1
|
Alekhya C, Tejaswi A, Harika G, Bomma N, Gangashetty PI, Tyagi W, Yogendra K. Identification and evaluation of BAG (B-cell lymphoma-2 associated athanogene) family gene expression in pigeonpea ( Cajanus cajan) under terminal heat stress. Front Genet 2024; 15:1418380. [PMID: 39610829 PMCID: PMC11602463 DOI: 10.3389/fgene.2024.1418380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Heat stress poses a significant environmental challenge, impacting plant growth, diminishing crop production, and reducing overall productivity. Plants employ various mechanisms to confront heat stress, and their ability to survive hinges on their capacity to perceive and activate appropriate physiological and biochemical responses. One such mechanism involves regulating multiple genes and coordinating their expression through different signaling pathways. The BAG (B-cell lymphoma-2 associated athanogene) gene family plays a multifunctional role by interacting with heat shock proteins, serving as co-chaperones, or regulating chaperones during the response to heat stress and development. While numerous studies have explored BAG proteins in model plants, there still remains a knowledge gap concerning crop plants. Methods Our study successfully identified nine BAG genes in pigeonpea through genome-wide scanning. A comprehensive in silico analysis was conducted to ascertain their chromosomal location, sub-cellular localization, and the types of regulatory elements present in the putative promoter region. Additionally, an expression analysis was performed on contrasting genotypes exhibiting varying heat stress responses. Results The results revealed eight CcBAG genes with higher expression levels in the tolerant genotype, whereas BAG6 (Cc_02358) exhibited lower expression. Upstream sequence analysis identified BAG members potentially involved in multiple stresses. Discussion The functional characterization of these BAG genes is essential to unravel their roles in signaling pathways, facilitating the identification of candidate genes for precise breeding interventions to produce heat-resilient pigeonpea.
Collapse
Affiliation(s)
| | | | | | | | | | - Wricha Tyagi
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Kalenahalli Yogendra
- Research Program-Accelerated Crop Improvement, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| |
Collapse
|
2
|
Zhu H, Chen W, Yang Z, Zeng C, Fan W, Yang J. SlSTOP1-regulated SlHAK5 expression confers Al tolerance in tomato by facilitating citrate secretion from roots. HORTICULTURE RESEARCH 2024; 11:uhae282. [PMID: 39545040 PMCID: PMC11561044 DOI: 10.1093/hr/uhae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/22/2024] [Indexed: 11/17/2024]
Abstract
SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) is a core transcription factor that regulates the expression of aluminum (Al) resistance genes to manage Al toxicity in plants. However, the genome-wide roles of SlSTOP1 in the Al stress response of tomato (Solanum lycopersicum) remain largely unknown. Here, we report that SlSTOP1 is crucial for Al tolerance in tomato, as loss-of-function mutants of SlSTOP1 displayed hypersensitivity to Al stress. Aluminum stress had no effect on SlSTOP1 mRNA expression, but promoted accumulation of SlSTOP1 protein in the nucleus. Through integrated DNA affinity purification sequencing and RNA sequencing analysis, we identified 39 SlSTOP1-targeted Al-responsive genes, some of which are homologous to known Al resistance genes in other plant species, suggesting that these SlSTOP1-targeted genes play essential roles in Al resistance in tomato. Furthermore, using peak enrichment analysis of SlSTOP1-targeted sequences, we identified a cis-acting element bound by SlSTOP1 and validated this finding via dual-luciferase reporter and electrophoretic mobility shift assay (EMSA). Additionally, we demonstrated SlHAK5 is one of direct targets of SlSTOP1 and functionally characterized it in terms of Al stress tolerance. Compared with wild-type plants, Slhak5 mutants developed by CRISPR/Cas9 technology presented increased sensitivity to Al stress, which was associated with reduced citrate secretion from the roots. Together, our findings demonstrate that SlSTOP1 directly interacts with cis-acting elements located in the promoters of target genes involved in diverse pathways contributing to Al resistance in tomato.
Collapse
Affiliation(s)
- Huihui Zhu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming 650201, China
- State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Weiwei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, No. 2318, Yuhangtang Road, Xihu District, Hangzhou 311121, China
| | - Zheng’an Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming 650201, China
| | - Congfang Zeng
- Agricultural and Rural Service Center, Huangguayuan Town, Yuanmou County 651308, Chuxiong Yi Autonomous Prefecture, China
| | - Wei Fan
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming 650201, China
| | - Jianli Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming 650201, China
| |
Collapse
|
3
|
Cheng R, Zhao Z, Tang Y, Gu Y, Chen G, Sun Y, Wang X. Genome-wide survey of KT/HAK/KUP genes in the genus Citrullus and analysis of their involvement in K +-deficiency and drought stress responses in between C. lanatus and C. amarus. BMC Genomics 2024; 25:836. [PMID: 39237905 PMCID: PMC11378637 DOI: 10.1186/s12864-024-10712-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND The KT/HAK/KUP is the largest K+ transporter family in plants, playing crucial roles in K+ absorption, transport, and defense against environmental stress. Sweet watermelon is an economically significant horticultural crop belonging to the genus Citrullus, with a high demand for K+ during its growth process. However, a comprehensive analysis of the KT/HAK/KUP gene family in watermelon has not been reported. RESULTS 14 KT/HAK/KUP genes were identified in the genomes of each of seven Citrullus species. These KT/HAK/KUPs in watermelon were unevenly distributed across seven chromosomes. Segmental duplication is the primary driving force behind the expansion of the KT/HAK/KUP family, subjected to purifying selection during domestication (Ka/Ks < 1), and all KT/HAK/KUPs exhibit conserved motifs and could be phylogenetically classified into four groups. The promoters of KT/HAK/KUPs contain numerous cis-regulatory elements related to plant growth and development, phytohormone response, and stress response. Under K+ deficiency, the growth of watermelon seedlings was significantly inhibited, with cultivated watermelon experiencing greater impacts (canopy width, redox enzyme activity) compared to the wild type. All KT/HAK/KUPs in C. lanatus and C. amarus exhibit specific expression responses to K+-deficiency and drought stress by qRT-PCR. Notably, ClG42_07g0120700/CaPI482276_07g014010 were predominantly expressed in roots and were further induced by K+-deficiency and drought stress. Additionally, the K+ transport capacity of ClG42_07g0120700 under low K+ stress was confirmed by yeast functional complementation assay. CONCLUSIONS KT/HAK/KUP genes in watermelon were systematically identified and analyzed at the pangenome level and provide a foundation for understanding the classification and functions of the KT/HAK/KUPs in watermelon plants.
Collapse
Affiliation(s)
- Rui Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China
| | - Zhengxiang Zhao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China
| | - Yan Tang
- Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Yan Gu
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China
| | - Guodong Chen
- Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Yudong Sun
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, Jiangsu, 223001, China.
| | - Xuezheng Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang, 150006, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Harbin, Heilongjiang, 150006, China.
| |
Collapse
|
4
|
Mallikarjuna MG, Tomar R, Lohithaswa HC, Sahu S, Mishra DC, Rao AR, Chinnusamy V. Genome-wide identification of potassium channels in maize showed evolutionary patterns and variable functional responses to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108235. [PMID: 38039585 DOI: 10.1016/j.plaphy.2023.108235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Potassium (K) channels are essential components of plant biology, mediating not only K ion (K+) homeostasis but also regulating several physiological processes and stress tolerance. In the current investigation, we identified 27 K+ channels in maize and deciphered the evolution and divergence pattern with four monocots and five dicot species. Chromosomal localization and expansion of K+ channel genes showed uneven distribution and were independent of genome size. The dispersed duplication is the major force in expanding K+ channels in the target genomes. The mean Ka/Ks ratio of <0.5 in paralogs and orthologs indicates horizontal and vertical expansions of K+ channel genes under strong purifying selection. The one-to-one K+ channel orthologs were prominent among the closely related species, with higher synteny between maize and the rest of the monocots. Comprehensive K+ channels promoter analysis revealed various cis-regulatory elements mediating stress tolerance with the predominance of MYB and STRE binding sites. The regulatory network showed AP2-EREBP TFs, miR164 and miR399 are prominent regulatory elements of K+ channels. The qRT-PCR analysis of K+ channels and regulatory miRNAs showed significant expressions in response to drought and waterlogging stresses. The present study expanded the knowledge on K+ channels in maize and will serve as a basis for an in-depth functional analysis.
