1
|
Rana S, Eckert C, Tesfamicael B. Feasibility study of utilizing Sphinx Compact for quality assurance in uniform scanning proton therapy. Phys Med 2023; 113:102468. [PMID: 36336530 DOI: 10.1016/j.ejmp.2022.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/17/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022] Open
Abstract
PURPOSE To investigate the feasibility of utilizing the Sphinx Compact detector for quality assurance in a uniform scanning proton therapy system. METHOD The Sphinx Compact detector was used to measure various dosimetric parameters of uniform scanning proton beam at the Oklahoma Proton Center: distal range, distal-fall-off, collinearity, field symmetry, flatness, and field size for four different beams. A specially designed brass aperture was used to perform the required measurements. The Sphinx Compact measurement results were validated against the measurement results from the well-established detectors in proton therapy: IBA Zebra, IBA MatriXX-PT, EBT3 films, and Logos XRV-124. The data collected using the Sphinx Compact was analyzed in myQA software. RESULTS Based on the data analysis performed, the Sphinx Compact measurements were within acceptable accuracy to the results from the detectors mentioned in the Method section. Specifically, the lateral penumbra was within ±0.4 mm, collinearity was within ± 0.5 mm, flatness was within ±0.6 %, symmetry within ±1.6 %, distal range was within ±0.5 mm, distal-fall-off was <0.9 mm, and field size was within ±1 mm. The reproducibility of the Sphinx Compact was tested for range and collinearity, and the results were within ±0.1 mm. CONCLUSION The sphinx Compact detector could potentially replace multiple detectors utilized for monthly QA in uniform scanning proton therapy. In a multi-room center, performing the QA with one detector compared to using multiple detectors dramatically reduces total QA time and the complexity of the QA process.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, OK, USA; Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, FL, USA; Department of Radiation Oncology, Florida International University, Miami, FL, USA.
| | - Colton Eckert
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, OK, USA
| | - Biniam Tesfamicael
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, OK, USA
| |
Collapse
|
2
|
Rana S, Traneus E, Jackson M, Tran L, Rosenfeld AB. Quantitative analysis of dose-averaged linear energy transfer (LET d ) robustness in pencil beam scanning proton lung plans. Med Phys 2022; 49:3444-3456. [PMID: 35194809 DOI: 10.1002/mp.15569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The primary objective of our study was to perform a quantitative robustness analysis of the dose-averaged linear energy transfer (LETd ) and related RBE-weighted dose in robustly optimized (in terms of the range and set up uncertainties) pencil beam scanning (PBS) proton lung cancer plans. METHODS In this study, we utilized the 4DCT data set of six anonymized lung patients. PBS lung plans were generated using a robust optimization technique (range uncertainty: ±3.5% and setup errors: ±5 mm) on the CTV for a total dose of 5000 cGy(RBE) in 5 fractions using RBE of 1.1. For each patient, the LETd distributions were calculated for the nominal plan and three groups. Group 1: two plan robustness scenarios for range uncertainties of ±3.5%; Group 2: twelve plan robustness scenarios (range uncertainty (±3.5%) in conjunction with setup errors (±5 mm)); and Group 3: ten different breathing phases of the 4DCT data set. RBE-weighted dose to the OARs was evaluated for all robustness scenarios and breathing phases. The variation (∆) in the mean LETd and mean RBE-weighted dose from each group was recorded. RESULTS The mean LETd in the CTV of nominal PBS lung plans among six patients ranged from 2.2 to 2.6 keV/μm. On average, for the combined range and setup uncertainties, the ∆ in the mean LETd among 12 scenarios of all six patients was 0.6 keV/μm, which is slightly higher than when only the range uncertainties were considered (0.4 keV/μm). The ∆ in the mean LETd in a patient was ≤1.7 keV/μm in the heart and ≤1.2 keV/μm in the esophagus and total lung. The ∆ in the mean RBE-weighted dose in a patient was up to 79 cGy for the total lung, 165 cGy for the heart, and 258 cGy for the esophagus. For ten breathing phases, the ∆ in the mean LETd in a patient was ≤0.3 keV/μm in the CTV, ≤0.5 keV/μm in the heart, ≤0.4 keV/μm in the esophagus, and ≤0.7 keV/μm in the total lung. CONCLUSION The addition of setup errors to the range uncertainties resulted in slightly less homogeneous LETd distributions. The variations in the mean LETd among ten breathing phases were slightly larger in the total lung than in the heart and esophagus. The combination of setup and range uncertainties had a greater impact than the effect of breathing phases on the variations in the mean RBE-weighted dose to the OARs. Overall, the LETd distributions in the CTV were less sensitive than those in the OARs to setup errors, range uncertainties, and breathing phases for robustly optimized PBS proton lung cancer plans. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, Florida, USA.,Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, Oklahoma, USA.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Erik Traneus
- RaySearch Laboratories, Medical Physics, Stockholm, Sweden
| | - Michael Jackson
- Prince of Wales Hospital, Radiation Oncology, Randwick, Australia
| | - Linh Tran
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
3
|
