted neural interface in a blood vessel model. Results indicated that blood vessel deformation and tapering caused a substantial change to the lumen geometry and the haemodynamics. The neointimal proliferation was evaluated in sheep implanted with an endovascular neural interface. Analysis showed a negative correlation with the mean Wall Shear Stress pattern. The results presented here indicate that the optimal stent oversizing ratio must be considered to minimise the haemodynamic impact of stenting.
Collapse
Affiliation(s)
- Weijie Qi
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia.
| | - Andrew Ooi
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Australia
| | - David B Grayden
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
- Graeme Clark Institute, The University of Melbourne, Parkville, Australia
| | - Nicholas L Opie
- Vascular Bionics Laboratory, Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| | - Sam E John
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Australia
- Graeme Clark Institute, The University of Melbourne, Parkville, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, Australia
| |
Collapse
|
4
|
Manjunatha K, Schaaps N, Behr M, Vogt F, Reese S. Computational modeling of in-stent restenosis: Pharmacokinetic and pharmacodynamic evaluation. Comput Biol Med 2023; 167:107686. [PMID: 37972534 DOI: 10.1016/j.compbiomed.2023.107686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/11/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Persistence of the pathology of in-stent restenosis even with the advent of drug-eluting stents warrants the development of highly resolved in silico models. These computational models assist in gaining insights into the transient biochemical and cellular mechanisms involved and thereby optimize the stent implantation parameters. Within this work, an already established fully-coupled Lagrangian finite element framework for modeling the restenotic growth is enhanced with the incorporation of endothelium-mediated effects and pharmacological influences of rapamycin-based drugs embedded in the polymeric layers of the current generation drug-eluting stents. The continuum mechanical description of growth is further justified in the context of thermodynamic consistency. Qualitative inferences are drawn from the model developed herein regarding the efficacy of the level of drug embedment within the struts as well as the release profiles adopted. The framework is then intended to serve as a tool for clinicians to tune the interventional procedures patient-specifically.
Collapse
Affiliation(s)
- Kiran Manjunatha
- Institute of Applied Mechanics, RWTH Aachen University, Germany.
| | - Nicole Schaaps
- Department of Cardiology, Vascular Medicine and Intensive Care, RWTH Aachen University, Germany
| | - Marek Behr
- Chair for Computational Analysis of Technical Systems, RWTH Aachen University, Germany
| | - Felix Vogt
- Department of Cardiology, Vascular Medicine and Intensive Care, RWTH Aachen University, Germany
| | - Stefanie Reese
- Institute of Applied Mechanics, RWTH Aachen University, Germany
| |
Collapse
|
5
|
Liu H, Liu Y, Ip BYM, Ma SH, Abrigo J, Soo YOY, Leung TW, Leng X. Effects of stent shape on focal hemodynamics in intracranial atherosclerotic stenosis: A simulation study with computational fluid dynamics modeling. Front Neurol 2022; 13:1067566. [PMID: 36582612 PMCID: PMC9792661 DOI: 10.3389/fneur.2022.1067566] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022] Open
Abstract
Background and aims The shape of a stent could influence focal hemodynamics and subsequently plaque growth or in-stent restenosis in intracranial atherosclerotic stenosis (ICAS). In this preliminary study, we aim to investigate the associations between stent shapes and focal hemodynamics in ICAS, using computational fluid dynamics (CFD) simulations with manually manipulated stents of different shapes. Methods We built an idealized artery model, and reconstructed four patient-specific models of ICAS. In each model, three variations of stent geometry (i.e., enlarged, inner-narrowed, and outer-narrowed) were developed. We performed static CFD simulation on the idealized model and three patient-specific models, and transient CFD simulation of three cardiac cycles on one patient-specific model. Pressure, wall shear stress (WSS), and low-density lipoprotein (LDL) filtration rate were quantified in the CFD models, and compared between models with an inner- or outer-narrowed stent vs. an enlarged stent. The absolute difference in each hemodynamic parameter was obtained by subtracting values from two models; a normalized difference (ND) was calculated as the ratio of the absolute difference and the value in the enlarged stent model, both area-averaged throughout the arterial wall. Results The differences in focal pressure in models with different stent geometry were negligible (ND<1% for all cases). However, there were significant differences in the WSS and LDL filtration rate with different stent geometry, with ND >20% in a static model. Observable differences in WSS and LDL filtration rate mainly appeared in area adjacent to and immediately distal to the stent. In the transient simulation, the LDL filtration rate had milder temporal fluctuations than WSS. Conclusions The stent geometry might influence the focal WSS and LDL filtration rate in ICAS, with negligible effect on pressure. Future studies are warranted to verify the relevance of the changes in these hemodynamic parameters in governing plaque growth and possibly in-stent restenosis in ICAS.