Collapse
Affiliation(s)
| | - Rakhi Tomar
- Division of Genetics, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| | | | - Sarika Sahu
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Dwijesh Chandra Mishra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Atmakuri Ramakrishna Rao
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR- Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
5
|
Lindberg S, Premkumar A. Ion Changes and Signaling under Salt Stress in Wheat and Other Important Crops. PLANTS (BASEL, SWITZERLAND) 2023; 13:46. [PMID: 38202354 PMCID: PMC10780558 DOI: 10.3390/plants13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
High concentrations of sodium (Na+), chloride (Cl-), calcium (Ca2+), and sulphate (SO42-) are frequently found in saline soils. Crop plants cannot successfully develop and produce because salt stress impairs the uptake of Ca2+, potassium (K+), and water into plant cells. Different intracellular and extracellular ionic concentrations change with salinity, including those of Ca2+, K+, and protons. These cations serve as stress signaling molecules in addition to being essential for ionic homeostasis and nutrition. Maintaining an appropriate K+:Na+ ratio is one crucial plant mechanism for salt tolerance, which is a complicated trait. Another important mechanism is the ability for fast extrusion of Na+ from the cytosol. Ca2+ is established as a ubiquitous secondary messenger, which transmits various stress signals into metabolic alterations that cause adaptive responses. When plants are under stress, the cytosolic-free Ca2+ concentration can rise to 10 times or more from its resting level of 50-100 nanomolar. Reactive oxygen species (ROS) are linked to the Ca2+ alterations and are produced by stress. Depending on the type, frequency, and intensity of the stress, the cytosolic Ca2+ signals oscillate, are transient, or persist for a longer period and exhibit specific "signatures". Both the influx and efflux of Ca2+ affect the length and amplitude of the signal. According to several reports, under stress Ca2+ alterations can occur not only in the cytoplasm of the cell but also in the cell walls, nucleus, and other cell organelles and the Ca2+ waves propagate through the whole plant. Here, we will focus on how wheat and other important crops absorb Na+, K+, and Cl- when plants are under salt stress, as well as how Ca2+, K+, and pH cause intracellular signaling and homeostasis. Similar mechanisms in the model plant Arabidopsis will also be considered. Knowledge of these processes is important for understanding how plants react to salinity stress and for the development of tolerant crops.
Collapse
Affiliation(s)
- Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Albert Premkumar
- Bharathiyar Group of Institutes, Guduvanchery 603202, Tamilnadu, India;
| |
Collapse
|
6
|
Lu L, Chen S, Yang W, Wu Y, Liu Y, Yin X, Yang Y, Yang Y. Integrated transcriptomic and metabolomic analyses reveal key metabolic pathways in response to potassium deficiency in coconut ( Cocos nucifera L.) seedlings. FRONTIERS IN PLANT SCIENCE 2023; 14:1112264. [PMID: 36860901 PMCID: PMC9968814 DOI: 10.3389/fpls.2023.1112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Potassium ions (K+) are important for plant growth and crop yield. However, the effects of K+ deficiency on the biomass of coconut seedlings and the mechanism by which K+ deficiency regulates plant growth remain largely unknown. Therefore, in this study, we compared the physiological, transcriptome, and metabolite profiles of coconut seedling leaves under K+-deficient and K+-sufficient conditions using pot hydroponic experiments, RNA-sequencing, and metabolomics technologies. K+ deficiency stress significantly reduced the plant height, biomass, and soil and plant analyzer development value, as well as K content, soluble protein, crude fat, and soluble sugar contents of coconut seedlings. Under K+ deficiency, the leaf malondialdehyde content of coconut seedlings were significantly increased, whereas the proline (Pro) content was significantly reduced. Superoxide dismutase, peroxidase, and catalase activities were significantly reduced. The contents of endogenous hormones such as auxin, gibberellin, and zeatin were significantly decreased, whereas abscisic acid content was significantly increased. RNA-sequencing revealed that compared to the control, there were 1003 differentially expressed genes (DEGs) in the leaves of coconut seedlings under K+ deficiency. Gene Ontology analysis revealed that these DEGs were mainly related to "integral component of membrane," "plasma membrane," "nucleus", "transcription factor activity," "sequence-specific DNA binding," and "protein kinase activity." Kyoto Encyclopedia of Genes and Genomes pathway analysis indicated that the DEGs were mainly involved in "MAPK signaling pathway-plant," "plant hormone signal transduction," "starch and sucrose metabolism," "plant-pathogen interaction," "ABC transporters," and "glycerophospholipid metabolism." Metabolomic analysis showed that metabolites related to fatty acids, lipidol, amines, organic acids, amino acids, and flavonoids were generally down-regulated in coconut seedlings under K+ deficiency, whereas metabolites related to phenolic acids, nucleic acids, sugars, and alkaloids were mostly up-regulated. Therefore, coconut seedlings respond to K+ deficiency stress by regulating signal transduction pathways, primary and secondary metabolism, and plant-pathogen interaction. These results confirm the importance of K+ for coconut production, and provide a more in-depth understanding of the response of coconut seedlings to K+ deficiency and a basis for improving K+ utilization efficiency in coconut trees.
Collapse
Affiliation(s)
- Lilan Lu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Siting Chen
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Weibo Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yi Wu
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yingying Liu
- School of Earth Sciences, China University of Geosciences, Wuhan, Hubei, China
| | - Xinxing Yin
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yaodong Yang
- Hainan Key Laboratory of Tropical Oil Crops Biology, Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, Hainan, China
| | - Yanfang Yang
- Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
7
|
Saha J, Chaudhuri D, Kundu A, Bhattacharya S, Roy S, Giri K. Phylogenetic, structural, functional characterisation and effect of exogenous spermidine on rice ( Oryza sativa) HAK transporters under salt stress. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:160-182. [PMID: 36031595 DOI: 10.1071/fp22059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The HAK (High-affinity K+ ) family members mediate K+ transport that confers normal plant growth and resistance against unfavourable environmental conditions. Rice (Oryza sativa L.) HAK transporters have been extensively investigated for phylogenetic analyses with other plants species with very few of them functionally characterised. But very little information is known about their evolutionary aspects, overall structural, functional characterisation, and global expression pattern of the complete HAK family members in response to salt stress. In this study, 27 rice transporters were phylogenetically clustered with different dicot and monocot family members. Subsequently, the exon-intron structural patterns, conserved motif analyses, evolutionary divergence based different substitution matrix, orthologous-paralogous relationships were studied elaborately. Structural characterisations included a comparative study of secondary and tertiary structure, post-translational modifications, correspondence analyses, normal mode analyses, K+ /Na+ binding affinities of each of the OsHAK gene members. Global expression profile under salt stress showed clade-specific expression pattern of the proteins. Additionally, five OsHAK genes were chosen for further expression analyses in root and shoot tissues of two rice varieties during short-term salinity in the presence and absence of exogenous spermidine. All the information can be used as first-hand data for dissecting the administrative role of rice HAK transporters under various abiotic stresses.