Rana S, Rosenfeld AB. Small spot size versus large spot size: Effect on plan quality for lung cancer in pencil beam scanning proton therapy. J Appl Clin Med Phys 2022; 23:e13512. [PMID: 34989458 PMCID: PMC8833272 DOI: 10.1002/acm2.13512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/26/2021] [Accepted: 12/10/2021] [Indexed: 11/09/2022] Open
Abstract
Purpose The purpose of the current study was to evaluate the impact of spot size on the interplay effect, plan robustness, and dose to the organs at risk for lung cancer plans in pencil beam scanning (PBS) proton therapy Methods The current retrospective study included 13 lung cancer patients. For each patient, small spot (∼3 mm) plans and large spot (∼8 mm) plans were generated. The Monte Carlo algorithm was used for both robust plan optimization and final dose calculations. Each plan was normalized, such that 99% of the clinical target volume (CTV) received 99% of the prescription dose. Interplay effect was evaluated for treatment delivery starting in two different breathing phases (T0 and T50). Plan robustness was investigated for 12 perturbed scenarios, which combined the isocenter shift and range uncertainty. The nominal and worst‐case scenario (WCS) results were recorded for each treatment plan. Equivalent uniform dose (EUD) and normal tissue complication probability (NTCP) were evaluated for the total lung, heart, and esophagus. Results In comparison to large spot plans, the WCS values of small spot plans at CTV D95%, D96%, D97%, D98%, and D99% were higher with the average differences of 2.2% (range, 0.3%–3.7%), 2.3% (range, 0.5%–4.0%), 2.6% (range, 0.6%–4.4%), 2.7% (range, 0.9%–5.2%), and 2.7% (range, 0.3%–6.0%), respectively. The nominal and WCS mean dose and EUD for the esophagus, heart, and total lung were higher in large spot plans. The difference in NTCP between large spot and small spot plans was up to 1.9% for the total lung, up to 0.3% for the heart, and up to 32.8% for the esophagus. For robustness acceptance criteria of CTV D95% ≥ 98% of the prescription dose, seven small spot plans had all 12 perturbed scenarios meeting the criteria, whereas, for 13 large spot plans, there were ≥2 scenarios failing to meet the criteria. Interplay results showed that, on average, the target coverage in large spot plans was higher by 1.5% and 0.4% in non‐volumetric and volumetric repainting plans, respectively. Conclusion For robustly optimized PBS lung cancer plans in our study, a small spot machine resulted in a more robust CTV against the setup and range errors when compared to a large spot machine. In the absence of volumetric repainting, large spot PBS lung plans were more robust against the interplay effect. The use of a volumetric repainting technique in both small and large spot PBS lung plans led to comparable interplay target coverage.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, Oklahoma, USA.,Department of Radiation Oncology, Boca Raton Regional Hospital, Lynn Cancer Institute, Baptist Health South Florida, Boca Raton, Florida, USA.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| |
Collapse
|
4
|
Huang YH, Fang C, Yang T, Cao L, Zhang G, Qu B, Zhang Y, Wang Z, Xu S. A systematic study of independently-tuned room-specific PBS beam model in a beam-matched multiroom proton therapy system. Radiat Oncol 2021; 16:206. [PMID: 34715894 PMCID: PMC8555324 DOI: 10.1186/s13014-021-01932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
Background In the existing application of beam-matched multiroom proton therapy system, the model based on the commissioning data from the leading treatment room was used as the shared model. The purpose of this study is to investigate the ability of independently-tuned room-specific beam models of beam-matched gantries to reproduce the agreement between gantries’ performance when considering the errors introduced by the modeling process. Methods Raw measurements of two gantries’ dosimetric characteristics were quantitatively compared to ensure their agreement after initially beam-matched. Two gantries’ beam model parameters, as well as the model-based computed dosimetric characteristics, were analyzed to study the introduced errors and gantries’ post-modeling consistency. We forced two gantries to share the same beam model. The model-sharing patient-specific quality assurance (QA) tasks were retrospectively performed with 36 cancer patients to study the clinical impact of beam model discrepancies. Results Intra-gantry comparisons demonstrate that the modeling process introduced the errors to a certain extent indeed, which made the model-based reproduced results deviate from the raw measurements. Among them, the deviation introduced to the IDD curves was generally larger than that to the beam spots during modeling. Cross-gantry comparisons show that, from the beam model perspective, the introduced deviations deteriorated the high agreement of the dosimetric characteristics originally shown between two beam-matched gantries, but the cross-gantry discrepancy was still within the clinically acceptable tolerance. In model-sharing patient-specific QA, for the particular gantry, the beam model usage for intensity-modulated proton therapy (IMPT) QA plan generation had no significant effect on the actual delivering performance. All reached a high level of 95.0% passing rate with a 3 mm/3% criterion. Conclusions It was preliminary recognized that among beam-matched gantries, the independently-tuned room-specific beam model from any gantry is reasonable to be chosen as the shared beam model without affecting the treatment efficacy.