Collapse
Affiliation(s)
- Haipeng Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom
| | - Yu Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Bonaventure Y. M. Ip
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Sze Ho Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jill Abrigo
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yannie O. Y. Soo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Thomas W. Leung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xinyi Leng
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China,*Correspondence: Xinyi Leng
| |
Collapse
|
6
|
Huang J, Ge S, Luo D, Du R, Wang Y, Liu W, Wang G, Yin T. The endothelium permeability after bioresorbable scaffolds implantation caused by the heterogeneous expression of tight junction proteins. Mater Today Bio 2022; 16:100410. [PMID: 36090609 PMCID: PMC9450163 DOI: 10.1016/j.mtbio.2022.100410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022]
Abstract
As one of the main functions of vascular endothelial cells, Vascular permeability is determined by four tight junction proteins (TJPs): Zonula Occludens-1 (ZO-1), Claudin-5, Occludin and Tricellulin. The barrier function of blood vessels will be reconstructed after they are damaged by endothelial mechanical injuries caused by vascular interventions. In this study, the effects of balloon expansion (transient mechanical injury) on four TJPs and vascular permeability were compared with those of poly-l-lactic acid bioresorbable scaffolds (BRSs) implantation (continuous mechanical stimulation). We found that BRSs do not affect vascular permeability, while the recovery of vascular barrier function was found to be only related to the mechanical injuries and repair of endothelium. Mechanical stimulation affects and accelerates the recovery process of vascular permeability with the heterogeneous expression levels of TJPs induced after BRSs implantation. Different TJPs have different sensitivity to different loyal mechanical stimuli. ZO-1 is more sensitive to shear stress and tension than to static pressure. Occludin is sensitive to static pressure and shear stress. Tricellulin is more sensitive to tension stretching. Compared with the other three TJPs, Claudin-5 can respond to mechanical stimulation, with relatively low sensitivity, though. This difference in sensitivity determines the heterogeneous expression of TJPs. Mechanical stimulation of different kinds and strengths can also cause different cell morphological changes and inflammatory reactions. As an important element affecting endothelial function, the mechanical factors emerging after BRSs implantation are worthy of more attention. The repair of vascular permeability is directly related to the type of vascular injuries, while BRSs implantation has little effect on vascular permeability. Transient and persistent mechanical stimulation is the main reason to influence the expression of TJPs. Heterogeneous expression of TJPs caused by their different sensitivity to the form of mechanical stimuli.
Collapse
|
7
|
Zhang Y, Chen S, Zhang H, Ma C, Du T, Qiao A. Model construction and numerical simulation of arterial remodeling after stent implantation with variations of cell concentration. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
McQueen A, Escuer J, Schmidt AF, Aggarwal A, Kennedy S, McCormick C, Oldroyd K, McGinty S. An intricate interplay between stent drug dose and release rate dictates arterial restenosis. J Control Release 2022; 349:992-1008. [PMID: 35921913 DOI: 10.1016/j.jconrel.2022.07.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 10/15/2022]
Abstract
Since the introduction of percutaneous coronary intervention (PCI) for the treatment of obstructive coronary artery disease (CAD), patient outcomes have progressively improved. Drug eluting stents (DES) that employ anti-proliferative drugs to limit excess tissue growth following stent deployment have proved revolutionary. However, restenosis and a need for repeat revascularisation still occurs after DES use. Over the last few years, computational models have emerged that detail restenosis following the deployment of a bare metal stent (BMS), focusing primarily on contributions from mechanics and fluid dynamics. However, none of the existing models adequately account for spatiotemporal delivery of drug and the influence of this on the cellular processes that drive restenosis. In an attempt to fill this void, a novel continuum restenosis model coupled with spatiotemporal drug delivery is presented. Our results indicate that the severity and time-course of restenosis is critically dependent on the drug delivery strategy. Specifically, we uncover an intricate interplay between initial drug loading, drug release rate and restenosis, indicating that it is not sufficient to simply ramp-up the drug dose or prolong the time course of drug release to improve stent efficacy. Our model also shows that the level of stent over-expansion and stent design features, such as inter-strut spacing and strut thickness, influence restenosis development, in agreement with trends observed in experimental and clinical studies. Moreover, other critical aspects of the model which dictate restenosis, including the drug binding site density are investigated, where comparisons are made between approaches which assume this to be either constant or proportional to the number of smooth muscle cells (SMCs). Taken together, our results highlight the necessity of incorporating these aspects of drug delivery in the pursuit of optimal DES design.