Collapse
Affiliation(s)
- Jayita Saha
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India; and Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Dwaipayan Chaudhuri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, P.G. Department of Botany, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata 700118, West Bengal, India
| | - Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, Kolkata, West Bengal, India
| | - Sudipta Roy
- Department of Botany, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Kalyan Giri
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| |
Collapse
|
8
|
Zhao Y, Wang L, Zhao P, Liu Z, Guo S, Li Y, Liu H. Genome-wide identification, characterization and expression analysis of HAK genes and decoding their role in responding to potassium deficiency and abiotic stress in Medicago truncatula. PeerJ 2022; 10:e14034. [PMID: 36168431 PMCID: PMC9509677 DOI: 10.7717/peerj.14034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/18/2022] [Indexed: 01/19/2023] Open
Abstract
Background The HAK family is the largest potassium (K+) transporter family, vital in K+ uptake, plant growth, and both plant biotic and abiotic stress responses. Although HAK family members have been characterized and functionally investigated in many species, these genes are still not studied in detail in Medicago truncatula, a good model system for studying legume genetics. Methods In this study, we screened the M. truncatula HAK family members (MtHAKs). Furthermore, we also conducted the identification, phylogenetic analysis, and prediction of conserved motifs of MtHAKs. Moreover, we studied the expression levels of MtHAKs under K+ deficiency, drought, and salt stresses using quantitative real-time PCR (qRT-PCR). Results We identified 20 MtHAK family members and classified them into three clusters based on phylogenetic relationships. Conserved motif analyses showed that all MtHAK proteins besides MtHAK10 contained the highly conserved K+ transport domain (GVVYGDLGTSPLY). qRT-PCR analysis showed that several MtHAK genes in roots were induced by abiotic stress. In particular, MtHAK15, MtHAK17, and MtHAK18 were strongly up-regulated in the M. truncatula roots under K+ deficiency, drought, and salt stress conditions, thereby implying that these genes are good candidates for high-affinity K+ uptake and therefore have essential roles in drought and salt tolerance. Discussions Our results not only provided the first genetic description and evolutionary relationships of the K+ transporter family in M. truncatula, but also the potential information responding to K+ deficiency and abiotic stresses, thereby laying the foundation for molecular breeding of stress-resistant legume crops in the future.
Collapse
Affiliation(s)
- Yanxue Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lei Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Pengcheng Zhao
- College of Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhongjie Liu
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Hao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
9
|
Anil Kumar S, Hima Kumari P, Nagaraju M, Sudhakar Reddy P, Durga Dheeraj T, Mack A, Katam R, Kavi Kishor PB. Genome-wide identification and multiple abiotic stress transcript profiling of potassium transport gene homologs in Sorghum bicolor. FRONTIERS IN PLANT SCIENCE 2022; 13:965530. [PMID: 36119582 PMCID: PMC9478208 DOI: 10.3389/fpls.2022.965530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Potassium (K+) is the most abundant cation that plays a crucial role in various cellular processes in plants. Plants have developed an efficient mechanism for the acquisition of K+ when grown in K+ deficient or saline soils. A total of 47 K+ transport gene homologs (27 HAKs, 4 HKTs, 2 KEAs, 9 AKTs, 2 KATs, 2 TPCs, and 1 VDPC) have been identified in Sorghum bicolor. Of 47 homologs, 33 were identified as K+ transporters and the remaining 14 as K+ channels. Chromosome 2 has been found as the hotspot of K+ transporters with 9 genes. Phylogenetic analysis revealed the conservation of sorghum K+ transport genes akin to Oryza sativa. Analysis of regulatory elements indicates the key roles that K+ transport genes play under different biotic and abiotic stress conditions. Digital expression data of different developmental stages disclosed that expressions were higher in milk, flowering, and tillering stages. Expression levels of the genes SbHAK27 and SbKEA2 were higher during milk, SbHAK17, SbHAK11, SbHAK18, and SbHAK7 during flowering, SbHAK18, SbHAK10, and 23 other gene expressions were elevated during tillering inferring the important role that K+ transport genes play during plant growth and development. Differential transcript expression was observed in different tissues like root, stem, and leaf under abiotic stresses such as salt, drought, heat, and cold stresses. Collectively, the in-depth genome-wide analysis and differential transcript profiling of K+ transport genes elucidate their role in ion homeostasis and stress tolerance mechanisms.
Collapse
Affiliation(s)
- S. Anil Kumar
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, United States
| | - P. Hima Kumari
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, United States
| | - Marka Nagaraju
- Biochemistry Division, National Institute of Nutrition, Hyderabad, India
| | | | - T. Durga Dheeraj
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Alexis Mack
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, United States
- Department of Biology, Florida State University, Tallahassee, FL, United States
| | - Ramesh Katam
- Department of Biological Sciences, Florida A&M University, Tallahassee, FL, United States
| | - P. B. Kavi Kishor
- Department of Biotechnology, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| |
Collapse
|
10
|
Mostofa MG, Rahman MM, Ghosh TK, Kabir AH, Abdelrahman M, Rahman Khan MA, Mochida K, Tran LSP. Potassium in plant physiological adaptation to abiotic stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:279-289. [PMID: 35932652 DOI: 10.1016/j.plaphy.2022.07.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 05/02/2023]
Abstract
Potassium (K) is an integral part of plant nutrition, playing essential roles in plant growth and development. Despite its abundance in soils, the limitedly available form of K ion (K+) for plant uptake is a critical factor for agricultural production. Plants have evolved complex transport systems to maintain appropriate K+ levels in tissues under changing environmental conditions. Adequate stimulation and coordinated actions of multiple K+-channels and K+-transporters are required for nutrient homeostasis, reproductive growth, cellular signaling and stress adaptation responses in plants. Various contemporary studies revealed that K+-homeostasis plays a substantial role in plant responses and tolerance to abiotic stresses. The beneficial effects of K+ in plant responses to abiotic stresses include its roles in physiological and biochemical mechanisms involved in photosynthesis, osmoprotection, stomatal regulation, water-nutrient absorption, nutrient translocation and enzyme activation. Over the last decade, we have seen considerable breakthroughs in K research, owing to the advances in omics technologies. In this aspect, omics investigations (e.g., transcriptomics, metabolomics, and proteomics) in systems biology manner have broadened our understanding of how K+ signals are perceived, conveyed, and integrated for improving plant physiological resilience to abiotic stresses. Here, we update on how K+-uptake and K+-distribution are regulated under various types of abiotic stress. We discuss the effects of K+ on several physiological functions and the interaction of K+ with other nutrients to improve plant potential against abiotic stress-induced adverse consequences. Understanding of how K+ orchestrates physiological mechanisms and contributes to abiotic stress tolerance in plants is essential for practicing sustainable agriculture amidst the climate crisis in global agriculture.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
| | - Md Mezanur Rahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | | | | | - Md Arifur Rahman Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan; Microalgae Production Control Technology Laboratory, RIKEN Baton Zone Program, Yokohama 230-0045, Japan; Kihara Institute for Biological Research, Yokohama City University, Yokohama 230-0045, Japan; School of Information and Data Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA; Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang 550000, Vietnam.