Collapse
Affiliation(s)
- Yu-Hua Huang
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China.,School of Physics, Beihang University, Beijing, 100191, China
| | - Chunfeng Fang
- Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China
| | - Tao Yang
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China.,Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China
| | - Lin Cao
- Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China
| | - Gaolong Zhang
- School of Physics, Beihang University, Beijing, 100191, China
| | - Baolin Qu
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China
| | - Yihang Zhang
- School of Physics, Beihang University, Beijing, 100191, China
| | - Zishen Wang
- Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China
| | - Shouping Xu
- Department of Radiation Oncology, The First Medical Center of PLA General Hospital, Beijing, 100853, China. .,Department of Radiation Oncology, Hebei Yizhou Cancer Hospital, Zhuozhou, 072750, China.
| |
Collapse
|
5
|
Rana S, Rosenfeld AB. Impact of errors in spot size and spot position in robustly optimized pencil beam scanning proton-based stereotactic body radiation therapy (SBRT) lung plans. J Appl Clin Med Phys 2021; 22:147-154. [PMID: 34101334 PMCID: PMC8292703 DOI: 10.1002/acm2.13293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose The purpose of the current study was threefold: (a) investigate the impact of the variations (errors) in spot sizes in robustly optimized pencil beam scanning (PBS) proton‐based stereotactic body radiation therapy (SBRT) lung plans, (b) evaluate the impact of spot sizes and position errors simultaneously, and (c) assess the overall effect of spot size and position errors occurring simultaneously in conjunction with either setup or range errors. Methods In this retrospective study, computed tomography (CT) data set of five lung patients was selected. Treatment plans were regenerated for a total dose of 5000 cGy(RBE) in 5 fractions using a single‐field optimization (SFO) technique. Monte Carlo was used for the plan optimization and final dose calculations. Nominal plans were normalized such that 99% of the clinical target volume (CTV) received the prescription dose. The analysis was divided into three groups. Group 1: The increasing and decreasing spot sizes were evaluated for ±10%, ±15%, and ±20% errors. Group 2: Errors in spot size and spot positions were evaluated simultaneously (spot size: ±10%; spot position: ±1 and ±2 mm). Group 3: Simulated plans from Group 2 were evaluated for the setup (±5 mm) and range (±3.5%) errors. Results Group 1: For the spot size errors of ±10%, the average reduction in D99% for −10% and +10% errors was 0.7% and 1.1%, respectively. For −15% and +15% spot size errors, the average reduction in D99% was 1.4% and 1.9%, respectively. The average reduction in D99% was 2.1% for −20% error and 2.8% for +20% error. The hot spot evaluation showed that, for the same magnitude of error, the decreasing spot sizes resulted in a positive difference (hotter plan) when compared with the increasing spot sizes. Group 2: For a 10% increase in spot size in conjunction with a −1 mm (+1 mm) shift in spot position, the average reduction in D99% was 1.5% (1.8%). For a 10% decrease in spot size in conjunction with a −1 mm (+1 mm) shift in spot position, the reduction in D99% was 0.8% (0.9%). For the spot size errors of ±10% and spot position errors of ±2 mm, the average reduction in D99% was 2.4%. Group 3: Based on the results from 160 plans (4 plans for spot size [±10%] and position [±1 mm] errors × 8 scenarios × 5 patients), the average D99% was 4748 cGy(RBE) with the average reduction of 5.0%. The isocentric shift in the superior–inferior direction yielded the least homogenous dose distributions inside the target volume. Conclusion The increasing spot sizes resulted in decreased target coverage and dose homogeneity. Similarly, the decreasing spot sizes led to a loss of target coverage, overdosage, and degradation of dose homogeneity. The addition of spot size and position errors to plan robustness parameters (setup and range uncertainties) increased the target coverage loss and decreased the dose homogeneity.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, Oklahoma, USA.,Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida, USA.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