Collapse
Affiliation(s)
- Alistair McQueen
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
| | - Javier Escuer
- Aragón Institute for Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
| | | | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, Division of Infrastructure and Environment, University of Glasgow, Glasgow, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Keith Oldroyd
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK; Glasgow Computational Engineering Centre, Division of Infrastructure and Environment, University of Glasgow, Glasgow, UK.
| |
Collapse
|
9
|
Multiscale agent-based modeling of restenosis after percutaneous transluminal angioplasty: Effects of tissue damage and hemodynamics on cellular activity. Comput Biol Med 2022; 147:105753. [DOI: 10.1016/j.compbiomed.2022.105753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/13/2022] [Accepted: 05/13/2022] [Indexed: 11/17/2022]
|
10
|
Corti A, Colombo M, Rozowsky JM, Casarin S, He Y, Carbonaro D, Migliavacca F, Rodriguez Matas JF, Berceli SA, Chiastra C. A predictive multiscale model of in-stent restenosis in femoral arteries: linking haemodynamics and gene expression with an agent-based model of cellular dynamics. J R Soc Interface 2022; 19:20210871. [PMID: 35350882 PMCID: PMC8965415 DOI: 10.1098/rsif.2021.0871] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
In-stent restenosis (ISR) is a maladaptive inflammatory-driven response of femoral arteries to percutaneous transluminal angioplasty and stent deployment, leading to lumen re-narrowing as consequence of excessive cellular proliferative and synthetic activities. A thorough understanding of the underlying mechanobiological factors contributing to ISR is still lacking. Computational multiscale models integrating both continuous- and agent-based approaches have been identified as promising tools to capture key aspects of the complex network of events encompassing molecular, cellular and tissue response to the intervention. In this regard, this work presents a multiscale framework integrating the effects of local haemodynamics and monocyte gene expression data on cellular dynamics to simulate ISR mechanobiological processes in a patient-specific model of stented superficial femoral artery. The framework is based on the coupling of computational fluid dynamics simulations (haemodynamics module) with an agent-based model (ABM) of cellular activities (tissue remodelling module). Sensitivity analysis and surrogate modelling combined with genetic algorithm optimization were adopted to explore the model behaviour and calibrate the ABM parameters. The proposed framework successfully described the patient lumen area reduction from baseline to one-month follow-up, demonstrating the potential capabilities of this approach in predicting the short-term arterial response to the endovascular procedure.
Collapse
Affiliation(s)
- Anna Corti
- LaBS, Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Monika Colombo
- LaBS, Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland
| | | | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | - Yong He
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Dario Carbonaro
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Francesco Migliavacca
- LaBS, Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Jose F. Rodriguez Matas
- LaBS, Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
| | - Scott A. Berceli
- Department of Surgery, University of Florida, Gainesville, FL, USA
- Malcom Randall VAMC, Gainesville, FL, USA
| | - Claudio Chiastra
- LaBS, Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’, Politecnico di Milano, Milan, Italy
- PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
11
|
Ye D, Zun P, Krzhizhanovskaya V, Hoekstra AG. Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling. J R Soc Interface 2022; 19:20210864. [PMID: 35193385 PMCID: PMC8867271 DOI: 10.1098/rsif.2021.0864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In-stent restenosis is a recurrence of coronary artery narrowing due to vascular injury caused by balloon dilation and stent placement. It may lead to the relapse of angina symptoms or to an acute coronary syndrome. An uncertainty quantification of a model for in-stent restenosis with four uncertain parameters (endothelium regeneration time, the threshold strain for smooth muscle cell bond breaking, blood flow velocity and the percentage of fenestration in the internal elastic lamina) is presented. Two quantities of interest were studied, namely the average cross-sectional area and the maximum relative area loss in a vessel. Owing to the high computational cost required for uncertainty quantification, a surrogate model, based on Gaussian process regression with proper orthogonal decomposition, was developed and subsequently used for model response evaluation in the uncertainty quantification. A detailed analysis of the uncertainty propagation is presented. Around 11% and 16% uncertainty is observed on the two quantities of interest, respectively, and the uncertainty estimates show that a higher fenestration mainly determines the uncertainty in the neointimal growth at the initial stage of the process. The uncertainties in blood flow velocity and endothelium regeneration time mainly determine the uncertainty in the quantities of interest at the later, clinically relevant stages of the restenosis process.