| |
Collapse
|
11
|
Xiong W, Wang Y, Guo Y, Tang W, Zhao Y, Yang G, Pei Y, Chen J, Song X, Sun J. Transcriptional and Metabolic Responses of Maize Shoots to Long-Term Potassium Deficiency. FRONTIERS IN PLANT SCIENCE 2022; 13:922581. [PMID: 35812972 PMCID: PMC9260415 DOI: 10.3389/fpls.2022.922581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Potassium is important for plant growth and crop yield. However, the effects of potassium (K+) deficiency on silage maize biomass yield and how maize shoot feedback mechanisms of K+ deficiency regulate whole plant growth remains largely unknown. Here, the study aims to explore the maize growth, transcriptional and metabolic responses of shoots to long-term potassium deficiency. Under the K+ insufficiency condition, the biomass yield of silage maize decreased. The transcriptome data showed that there were 922 and 1,107 differential expression genes in DH605 and Z58, respectively. In the two varieties, 390 differently expressed overlapping genes were similarly regulated. These genes were considered the fundamental responses to K+ deficiency in maize shoots. Many stress-induced genes are involved in transport, primary and secondary metabolism, regulation, and other processes, which are involved in K+ acquisition and homeostasis. Metabolic profiles indicated that most amino acids, phenolic acids, organic acids, and alkaloids were accumulated in shoots under K+ deficiency conditions and part of the sugars and sugar alcohols also increased. It revealed that putrescine and putrescine derivatives were specifically accumulated under the K+ deficiency condition, which may play a role in the feedback regulation of shoot growth. These results confirmed the importance of K+ on silage maize production and provided a deeper insight into the responses to K+ deficiency in maize shoots.
Collapse
Affiliation(s)
- Wangdan Xiong
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yujian Wang
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
| | - Yongzhen Guo
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Wei Tang
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yiran Zhao
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Guofeng Yang
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| | - Yuhe Pei
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
| | - Jingtang Chen
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
| | - Xiyun Song
- College of Agriculture, Qingdao Agricultural University, Qingdao, China
| | - Juan Sun
- Grassland Agri-husbandry Research Center, College of Grassland Science, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Wang X, Wu P, Hu X, Chang S, Zhang M, Zhang K, Zhai S, Yang X, He L, Guo X. Identification and stress function verification of the HAK/KUP/KT family in Gossypium hirsutum. Gene X 2022; 818:146249. [PMID: 35085713 DOI: 10.1016/j.gene.2022.146249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/03/2022] [Accepted: 01/21/2022] [Indexed: 11/25/2022] Open
Abstract
The potassium transporter family HAK/KUP/KT is a large group of proteins that are important in plant potassium transport and play a crucial role in plant growth and development. The members of the family play an important role in the response of plants to abiotic stress by maintaining osmotic balance. However, the function of the family in cotton is unclear. In this study, whole genome identification and characterization of the HAK/KUP/KT family from upland cotton (Gossypium hirsutum) were carried out. Bioinformatics methods were used to identify HAK/KUP/KT family members from the G. hirsutum genome and to analyse the physical and chemical properties, basic characteristics, phylogeny, chromosome location and expression of HAK/KUP/KT family members. A total of 41 HAK/KUP/KT family members were identified in the G. hirsutum genome. Phylogenetic analysis grouped these genes into four clusters (I, II, III, IV), containing 6, 10, 3 and 22 genes, respectively. Chromosomal distribution, gene structure and conserved motif analyses of the 41 GhHAK genes were subsequently performed. The RNA-seq data and qRT-PCR results showed that the family had a wide range of tissue expression patterns, and they responded to certain drought stresses. Through expression analysis, seven HAK/KUP/KT genes involved in drought stress were screened, and four genes with obvious phenotypes under drought stress were obtained by VIGS verification, which laid a theoretical foundation for the function of the cotton HAK/KUP/KT family.
Collapse
Affiliation(s)
- Xingxing Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Wu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiubao Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Siyuan Chang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Meiwei Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Kaiyan Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuwei Zhai
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiyan Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangrong He
- College of Plant Sciences, Tarum University, Alaer 843300, China.
| | - Xiaoping Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
Buoso S, Musetti R, Marroni F, Calderan A, Schmidt W, Santi S. Infection by phloem-limited phytoplasma affects mineral nutrient homeostasis in tomato leaf tissues. JOURNAL OF PLANT PHYSIOLOGY 2022; 271:153659. [PMID: 35299031 DOI: 10.1016/j.jplph.2022.153659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/27/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Phytoplasmas are sieve-elements restricted wall-less, pleomorphic pathogenic microorganisms causing devastating damage to over 700 plant species worldwide. The invasion of sieve elements by phytoplasmas has several consequences on nutrient transport and metabolism, anyway studies about changes of the mineral-nutrient profile following phytoplasma infections are scarce and offer contrasting results. Here, we examined changes in macro- and micronutrient concentration in tomato plant upon 'Candidatus Phytoplasma solani' infection. To investigate possible effects of 'Ca. P. solani' infection on mineral element allocation, the mineral elements were separately analysed in leaf midrib, leaf lamina and root. Moreover, we focused our analysis on the transcriptional regulation of genes encoding trans-membrane transporters of mineral nutrients. To this aim, a manually curated inventory of differentially expressed genes encoding transporters in tomato leaf midribs was mined from the transcriptional profile of healthy and infected tomato leaf midribs. Results highlighted changes in ion homeostasis in the host plant, and significant modulations at transcriptional level of genes encoding ion transporters and channels.
Collapse
Affiliation(s)
- Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| | - Rita Musetti
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| | - Fabio Marroni
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| | - Alberto Calderan
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy; Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 5, 34127, Trieste, Italy.
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, 11529, Taipei, Taiwan; Biotechnology Center, National Chung Hsing University, 40227, Taichung, Taiwan.
| | - Simonetta Santi
- Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, University of Udine, 33100, Udine, Italy.
| |
Collapse
|
14
|
Shan N, Zhang Y, Xu Y, Yuan X, Wan C, Chen C, Chen J, Gan Z. Ethylene-induced potassium transporter AcKUP2 gene is involved in kiwifruit postharvest ripening. BMC PLANT BIOLOGY 2022; 22:108. [PMID: 35264115 PMCID: PMC8905847 DOI: 10.1186/s12870-022-03498-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Potassium (K) is important in the regulation of plant growth and development. It is the most abundant mineral element in kiwifruit, and its content increases during fruit ripening. However, how K+ transporter works in kiwifruit postharvest maturation is not yet clear. RESULTS Here, 12 K+ transporter KT/HAK/KUP genes, AcKUP1 ~ AcKUP12, were isolated from kiwifruit, and their phylogeny, genomic structure, chromosomal location, protein properties, conserved motifs and cis-acting elements were analysed. Transcription analysis revealed that AcKUP2 expression increased rapidly and was maintained at a high level during postharvest maturation, consistent with the trend of K content; AcKUP2 expression was induced by ethylene, suggesting that AcKUP2 might play a role in ripening. Fluorescence microscopy showed that AcKUP2 is localised in the plasma membrane. Cis-elements, including DER or ethylene response element (ERE) responsive to ethylene, were found in the AcKUP2 promoter sequence, and ethylene significantly enhanced the AcKUP2 promoter activity. Furthermore, we verified that AcERF15, an ethylene response factor, directly binds to the AcKUP2 promoter to promote its expression. Thus, AcKUP2 may be an important potassium transporter gene which involved in ethylene-regulated kiwifruit postharvest ripening. CONCLUSIONS Therefore, our study establishes the first genome-wide analysis of the kiwifruit KT/HAK/KUP gene family and provides valuable information for understanding the function of the KT/HAK/KUP genes in kiwifruit postharvest ripening.