6
|
Rana S, Rosenfeld AB. Impact of proton dose calculation algorithms on the interplay effect in PBS proton based SBRT lung plans. Biomed Phys Eng Express 2021; 7. [PMID: 34029212 DOI: 10.1088/2057-1976/abfea8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/06/2021] [Indexed: 01/02/2023]
Abstract
Purpose. The purpose of the current study was to investigate the impact of RayStation analytical pencil beam (APB) and Monte Carlo (MC) algorithms on the interplay effect in pencil beam scanning (PBS) proton-based stereotactic body radiation therapy (SBRT) lung plans.Methods. The currentin-silicoplanning study was designed for a total dose of 5000 cGy(RBE) with a fractional dose of 1000 cGy(RBE). First, three sets of nominal plans were generated for each patient: (a) APB optimization followed by APB dose calculation (PB-PB), (b) APB optimization followed by MC dose calculation (PB-MC), and (c) MC optimization followed by MC dose calculation (MC-MC). Second, for each patient, two sets of volumetric repainting plans (five repaintings) - PB-MCVR5and MC-MCVR5were generated based on PB-MC and MC-MC, respectively. Dosimetric differences between APB and MC algorithms were calculated on the nominal and interplay dose-volume-histograms (DVHs).Results. Interplay evaluation in non-volumetric repainting plans showed that APB algorithm overestimated the target coverage by up to 8.4% for D95%and 10.5% for D99%, whereas in volumetric repainting plans, APB algorithm overestimated by up to 5.3% for D95%and 7.0% for D99%. Interplay results for MC calculations showed a decrease in D95%and D99%by average differences of 3.5% and 4.7%, respectively, in MC-MC plans and by 1.8% and 3.0% in MC-MCVR5plans.Conclusion. In PBS proton-based SBRT lung plans, the combination of APB algorithm and interplay effect reduced the target coverage. This may result in inferior local control. The use of MC algorithm for both optimization and final dose calculations in conjunction with the volumetric repainting technique yielded superior target coverage.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, The Oklahoma Proton Center, Oklahoma City, OK, United States of America.,Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States of America.,Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States of America.,Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Rana S, Rosenfeld AB. Investigating volumetric repainting to mitigate interplay effect on 4D robustly optimized lung cancer plans in pencil beam scanning proton therapy. J Appl Clin Med Phys 2021; 22:107-118. [PMID: 33599391 PMCID: PMC7984493 DOI: 10.1002/acm2.13183] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/19/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Purpose The interplay effect between dynamic pencil proton beams and motion of the lung tumor presents a challenge in treating lung cancer patients in pencil beam scanning (PBS) proton therapy. The main purpose of the current study was to investigate the interplay effect on the volumetric repainting lung plans with beam delivery in alternating order (“down” and “up” directions), and explore the number of volumetric repaintings needed to achieve acceptable lung cancer PBS proton plan. Method The current retrospective study included ten lung cancer patients. The total dose prescription to the clinical target volume (CTV) was 70 Gy(RBE) with a fractional dose of 2 Gy(RBE). All treatment plans were robustly optimized on all ten phases in the 4DCT data set. The Monte Carlo algorithm was used for the 4D robust optimization, as well as for the final dose calculation. The interplay effect was evaluated for both the nominal (i.e., without repainting) as well as volumetric repainting plans. The interplay evaluation was carried out for each of the ten different phases as the starting phases. Several dosimetric metrics were included to evaluate the worst‐case scenario (WCS) and bandwidth based on the results obtained from treatment delivery starting in ten different breathing phases. Results The number of repaintings needed to meet the criteria 1 (CR1) of target coverage (D95% ≥ 98% and D99% ≥ 97%) ranged from 2 to 10. The number of repaintings needed to meet the CR1 of maximum dose (ΔD1% < 1.5%) ranged from 2 to 7. Similarly, the number of repaintings needed to meet CR1 of