Collapse
Affiliation(s)
- Dongwei Ye
- Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Pavel Zun
- Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,National Center for Cognitive Research, ITMO University, Saint Petersburg, Russia
| | - Valeria Krzhizhanovskaya
- Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Alfons G Hoekstra
- Computational Science Lab, Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Corti A, Colombo M, Migliavacca F, Rodriguez Matas JF, Casarin S, Chiastra C. Multiscale Computational Modeling of Vascular Adaptation: A Systems Biology Approach Using Agent-Based Models. Front Bioeng Biotechnol 2021; 9:744560. [PMID: 34796166 PMCID: PMC8593007 DOI: 10.3389/fbioe.2021.744560] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/04/2021] [Indexed: 12/20/2022] Open
Abstract
The widespread incidence of cardiovascular diseases and associated mortality and morbidity, along with the advent of powerful computational resources, have fostered an extensive research in computational modeling of vascular pathophysiology field and promoted in-silico models as a support for biomedical research. Given the multiscale nature of biological systems, the integration of phenomena at different spatial and temporal scales has emerged to be essential in capturing mechanobiological mechanisms underlying vascular adaptation processes. In this regard, agent-based models have demonstrated to successfully embed the systems biology principles and capture the emergent behavior of cellular systems under different pathophysiological conditions. Furthermore, through their modular structure, agent-based models are suitable to be integrated with continuum-based models within a multiscale framework that can link the molecular pathways to the cell and tissue levels. This can allow improving existing therapies and/or developing new therapeutic strategies. The present review examines the multiscale computational frameworks of vascular adaptation with an emphasis on the integration of agent-based approaches with continuum models to describe vascular pathophysiology in a systems biology perspective. The state-of-the-art highlights the current gaps and limitations in the field, thus shedding light on new areas to be explored that may become the future research focus. The inclusion of molecular intracellular pathways (e.g., genomics or proteomics) within the multiscale agent-based modeling frameworks will certainly provide a great contribution to the promising personalized medicine. Efforts will be also needed to address the challenges encountered for the verification, uncertainty quantification, calibration and validation of these multiscale frameworks.
Collapse
Affiliation(s)
- Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Monika Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.,Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Switzerland
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States.,Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, United States.,Houston Methodist Academic Institute, Houston, TX, United States
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.,PoliToMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| |
Collapse
|
13
|
Valenzuela TF, Burzotta F, Iles TL, Lassen JF, Iaizzo PA. Assessment of single and double coronary bifurcation stenting techniques using multimodal imaging and 3D modeling in reanimated swine hearts using Visible Heart® methodologies. Int J Cardiovasc Imaging 2021; 37:2591-2601. [PMID: 33993420 PMCID: PMC8390408 DOI: 10.1007/s10554-021-02240-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/07/2021] [Indexed: 11/25/2022]
Abstract
Stent implantation in bifurcated coronary lesions is technically challenging so that procedural refinements are continuously investigated. Novel procedure modeling and intracoronary imaging techniques may offer critical insights on stent deformations and stent-wall interactions during bifurcation stenting procedures. Thus, we assessed coronary bifurcation stenting techniques using multimodal imaging and 3D modeling in reanimated swine hearts. Harvested swine hearts were reanimated using Visible Heart® methodologies and (under standard fluoroscopic guidance) used to test 1-stent (provisional and inverted provisional) and 2-stent (culotte, TAP and DK-crush) techniques on bifurcations within various coronary vessels using commercially available devices. Intracoronary angioscopy and frequency-domain optical-coherence-tomography (OCT) were obtained during the procedures. 3D OCT reconstruction and micro-computed tomography 3D modeling (post heart fixations) were used to assess stent deformations and stent-wall interactions. We conducted multiple stenting procedures and collected unique endoscopic and OCT images (and subsequent computational models from micro-CT) to assess stent deformations and device/wall interactions during different steps of bifurcation stenting procedures. Endoscopy, micro-CT and virtual reality processing documented that different 1- and 2-stent techniques, practiced according to experts’ recommended steps, achieve optimal post-intervention stent conformation. As compared with intra-procedural endoscopy, software-generated 3D OCT images accurately depicted stent deformations during 1-stent techniques. On the opposite, during more complex 2-stent techniques, some defects were appreciated at 3D OCT reconstruction despite optimal 2D OCT images. This study provided unique insights regarding both stent deformations occurring in the course of bifurcation stenting and the efficacy of OCT to visualize them.