Collapse
Affiliation(s)
- Nan Shan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yupei Zhang
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yunhe Xu
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xin Yuan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chunpeng Wan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chuying Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jinyin Chen
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China
- College of Materials and Chemical Engineering, Pingxiang University, Pingxiang, 330075, China
| | - Zengyu Gan
- Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits and Vegetables, Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
15
|
Wei J, Tiika RJ, Cui G, Ma Y, Yang H, Duan H. Transcriptome-wide identification and expression analysis of the KT/HAK/KUP family in Salicornia europaea L. under varied NaCl and KCl treatments. PeerJ 2022; 10:e12989. [PMID: 35261820 PMCID: PMC8898550 DOI: 10.7717/peerj.12989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Background The KT/HAK/KUP (KUP) transporters play important roles in potassium (K+) uptake and translocation, regulation of osmotic potential, salt tolerance, root morphogenesis and plant development. However, the KUP family has not been systematically studied in the typical halophyte Salicornia europaea L., and the specific expression patterns of SeKUPs under NaCl condition and K+ deficiency are unknown. Methods In this study, SeKUPs were screened from PacBio transcriptome data of Salicornia europaea L. using bioinformatics. The identification, phylogenetic analysis and prediction of conserved motifs of SeKUPs were extensively explored. Moreover, the expression levels of 24 selected SeKUPs were assayed by real-time quantitative polymerase chain reaction (RT-qPCR). Results In this study, a total of 24 putative SeKUPs were identified in S. europaea. Nineteen SeKUPs with the fixed domain EA[ML]FADL were used to construct the phylogenetic tree, and they were divided into four clusters (clusters I-IV). MEME analysis identified 10 motifs in S. europaea, and the motif analysis suggested that 19 of the identified SeKUPs had at least four K+ transporter motifs existed in all SeKUPs (with the exception of SeKUP-2). The RT-qPCR analysis showed that the expression levels of most SeKUPs were significantly up-regulated in S. europaea when they were exposed to K+ deficiency and high salinity, implying that these SeKUPs may play a key role in the absorption and transport of K+ and Na+ in S. europaea. Discussions Our results laid the foundation for revealing the salt tolerance mechanism of SeKUPs, and provided key candidate genes for further studies on the function of KUP family in S. europaea.
Collapse
Affiliation(s)
- Jia Wei
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China,College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Richard John Tiika
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China,College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Guangxin Cui
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Yanjun Ma
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Hongshan Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| | - Huirong Duan
- Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
| |
Collapse
|
16
|
Zhao J, Qin G, Liu X, Li J, Liu C, Zhou J, Liu J. Genome-wide identification and expression analysis of HAK/KUP/KT potassium transporter provides insights into genes involved in responding to potassium deficiency and salt stress in pepper ( Capsicum annuum L.). 3 Biotech 2022; 12:77. [PMID: 35251880 PMCID: PMC8873266 DOI: 10.1007/s13205-022-03136-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/30/2022] [Indexed: 11/29/2022] Open
Abstract
In plants, the HAK/KUP/KT family is the largest group of potassium transporters, and it plays an important role in mineral element absorption, plant growth, environmental stress adaptation, and symbiosis. Although these important genes have been investigated in many plant species, limited information is currently available on the HAK/KUP/KT genes for Pepper (Capsicum annuum L.). In the present study, a total of 20 CaHAK genes were identified from the pepper genome and the CaHAK genes were numbered 1 - 20 based on phylogenetic analysis. For the genes and their corresponding proteins, the physicochemical properties, phylogenetic relationship, chromosomal distribution, gene structure, conserved motifs, gene duplication events, and expression patterns were analyzed. Phylogenetic analysis divided CaHAK genes into four cluster (I-IV) based on their structural features and the topology of the phylogenetic tree. Purifying selection played a crucial role in the evolution of CaHAK genes, while whole-genome triplication contributed to the expansion of the CaHAK gene family. The expression patterns showed that CaHAK proteins exhibited functional divergence in terms of plant K+ uptake and salt stress response. In particular, transcript abundance of CaHAK3 and CaHAK7 was strongly and specifically up-regulated in pepper roots under low K+ or high salinity conditions, suggesting that these genes are candidates for high-affinity K+ uptake transporters and may play crucial roles in the maintenance of the Na+/K+ balance during salt stress in pepper. In summary, the results not only provided the important information on the characteristics and evolutionary relationships of CaHAKs, but also provided potential genes responding to potassium deficiency and salt stress. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-022-03136-z.
Collapse
Affiliation(s)
- Jianrong Zhao
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China
| | - Gaihua Qin
- Institute of Horticultural Research, Anhui Academy of Agricultural Sciences (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei, Anhui China ,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiuli Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiyu Li
- Institute of Horticultural Research, Anhui Academy of Agricultural Sciences (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei, Anhui China ,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chunyan Liu
- Institute of Horticultural Research, Anhui Academy of Agricultural Sciences (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei, Anhui China ,Key Laboratory of Fruit Quality and Developmental Biology, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jie Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianjian Liu
- College of Resource and Environment, Anhui Science and Technology University, Fengyang, China ,Institute of Horticultural Research, Anhui Academy of Agricultural Sciences (Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crop, Hefei, Anhui China
| |
Collapse
|
17
|
Wang W, Liu D, Qin M, Xie Z, Chen R, Zhang Y. Effects of Supplemental Lighting on Potassium Transport and Fruit Coloring of Tomatoes Grown in Hydroponics. Int J Mol Sci 2021; 22:2687. [PMID: 33799970 PMCID: PMC7961429 DOI: 10.3390/ijms22052687] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022] Open
Abstract
Supplemental blue/red lighting accelerated fruit coloring and promoted lycopene synthesis in tomato fruits. Potassium (K) is the most enriched cation in tomato fruits, and its fertigation improved tomato yield and fruit color. However, the effects of supplemental lighting on K uptake and transport by tomatoes and whether supplemental lighting accelerates fruit coloring through enhancing K uptake and transport are still unclear. We investigated the effects of supplemental light-emitting diode (LED) lighting (SL; 100% red, 100% blue; 75% red combined 25% blue) on K uptake in roots and transport in the fruits as well as the fruit coloring of tomatoes (Micro-Tom) grown in an experimental greenhouse in hydroponics. The use of red SL or red combined blue SL enhanced K uptake and K accumulation as well as carotenoid (phytoene, lycopene, γ-carotene, and β-carotene) content in fruits by increasing photosynthesis, plant growth, and fruit weight. The genes related to ethylene signaling were upregulated by red SL. Quantitative real-time PCR (qRT-PCR) results showed that K transporter genes (SlHAKs) are differentially expressed during fruit development and ripening. The highest-expressed gene was SlHAK10 when fruit reached breaker and ripening. SlHAK3 and SlHAK19 were highly expressed at breaker, and SlHAK18 was highly expressed at ripening. These might be related to the formation of tomato fruit ripening and quality. SlHAK4, SlHAK6, SlHAK8, and SlHAK9 were significantly downregulated with fruit ripening and induced by low K. The expression level of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 were significantly increased by blue SL or red combined blue SL during breaker and ripening. Blue SL or red combined blue SL increased content of phytoene, β-carotene, α-carotene, and γ-carotene and accelerated fruit coloring by enhancing K uptake in roots and transport in fruits during fruit ripening. This was consistent with the expression level of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 during fruit development and ripening. The key genes of photoreceptors, light signaling transcript factors as well as abscisic acid (ABA) transduction induced by blue SL or red combined blue SL were consistent with the upregulated genes of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 under blue SL and red combined blue SL. The K transport in tomato fruits might be mediated by light signaling and ABA signaling transduction. These results provide valuable information for fruit quality control and the light regulating mechanism of K transport and fruit coloring in tomatoes.