homogeneity index (ΔHI < 0.03) ranged from 3 to 10. For the target coverage region, the number of repaintings needed to meet CR1 of bandwidth (<100 cGy) ranged from 3 to 10, whereas for the high‐dose region, the number of repaintings needed to meet CR1 of bandwidth (<100 cGy) ranged from 1 to 7. Based on the overall plan evaluation criteria proposed in the current study, acceptable plans were achieved for nine patients, whereas one patient had acceptable plan with a minor deviation. Conclusion The number of repaintings required to mitigate the interplay effect in PBS lung cancer (tumor motion < 15 mm) was found to be highly patient dependent. For the volumetric repainting with an alternating order, a patient‐specific interplay evaluation strategy must be adopted. Determining the optimal number of repaintings based on the bandwidth and WCS approach could mitigate the interplay effect in PBS lung cancer treatment.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical PhysicsThe Oklahoma Proton CenterOklahoma CityOklahomaUSA
- Department of Radiation OncologyMiami Cancer InstituteBaptist Health South FloridaMiamiFLUSA
- Department of Radiation OncologyHerbert Wertheim College of MedicineFlorida International UniversityMiamiFLUSA
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| | - Anatoly B. Rosenfeld
- Centre for Medical Radiation Physics (CMRP)University of WollongongWollongongNSWAustralia
| |
Collapse
|
8
|
Rana S, Storey M, Manthala Padannayil N, Shamurailatpam DS, Bennouna J, George J, Chang J. Investigating the utilization of beam-specific apertures for the intensity-modulated proton therapy (IMPT) head and neck cancer plans. Med Dosim 2020; 46:e7-e11. [PMID: 33246881 DOI: 10.1016/j.meddos.2020.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/11/2020] [Accepted: 10/28/2020] [Indexed: 12/16/2022]
Abstract
Intensity-modulated proton therapy (IMPT) planning for the head and neck (HN) cancer often requires the use of the range shifter, which can increase the lateral penumbrae of the pencil proton beam in the patient, thus leading to an increase in unnecessary dose to the organs at risks (OARs) in proximity to the target volumes. The primary goal of the current study was to investigate the dosimetric benefits of utilizing beam-specific apertures for the IMPT HN cancer plans. The current retrospective study included computed tomography datasets of 10 unilateral HN cancer patients. The clinical target volume (CTV) was divided into low-risk CTV1 and high-risk CTV2. Total dose prescriptions to the CTV1 and CTV2 were 54 Gy(RBE) and 70 Gy(RBE), respectively, with a fractional dose of 2 Gy(RBE). All treatment plans were robustly optimized (patient setup uncertainty = 3 mm; range uncertainty = 3.5%) on the CTVs. For each patient, 2 sets of plans were generated: (1) without beam-specific aperture (WOBSA), and (2) with beam-specific aperture (WBSA). Specifically, both the WOBSA and WBSA of the given patient used identical beam angles, air gap, optimization structures, optimization constraints, and optimization settings. Target coverage and homogeneity index were comparable in both the WOBSA and WBSA plans with no statistical significance (p > 0.05). On average, the mean dose in WBSA plans was reduced by 12.1%, 2.9%, 3.0%, 3.8%, and 5.2% for the larynx, oral cavity, parotids, superior pharyngeal constrictor muscle, and inferior pharyngeal constrictor muscle, respectively. The dosimetric results of the OARs were found to be statistically significant (p < 0.05). The use of the beam-specific apertures did not deteriorate the coverage and homogeneity in the target volume and allowed for a reduction in mean dose to the OARs with an average difference up to 12.1%.
Collapse
Affiliation(s)
- Suresh Rana
- Department of Medical Physics, Oklahoma Proton Center, Oklahoma City, OK 73142, USA; Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA; Department of Radiation Oncology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.
| | - Mark Storey
- Department of Radiation Oncology, Oklahoma Proton Center, Oklahoma City, OK 73142, USA
| | | | | | - Jaafar Bennouna
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Jerry George
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - John Chang
- Department of Radiation Oncology, Oklahoma Proton Center, Oklahoma City, OK 73142, USA
| |
Collapse
|