Collapse
Affiliation(s)
- Thomas F Valenzuela
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.,Department of Surgery, University of Minnesota, Minneapolis, MN, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Francesco Burzotta
- Dipartimento di Scienze Cardiovascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, L.go A. Gemelli 1, 00168, Rome, Italy. .,Università Cattolica del Sacro Cuore, Milan, Italy.
| | - Tinen L Iles
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA.,Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Jens F Lassen
- Department of Cardiology, University of Copenhagen, Copenhagen, Denmark
| | - Paul A Iaizzo
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.,Department of Surgery, University of Minnesota, Minneapolis, MN, USA.,Department of Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA.,Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Colombo M, He Y, Corti A, Gallo D, Ninno F, Casarin S, Rozowsky JM, Migliavacca F, Berceli S, Chiastra C. In-Stent Restenosis Progression in Human Superficial Femoral Arteries: Dynamics of Lumen Remodeling and Impact of Local Hemodynamics. Ann Biomed Eng 2021; 49:2349-2364. [PMID: 33928465 PMCID: PMC8455500 DOI: 10.1007/s10439-021-02776-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022]
Abstract
In-stent restenosis (ISR) represents a major drawback of stented superficial femoral arteries (SFAs). Motivated by the high incidence and limited knowledge of ISR onset and development in human SFAs, this study aims to (i) analyze the lumen remodeling trajectory over 1-year follow-up period in human stented SFAs and (ii) investigate the impact of altered hemodynamics on ISR initiation and progression. Ten SFA lesions were reconstructed at four follow-ups from computed tomography to quantify the lumen area change occurring within 1-year post-intervention. Patient-specific computational fluid dynamics simulations were performed at each follow-up to relate wall shear stress (WSS) based descriptors with lumen remodeling. The largest lumen remodeling was found in the first post-operative month, with slight regional-specific differences (larger inward remodeling in the fringe segments, p < 0.05). Focal re-narrowing frequently occurred after 6 months. Slight differences in the lumen area change emerged between long and short stents, and between segments upstream and downstream from stent overlapping portions, at specific time intervals. Abnormal patterns of multidirectional WSS were associated with lumen remodeling within 1-year post-intervention. This longitudinal study gave important insights into the dynamics of ISR and the impact of hemodynamics on ISR progression in human SFAs.
Collapse
Affiliation(s)
- Monika Colombo
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yong He
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Anna Corti
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Diego Gallo
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Federica Ninno
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
- Department of Medical Physics and Biomedical Engineering, University College of London, London, UK
| | - Stefano Casarin
- Department of Surgery, Houston Methodist Hospital, Houston, TX, USA
- Center for Computational Surgery, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Academic Institute, Houston, TX, USA
| | - Jared M Rozowsky
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Scott Berceli
- Department of Surgery, University of Florida, Gainesville, FL, USA
- Malcom Randall VAMC, Gainesville, FL, USA
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy.
- PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy.
| |
Collapse
|
15
|
Effects of local coronary blood flow dynamics on the predictions of a model of in-stent restenosis. J Biomech 2021; 120:110361. [PMID: 33730561 DOI: 10.1016/j.jbiomech.2021.110361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 11/22/2022]
Abstract
Computational models are increasingly used to study cardiovascular disease. However, models of coronary vessel remodelling usually make some strong assumptions about the effects of a local narrowing on the flow through the narrowed vessel. Here, we test the effects of local flow dynamics on the predictions of an in-stent restenosis (ISR) model. A previously developed 2D model of ISR is coupled to a 1D model of coronary blood flow. Then, two different assumptions are tested. The first assumption is that the vasculature is always able to adapt, and the volumetric flow rate through the narrowed vessel is kept constant. The second, alternative, assumption is that the vasculature does not adapt at all, and the ratio of the pressure drop to the flow rate (hydrodynamic resistance) stays the same throughout the whole process for all vessels unaffected by the stenosis, and aortic or venous blood pressure does not change either. Then, the dynamics are compared for different locations in coronary tree for two different reendothelization scenarios. The assumptions of constant volumetric flow rate (absolute vascular adaptation) versus constant aortic pressure drop and no adaptation do not significantly affect the growth dynamics for most locations in the coronary tree, and the differences can only be observed at the locations where a strong alternative flow pathway is present. On the other hand, the difference between locations is significant, which is consistent with small vessel size being a risk factor for restenosis. These results suggest that the assumption of a constant flow is a good approximation for ISR models dealing with the typical progression of ISR in the most often stented locations such as the proximal parts of left anterior descending (LAD) and left circumflex (LCX) arteries.
Collapse
|
16
|
张 晗, 张 愉, 陈 诗, 崔 新, 彭 坤, 乔 爱. [Review of studies on the biomechanical modelling of the coupling effect between stent degradation and blood vessel remodeling]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:956-966. [PMID: 33369334 PMCID: PMC9929987 DOI: 10.7507/1001-5515.202008007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 11/03/2022]
Abstract
The dynamic coupling of stent degradation and vessel remodeling can influence not only the structural morphology and material property of stent and vessel, but also the development of in-stent restenosis. The research achievements of biomechanical modelling and analysis of stent degradation and vessel remodeling were reviewed; several noteworthy research perspectives were addressed, a stent-vessel coupling model was developed based on stent damage function and vessel growth function, and then concepts of matching ratio and risk factor were established so as to evaluate the treatment effect of stent intervention, which may lay the scientific foundation for the structure design, mechanical analysis and clinical application of biodegradable stent.
Collapse
Affiliation(s)
- 晗冰 张
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 愉 张
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 诗亮 陈
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 新阳 崔
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 坤 彭
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| | - 爱科 乔
- 北京工业大学 环境与生命学部(北京 100124)Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R.China
| |
Collapse
|
17
|
He S, Liu W, Qu K, Yin T, Qiu J, Li Y, Yuan K, Zhang H, Wang G. Effects of different positions of intravascular stent implantation in stenosed vessels on in-stent restenosis: An experimental and numerical simulation study. J Biomech 2020; 113:110089. [PMID: 33181394 DOI: 10.1016/j.jbiomech.2020.110089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 11/29/2022]
Abstract
Percutaneous coronary intervention (PCI) has been widely used in the treatment of atherosclerosis, while in-stent restenosis (ISR) has not been completely resolved. Studies have shown that changes in intravascular mechanical environment are related to ISR. Hence, an in-depth understanding of the effects of stent intervention on vascular mechanics is important for clinically optimizing stent implantation and relieving ISR. Nine rabbits with stenotic carotid artery were collected by balloon injury. Intravascular stents were implanted into different longitudinal positions (proximal, middle and distal relative to the stenotic area) of the stenotic vessels for numerical simulations. Optical coherence tomography (OCT) scanning was performed to reconstruct the three-dimensional configuration of the stented carotid artery and blood flow velocity waveforms were collected by Doppler ultrasound. The numerical simulations were performed through direct solution of Naiver-Stokes equation in ANSYS. Results showed that the distributions of time-averaged wall shear stress (TAWSS), oscillating shear index (OSI) and relative residual time (RRT) in near-end segment were distinctively different from other regions of the stent which considered to promote restenosis for all three models. Spearman rank-correlation analysis showed a significant correlation between hemodynamic descriptors and the stent longitudinal positions (rTAWSS = -0.718, rOSI = 0.898, rRRT = 0.818, p < 0.01). Histology results of the near-end segment showed neointima thickening deepened with the longitudinal positions of stent which was consistent with the numerical simulations. The results suggest that stent implantation can promote restenosis at the near-end segment. As the stenting position moves to distal end, the impact on ISR is more significant.