Collapse
Affiliation(s)
| | | | | | | | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.W.); (D.L.); (M.Q.); (Z.X.)
| | - Yiting Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China; (W.W.); (D.L.); (M.Q.); (Z.X.)
| |
Collapse
|
18
|
Yang X, Zhang J, Wu A, Wei H, Fu X, Tian M, Ma L, Lu J, Wang H, Yu S. Genome-Wide Identification and Expression Pattern Analysis of the HAK/KUP/KT Gene Family of Cotton in Fiber Development and Under Stresses. Front Genet 2020; 11:566469. [PMID: 33329704 PMCID: PMC7710864 DOI: 10.3389/fgene.2020.566469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
The potassium transporter family HAK/KUP/KT is a large group of proteins that are important in plant potassium transport and plays a crucial role in plant growth and development, especially in economic crops. Although HAK/KUP/KT genes have been identified in many species, research on these genes in cotton is still quite rare. In this study, in total, 21, 24, 45, and 44 HAK/KUP/KT genes were identified in Gossypium arboreum, Gossypium raimondii, Gossypium hirsutum, and Gossypium barbadense, respectively. Phylogenetic analysis showed that these genes were divided into four clusters. The G. hirsutum gene promoters contained diverse cis-regulatory elements, such as drought-responsive elements, low temperature-responsive elements, and other elements. The RNA-seq data and qRT-PCR results showed that HAK/KUP/KT genes had different expression patterns in fiber development. The qRT-PCR results of drought and NaCl treatment indicated that HAK/KUP/KT genes might play important roles in abiotic stress responses. These results will provide molecular insights into potassium transporter research in cotton.
Collapse
Affiliation(s)
- Xu Yang
- School of Agronomy Sciences, Zhengzhou University, Zhengzhou, China.,State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jingjing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Aimin Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Xiaokang Fu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Miaomiao Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Liang Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Jianhua Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| |
Collapse
|
19
|
Yang T, Lu X, Wang Y, Xie Y, Ma J, Cheng X, Xia E, Wan X, Zhang Z. HAK/KUP/KT family potassium transporter genes are involved in potassium deficiency and stress responses in tea plants (Camellia sinensis L.): expression and functional analysis. BMC Genomics 2020; 21:556. [PMID: 32791963 PMCID: PMC7430841 DOI: 10.1186/s12864-020-06948-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/24/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Tea plant is one of the most important non-alcoholic beverage crops worldwide. While potassium (K+) is an essential macronutrient and greatly affects the growth and development of plants, the molecular mechanism underlying K+ uptake and transport in tea plant root, especially under limited-K+ conditions, is still poorly understood. In plants, HAK/KUP/KT family members play a crucial role in K+ acquisition and translocation, growth and development, and response to stresses. Nevertheless, the biological functions of these genes in tea plant are still in mystery, especially their roles in K+ uptake and stress responses. RESULTS In this study, a total of 21 non-redundant HAK/KUP/KT genes (designated as CsHAKs) were identified in tea plant. Phylogenetic and structural analysis classified the CsHAKs into four clusters (I, II, III, IV), containing 4, 8, 4 and 5 genes, respectively. Three major categories of cis-acting elements were found in the promoter regions of CsHAKs. Tissue-specific expression analysis indicated extremely low expression levels in various tissues of cluster I CsHAKs with the exception of a high root expression of CsHAK4 and CsHAK5, a constitutive expression of clusters II and III CsHAKs, and a moderate cluster IV CsHAKs expression. Remarkably, the transcript levels of CsHAKs in roots were significantly induced or suppressed after exposure to K+ deficiency, salt and drought stresses, and phytohormones treatments. Also notably, CsHAK7 was highly expressed in all tissues and was further induced under various stress conditions. Therefore, functional characterization of CsHAK7 was performed, and the results demostrated that CsHAK7 locates on plasma membrane and plays a key role in K+ transport in yeast. Taken together, the results provide promising candidate CsHAKs for further functional studies and contribute to the molecular breeding for new tea plants varieties with highly efficient utilization of K+. CONCLUSION This study demonstrated the first genome-wide analysis of CsHAK family genes of tea plant and provides a foundation for understanding the classification and functions of the CsHAKs in tea plants.
Collapse
Affiliation(s)
- Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xin Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Yunxia Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Jingzhen Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xunmin Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Enhua Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, Anhui, China.
| |
Collapse
|
20
|
Characterization and Expression of KT/HAK/KUP Transporter Family Genes in Willow under Potassium Deficiency, Drought, and Salt Stresses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2690760. [PMID: 32596286 PMCID: PMC7303730 DOI: 10.1155/2020/2690760] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022]
Abstract
The K+ transporter/high-affinity K+/K+ uptake (KT/HAK/KUP) transporters dominate K+ uptake, transport, and allocation that play a pivotal role in mineral homeostasis and plant adaptation to adverse abiotic stresses. However, molecular mechanisms towards K+ nutrition in forest trees are extremely rare, especially in willow. In this study, we identified 22 KT/HAK/KUP transporter genes in purple osier willow (designated as SpuHAK1 to SpuHAK22) and examined their expression under K+ deficiency, drought, and salt stress conditions. Both transcriptomic and quantitative real-time PCR (qRT-PCR) analyses demonstrated that SpuHAKs were predominantly expressed in stems, and the expression levels of SpuHAK1, SpuHAK2, SpuHAK3, SpuHAK7, and SpuHAK8 were higher at the whole plant level, whereas SpuHAK9, SpuHAK11, SpuHAK20, and SpuHAK22 were hardly detected in tested tissues. In addition, both K+ deficiency and salt stress decreased the tissue K+ content, while drought increased the tissue K+ content in purple osier plant. Moreover, SpuHAK genes were differentially responsive to K+ deficiency, drought, and salt stresses in roots. K+ deficiency and salt stress mainly enhanced the expression level of responsive SpuHAK genes. Fifteen putative cis-acting regulatory elements, including the stress response, hormone response, circadian regulation, and nutrition and development, were identified in the promoter region of SpuHAK genes. Our findings provide a foundation for further functional characterization of KT/HAK/KUP transporters in forest trees and may be useful for breeding willow rootstocks that utilize potassium more efficiently.
Collapse
|
21
|
Multiple High-Affinity K + Transporters and ABC Transporters Involved in K + Uptake/Transport in the Potassium-Hyperaccumulator Plant Phytolacca acinosa Roxb. PLANTS 2020; 9:plants9040470. [PMID: 32276334 PMCID: PMC7238005 DOI: 10.3390/plants9040470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/20/2022]
Abstract
Potassium is an important essential element for plant growth and development. Long-term potassium deprivation can lead to a severe deficiency phenotype in plants. Interestingly, Phytolacca acinosa is a plant with an unusually high potassium content and can grow well and complete its lifecycle even in severely potassium deficient soil. In this study, we found that its stems and leaves were the main tissues for high potassium accumulation, and P. acinosa showed a strong ability of K+ absorption in roots and a large capability of potassium accumulation in shoots. Analysis of plant growth and physiological characteristics indicated that P. acinosa had an adaptability in a wide range of external potassium levels. To reveal the mechanism of K+ uptake and transport in the potassium-hyperaccumulator plant P. acinosa, K+ uptake-/transport-related genes were screened by transcriptome sequencing, and their expression profiles were compared between K+ starved plants and normal cultured plants. Eighteen members of HAK/KT/KUPs, ten members of AKTs, and one member of HKT were identified in P. acinosa. Among them, six HAKs, and two AKTs and PaHKT1 showed significantly different expression. These transporters might be coordinatively involved in K+ uptake/transport in P. acinosa and lead to high potassium accumulation in plant tissues. In addition, significantly changed expression of some ABC transporters indicated that ABC transporters might be important for K+ uptake and transport in P. acinosa under low K+ concentrations.
Collapse
|
22
|
Fan K, Mao Z, Zheng J, Chen Y, Li Z, Lin W, Zhang Y, Huang J, Lin W. Molecular Evolution and Expansion of the KUP Family in the Allopolyploid Cotton Species Gossypium hirsutum and Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2020; 11:545042. [PMID: 33101325 PMCID: PMC7554350 DOI: 10.3389/fpls.2020.545042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/14/2020] [Indexed: 05/07/2023]
Abstract
The comprehensive analysis of gene family evolution will elucidate the origin and evolution of gene families. The K+ uptake (KUP) gene family plays important roles in K+ uptake and transport, plant growth and development, and abiotic stress responses. However, the current understanding of the KUP family in cotton is limited. In this study, 51 and 53 KUPs were identified in Gossypium barbadense and Gossypium hirsutum, respectively. These KUPs were divided into five KUP subfamilies, with subfamily 2 containing three groups. Different subfamilies had different member numbers, conserved motifs, gene structures, regulatory elements, and gene expansion and loss rates. A paleohexaploidization event caused the expansion of GhKUP and GbKUP in cotton, and duplication events in G. hirsutum and G. barbadense have happened in a common ancestor of Gossypium. Meanwhile, the KUP members of the two allopolyploid subgenomes of G. hirsutum and G. barbadense exhibited unequal gene proportions, gene structural diversity, uneven chromosomal distributions, asymmetric expansion rates, and biased gene loss rates. In addition, the KUP families of G. hirsutum and G. barbadense displayed evolutionary conservation and divergence. Taken together, these results illustrated the molecular evolution and expansion of the KUP family in allopolyploid cotton species.
Collapse
Affiliation(s)
- Kai Fan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Zhijun Mao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jiaxin Zheng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yunrui Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Zhaowei Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Weiwei Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Yongqiang Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
| | - Jinwen Huang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- *Correspondence: Jinwen Huang, ; Wenxiong Lin,
| | - Wenxiong Lin
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou, China
- *Correspondence: Jinwen Huang, ; Wenxiong Lin,
| |
Collapse
|
23
|
Song Z, Wu X, Gao Y, Cui X, Jiao F, Chen X, Li Y. Genome-wide analysis of the HAK potassium transporter gene family reveals asymmetrical evolution in tobacco ( Nicotiana tabacum). Genome 2019; 62:267-278. [PMID: 30865850 DOI: 10.1139/gen-2018-0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Being an essential mineral nutrient, potassium (K+) plays numerous important roles in plant growth and development and determines the yield and quality of crop products. The cellular level of K+ is controlled to a large extent by the K+ transporter, which belongs to the KT/HAK/KUP (HAK) family. However, little is known about these genes in tobacco. In this study, we surveyed the tobacco genome and identified 41 putative NtHAK genes (NtHAKS1-NtHAKS21 and NtHAKT1-NtHAKT20). Investigation of the cis-elements in upstream regions of these NtHAK genes suggests that members of this family respond to environmental cues and phytohormones. Expression data mining reveals that NtHAK genes showed clear sub-genome dominance. In all, these results will provide molecular insights into K+ transporter research in tobacco.
Collapse
Affiliation(s)
- Zhongbang Song
- a Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
- b National Center for Tobacco Gene Engineering, Kunming, Yunnan 650021, China
| | - Xingfu Wu
- a Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
- b National Center for Tobacco Gene Engineering, Kunming, Yunnan 650021, China
| | - Yulong Gao
- a Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
- b National Center for Tobacco Gene Engineering, Kunming, Yunnan 650021, China
| | - Xiang Cui
- c College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangchan Jiao
- a Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
- b National Center for Tobacco Gene Engineering, Kunming, Yunnan 650021, China
| | - Xuejun Chen
- a Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
- b National Center for Tobacco Gene Engineering, Kunming, Yunnan 650021, China
| | - Yongping Li
- a Yunnan Academy of Tobacco Agricultural Sciences, Kunming, Yunnan 650021, China
- b National Center for Tobacco Gene Engineering, Kunming, Yunnan 650021, China
| |
Collapse
|
24
|
Wang Y, Lü J, Chen D, Zhang J, Qi K, Cheng R, Zhang H, Zhang S. Genome-wide identification, evolution, and expression analysis of the KT/HAK/KUP family in pear. Genome 2018; 61:755-765. [PMID: 30130425 DOI: 10.1139/gen-2017-0254] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The K+ transporter/high-affinity K+/K+ uptake (KT/HAK/KUP) family, as one of the largest K+ transporter families in higher plants, plays an essential role in plant growth, mineral element absorption, salt stress tolerance, and other physiological processes. However, little is known about this family in pear (Pyrus). Here, we identified 20 K+ transporter genes in pear (P. bretschneideri) using genome-wide analysis. Their gene structure, chromosomal distribution, conserved motifs, phylogenetics, duplication events, and expression patterns were also examined. The results of phylogenetic analysis showed that PbrKT/HAK/KUP genes were clustered into three major groups (Groups I-III). Among the 20 PbrKT/HAK/KUP genes, 18 were mapped to nine chromosomes and two to scaffolds. Four WGD/segmental gene pairs were identified, indicating that WGD/segmental duplication may have contributed to the expansion of the KT/HAK/KUP family in pear. Among the four pairs of WGD/segmentally duplicated genes, both members of three pairs had been subjected to purifying selection, whereas the fourth pair had been subjected to positive selection. Furthermore, phenotypic experiments showed that the growth of pear seedlings was affected by potassium deficiency treatment. Expression patterns of 20 PbrKT/HAK/KUP genes in roots were further assayed with qRT-PCR. PbrHAK1 and PbrHAK12/16 were significantly expressed in response to K+ deficiency, suggesting that these genes are crucial for K+ uptake in pear, especially under the condition of K+ starvation. Our results provide a foundation for further study on the function of KT/HAK/KUP genes in pear.
Collapse
Affiliation(s)
- Yingzhen Wang
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Jiahong Lü
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Dan Chen
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Jun Zhang
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Kaijie Qi
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Rui Cheng
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Huping Zhang
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| | - Shaoling Zhang
- College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China.,College of Horticulture, Nanjing Agricultural University, No. 1, Weigang, Nanjing, Jiangsu Province 210095, China
| |
Collapse
|
25
|
Zhao X, Liu Y, Liu X, Jiang J. Comparative Transcriptome Profiling of Two Tomato Genotypes in Response to Potassium-Deficiency Stress. Int J Mol Sci 2018; 19:ijms19082402. [PMID: 30110976 PMCID: PMC6121555 DOI: 10.3390/ijms19082402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 02/01/2023] Open
Abstract
Tomato is a crop that requires a sufficient supply of potassium (K) for optimal productivity and quality. K+-deficiency stress decreases tomato yield and quality. To further delve into the mechanism of the response to K+-deficiency and to screen out low-K+ tolerant genes in tomatoes, BGISEQ-500-based RNA sequencing was performed using two tomato genotypes (low-K+ tolerant JZ34 and low-K+ sensitive JZ18). We identified 1936 differentially expressed genes (DEGs) in JZ18 and JZ34 at 12 and 24 h after K+-deficiency treatment. According to the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analyses, the DEGs that changed significantly primarily included transcription factors, transporters, kinases, oxidative stress proteins, and hormone signaling-and glycometabolism-related genes. The experimental results confirmed the induced expression of the responsive genes in the low-K+ signaling pathway. The largest group of DEGs comprised up to 110 oxidative stress-related genes. In total, 19 ethylene response factors (ERFs) demonstrated differential expression between JZ18 and JZ34 in response to K+-deficiency. Furthermore, we confirmed 20 DEGs closely related to K+-deficiency stress by quantitative RT-PCR (qRT-PCR), some of which affected the root configuration, these DEGs could be further studied for use as molecular targets to explore novel approaches, and to acquire more effective K acquisition efficiencies for tomatoes. A hypothesis involving possible cross-talk between phytohormone signaling cues and reactive oxygen species (ROS) leading to root growth in JZ34 is proposed. The results provide a comprehensive foundation for the molecular mechanisms involved in the response of tomatoes to low K+ stress.