Collapse
Affiliation(s)
- Shicheng He
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China
| | - Wanling Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Tieying Yin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China.
| | - Yan Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China
| | - Kunshan Yuan
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, PR China
| | - Haijun Zhang
- National United Engineering Laboratory for Biomedical Material Modification, Dezhou, Shandong 251100, PR China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, PR China.
| |
Collapse
|
18
|
Mechanistic evaluation of long-term in-stent restenosis based on models of tissue damage and growth. Biomech Model Mechanobiol 2020; 19:1425-1446. [PMID: 31912322 PMCID: PMC7502446 DOI: 10.1007/s10237-019-01279-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023]
Abstract
Development and application of advanced mechanical models of soft tissues and their growth represent one of the main directions in modern mechanics of solids. Such models are increasingly used to deal with complex biomedical problems. Prediction of in-stent restenosis for patients treated with coronary stents remains a highly challenging task. Using a finite element method, this paper presents a mechanistic approach to evaluate the development of in-stent restenosis in an artery following stent implantation. Hyperelastic models with damage, verified with experimental results, are used to describe the level of tissue damage in arterial layers and plaque caused by such intervention. A tissue-growth model, associated with vessel damage, is adopted to describe the growth behaviour of a media layer after stent implantation. Narrowing of lumen diameter with time is used to quantify the development of in-stent restenosis in the vessel after stenting. It is demonstrated that stent designs and materials strongly affect the stenting-induced damage in the media layer and the subsequent development of in-stent restenosis. The larger the artery expansion achieved during balloon inflation, the higher the damage introduced to the media layer, leading to an increased level of in-stent restenosis. In addition, the development of in-stent restenosis is directly correlated with the artery expansion during the stent deployment. The correlation is further used to predict the effect of a complex clinical procedure, such as stent overlapping, on the level of in-stent restenosis developed after percutaneous coronary intervention.
Collapse
|
19
|
Zun PS, Narracott AJ, Evans PC, van Rooij BJM, Hoekstra AG. A particle-based model for endothelial cell migration under flow conditions. Biomech Model Mechanobiol 2019; 19:681-692. [PMID: 31624966 PMCID: PMC7105450 DOI: 10.1007/s10237-019-01239-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/09/2019] [Indexed: 11/30/2022]
Abstract
Endothelial cells (ECs) play a major role in the healing process following angioplasty to inhibit excessive neointima. This makes the process of EC healing after injury, in particular EC migration in a stented vessel, important for recovery of normal vessel function. In that context, we present a novel particle-based model of EC migration and validate it against in vitro experimental data. We have developed a particle-based model of EC migration under flow conditions in an in vitro vessel with obstacles. Cell movement in the model is a combination of random walks and directed movement along the local flow velocity vector. For model calibration, a set of experimental data for cell migration in a similarly shaped channel has been used. We have calibrated the model for a baseline case of a channel with no obstacles and then applied it to the case of a channel with ridges on the bottom surface, representative of stent strut geometry. We were able to closely reproduce the cell migration speed and angular distribution of their movement relative to the flow direction reported in vitro. The model also reproduces qualitative aspects of EC migration, such as entrapment of cells downstream from the flow-disturbing ridge. The model has the potential, after more extensive in vitro validation, to study the effect of variation in strut spacing and shape, through modification of the local flow, on EC migration. The results of this study support the hypothesis that EC migration is strongly affected by the direction and magnitude of local wall shear stress.
Collapse
Affiliation(s)
- P S Zun
- Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands. .,Biomechanics Laboratory, Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands. .,National Center for Cognitive Technologies, ITMO University, Saint Petersburg, Russia.
| | - A J Narracott
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - P C Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK.,Insigneo Institute for in Silico Medicine, University of Sheffield, Sheffield, UK
| | - B J M van Rooij
- Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A G Hoekstra
- Institute for Informatics, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|