Collapse
Affiliation(s)
- Xiaoming Zhao
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
- College of Agriculture, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Yang Liu
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Xin Liu
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jing Jiang
- The Key Laboratory of Protected Horticulture Ministry of Education, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
26
|
Santa-María GE, Oliferuk S, Moriconi JI. KT-HAK-KUP transporters in major terrestrial photosynthetic organisms: A twenty years tale. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:77-90. [PMID: 29704646 DOI: 10.1016/j.jplph.2018.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 04/04/2018] [Accepted: 04/15/2018] [Indexed: 05/24/2023]
Abstract
Since their discovery, twenty years ago, KT-HAK-KUP transporters have become a keystone to understand how alkali cation fluxes are controlled in major land-dwelling photosynthetic organisms. In this review we focus on their discovery, phylogeny, and functions, as well as the regulation of its canonical member, AtHAK5. We also address issues related to structure-function studies, and the technological possibilities opened up by recent findings. Available evidence suggests that this family of transporters underwent an early divergence into major groups following the conquest of land by embryophytes. KT-HAK-KUPs are necessary to accomplish several major developmental and growth processes, as well as to ensure plant responses to environmental injuries. Although the primary function of these transporters is to mediate potassium (K+) fluxes, some of them can also mediate sodium (Na+) and cesium (Cs+) transport, and contribute to maintenance of K+ (and Na+) homeostasis in different plant tissues. In addition, there is evidence for a role of some members of this family in auxin movement and in adenylate cyclase activity. Recent research, focusing on the regulation of the canonical member of this family, AtHAK5, revealed the existence of a complex network that involves transcriptional and post-transcriptional phenomena which control the enhancement of AtHAK5-mediated K+ uptake when Arabidopsis thaliana plants are faced with low K+ supply. In spite of the formidable advances made since their discovery, important subjects remain to be elucidated to gain a more complete knowledge of the roles and regulation of KT-HAK-KUPs, as well as to improve their use for innovative procedures in crop breeding.
Collapse
Affiliation(s)
- Guillermo E Santa-María
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Avda Intendente Marino km 8, 2. Chascomús, 7130, Provincia de Buenos Aires, Argentina.
| | - Sonia Oliferuk
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Avda Intendente Marino km 8, 2. Chascomús, 7130, Provincia de Buenos Aires, Argentina
| | - Jorge I Moriconi
- Instituto Tecnológico Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Avda Intendente Marino km 8, 2. Chascomús, 7130, Provincia de Buenos Aires, Argentina
| |
Collapse
|
27
|
Li W, Xu G, Alli A, Yu L. Plant HAK/KUP/KT K+ transporters: Function and regulation. Semin Cell Dev Biol 2018; 74:133-141. [DOI: 10.1016/j.semcdb.2017.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
|
28
|
Ou W, Mao X, Huang C, Tie W, Yan Y, Ding Z, Wu C, Xia Z, Wang W, Zhou S, Li K, Hu W. Genome-Wide Identification and Expression Analysis of the KUP Family under Abiotic Stress in Cassava ( Manihot esculenta Crantz). Front Physiol 2018; 9:17. [PMID: 29416511 PMCID: PMC5787556 DOI: 10.3389/fphys.2018.00017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 01/08/2018] [Indexed: 12/30/2022] Open
Abstract
KT/HAK/KUP (KUP) family is responsible for potassium ion (K+) transport, which plays a vital role in the response of plants to abiotic stress by maintaining osmotic balance. However, our understanding of the functions of the KUP family in the drought-resistant crop cassava (Manihot esculenta Crantz) is limited. In the present study, 21 cassava KUP genes (MeKUPs) were identified and classified into four clusters based on phylogenetic relationships, conserved motifs, and gene structure analyses. Transcriptome analysis revealed the expression diversity of cassava KUPs in various tissues of three genotypes. Comparative transcriptome analysis showed that the activation of MeKUP genes by drought was more in roots than that in leaves of Arg7 and W14 genotypes, whereas less in roots than that in leaves of SC124 variety. These findings indicate that different cassava genotypes utilize various drought resistance mechanism mediated by KUP genes. Specific KUP genes showed broad upregulation after exposure to salt, osmotic, cold, H2O2, and abscisic acid (ABA) treatments. Taken together, this study provides insights into the KUP-mediated drought response of cassava at transcription levels and identifies candidate genes that may be utilized in improving crop tolerance to abiotic stress.
Collapse
Affiliation(s)
- Wenjun Ou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China
| | - Xiang Mao
- Wuhan Centre for Disease Prevention and Control, Wuhan, China
| | - Chao Huang
- College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Chunlai Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Xia
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenquan Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shiyi Zhou
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, Chemistry and Biology Science College, Hubei University of Education, Wuhan, China
| | - Kaimian Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, China.,Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
29
|
Ruiz-Lau N, Bojórquez-Quintal E, Benito B, Echevarría-Machado I, Sánchez-Cach LA, Medina-Lara MDF, Martínez-Estévez M. Molecular Cloning and Functional Analysis of a Na +-Insensitive K + Transporter of Capsicum chinense Jacq. FRONTIERS IN PLANT SCIENCE 2016; 7:1980. [PMID: 28083010 PMCID: PMC5186809 DOI: 10.3389/fpls.2016.01980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/13/2016] [Indexed: 05/17/2023]
Abstract
High-affinity K+ (HAK) transporters are encoded by a large family of genes and are ubiquitous in the plant kingdom. These HAK-type transporters participate in low- and high-affinity potassium (K+) uptake and are crucial for the maintenance of K+ homeostasis under hostile conditions. In this study, the full-length cDNA of CcHAK1 gene was isolated from roots of the habanero pepper (Capsicum chinense). CcHAK1 expression was positively regulated by K+ starvation in roots and was not inhibited in the presence of NaCl. Phylogenetic analysis placed the CcHAK1 transporter in group I of the HAK K+ transporters, showing that it is closely related to Capsicum annuum CaHAK1 and Solanum lycopersicum LeHAK5. Characterization of the protein in a yeast mutant deficient in high-affinity K+ uptake (WΔ3) suggested that CcHAK1 function is associated with high-affinity K+ uptake, with Km and Vmax for Rb of 50 μM and 0.52 nmol mg-1 min-1, respectively. K+ uptake in yeast expressing the CcHAK1 transporter was inhibited by millimolar concentrations of the cations ammonium ([Formula: see text]) and cesium (Cs+) but not by sodium (Na+). The results presented in this study suggest that the CcHAK1 transporter may contribute to the maintenance of K+ homeostasis in root cells in C. chinense plants undergoing K+-deficiency and salt stress.
Collapse
Affiliation(s)
- Nancy Ruiz-Lau
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMérida, Mexico
- CONACYT, Instituto Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla GutiérrezTuxtla Gutiérrez, Mexico
| | - Emanuel Bojórquez-Quintal
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMérida, Mexico
- CONACYT, Laboratorio de Análisis y Diagnóstico del Patrimonio, Colegio de MichoacánZamora, Mexico
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Ileana Echevarría-Machado
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMérida, Mexico
| | - Lucila A. Sánchez-Cach
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMérida, Mexico
| | - María de Fátima Medina-Lara
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMérida, Mexico
| | - Manuel Martínez-Estévez
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de YucatánMérida, Mexico
- *Correspondence: Manuel Martínez-Estévez
| |
Collapse
|