1
|
Kim MS, Kim DH, Lee JS. A review of environmental epigenetics in aquatic invertebrates. MARINE POLLUTION BULLETIN 2024; 208:117011. [PMID: 39326327 DOI: 10.1016/j.marpolbul.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Aquatic ecosystems face significant challenges due to increasing human-induced environmental stressors. Recent studies emphasize the role of epigenetic mechanisms in the stress responses and adaptations of organisms to those stressors. Epigenetics influences gene expression, enabling phenotypic plasticity and transgenerational effects. Therefore, understanding the epigenetic responses of aquatic invertebrates to environmental stressors is imperative for aquatic ecosystem research. In this study, we organize the mechanisms of epigenetics in aquatic invertebrates and explore their roles in the responses of aquatic invertebrates to environmental stressors. Furthermore, we discuss the inheritance of epigenetic changes and their influence across generations in aquatic invertebrates. A comprehensive understanding of epigenetic responses is crucial for long-term ecosystem management and conservation strategies in the face of irreversible climate change in aquatic environments. In this review, we synthesize existing knowledge about environmental epigenetics in aquatic invertebrates to provide insights and suggest directions for future research.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Guynes K, Sarre LA, Carrillo-Baltodano AM, Davies BE, Xu L, Liang Y, Martín-Zamora FM, Hurd PJ, de Mendoza A, Martín-Durán JM. Annelid methylomes reveal ancestral developmental and aging-associated epigenetic erosion across Bilateria. Genome Biol 2024; 25:204. [PMID: 39090757 PMCID: PMC11292947 DOI: 10.1186/s13059-024-03346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND DNA methylation in the form of 5-methylcytosine (5mC) is the most abundant base modification in animals. However, 5mC levels vary widely across taxa. While vertebrate genomes are hypermethylated, in most invertebrates, 5mC concentrates on constantly and highly transcribed genes (gene body methylation; GbM) and, in some species, on transposable elements (TEs), a pattern known as "mosaic". Yet, the role and developmental dynamics of 5mC and how these explain interspecies differences in DNA methylation patterns remain poorly understood, especially in Spiralia, a large clade of invertebrates comprising nearly half of the animal phyla. RESULTS Here, we generate base-resolution methylomes for three species with distinct genomic features and phylogenetic positions in Annelida, a major spiralian phylum. All possible 5mC patterns occur in annelids, from typical invertebrate intermediate levels in a mosaic distribution to hypermethylation and methylation loss. GbM is common to annelids with 5mC, and methylation differences across species are explained by taxon-specific transcriptional dynamics or the presence of intronic TEs. Notably, the link between GbM and transcription decays during development, alongside a gradual and global, age-dependent demethylation in adult stages. Additionally, reducing 5mC levels with cytidine analogs during early development impairs normal embryogenesis and reactivates TEs in the annelid Owenia fusiformis. CONCLUSIONS Our study indicates that global epigenetic erosion during development and aging is an ancestral feature of bilateral animals. However, the tight link between transcription and gene body methylation is likely more important in early embryonic stages, and 5mC-mediated TE silencing probably emerged convergently across animal lineages.
Collapse
Affiliation(s)
- Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, 1030, Austria
| | - Luke A Sarre
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Allan M Carrillo-Baltodano
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Lan Xu
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Yan Liang
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
- Altos Labs, Cambridge, UK
| | - Paul J Hurd
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
3
|
Yoon DS, Byeon E, Sayed AEDH, Park HG, Lee JS, Lee MC. Multigenerational resilience of the marine rotifer Brachionus plicatilis to high temperature after additive exposure to high salinity and nanoplastics. MARINE POLLUTION BULLETIN 2024; 205:116552. [PMID: 38908192 DOI: 10.1016/j.marpolbul.2024.116552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/24/2024]
Abstract
To study multigenerational resilience to high temperature (HT) conditions, we exposed Brachionus plicatilis marine rotifers to HT, high salinity (HS), and nanoplastics (NPs), and measured reproductive and life-cycle endpoints. After exposure to HT, rotifer lifespans were reduced, but daily production of offspring increased. However, both combined HT/HS and HT/HS/NP exposure led to additional decreases in longevity and reproductive ability; the antioxidant defense mechanisms of the rotifers were also notably upregulated as measured by reactive oxygen species levels. Fatty-acid profiles were reduced in all conditions. In multigenerational experiments, the negative effects of HT dissipated rapidly; however, the effects of HT/HS and HT/HS/NPs required four generations to disappear completely. The findings indicated that B. plicatilis were able to recover from these environmental stressors. This study demonstrated the resilience of aquatic organisms in response to changing environmental conditions and provides insights into the complex interactions of different abiotic stressors.
Collapse
Affiliation(s)
- Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Eunjin Byeon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Min-Chul Lee
- Department of Food and Nutrition, College of Bio-Nano Technology, Gachon University, Seongnam 13120, South Korea.
| |
Collapse
|
4
|
Zhang Y, Chen J, Zheng B, Teng J, Lou Z, Feng H, Zhao S, Xue L. Genome-wide identification, evolution of DNA methyltransferases and their expression under salinity stress in Larimichthys crocea. Int J Biol Macromol 2024; 264:130603. [PMID: 38447841 DOI: 10.1016/j.ijbiomac.2024.130603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 03/08/2024]
Abstract
DNA methyltransferases (Dnmts) are responsible for DNA methylation which influences patterns of gene expression and plays a crucial role in response to environmental changes. In this study, 7 LcDnmt genes were identified in the genome of large yellow croaker (Larimichthys crocea). The comprehensive analysis was conducted on gene structure, protein and location site of LcDnmts. LcDnmt proteins belonged to three groups (Dnmt1, Dnmt2, and Dnmt3) according to their conserved domains and phylogenetic analysis. Although Dnmt3 can be further divided into three sub groups (Dnmt3a, Dnmt3b, and Dnmt3l), there is no Dnmnt3l member in the large yellow croaker. Phylogenetic analysis revealed that the Dnmt family was highly conserved in teleosts. Expression patterns derived from the RNA-seq, qRT-PCR and Western blot analysis revealed that 2 LcDnmt genes (LcDnmt1 and LcDnmt3a2) significantly regulated under salinity stress in the liver, which was found to be dominantly expressed in the intestine and brain, respectively. These two genes may play an important role in the salinity stress of large yellow croaker and represent candidates for future functional analysis. Our results revealed the conservation of Dnmts during evolution and indicated a potential role of Dnmts in epigenetic regulation of response to salinity stress.
Collapse
Affiliation(s)
- Yu Zhang
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Jiaqian Chen
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Baoxiao Zheng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jian Teng
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Zhengjia Lou
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Huijie Feng
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Shiqi Zhao
- School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China.
| | - Liangyi Xue
- College of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315832, China.
| |
Collapse
|
5
|
Martín-Zamora FM, Davies BE, Donnellan RD, Guynes K, Martín-Durán JM. Functional genomics in Spiralia. Brief Funct Genomics 2023; 22:487-497. [PMID: 37981859 PMCID: PMC10658182 DOI: 10.1093/bfgp/elad036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 11/21/2023] Open
Abstract
Our understanding of the mechanisms that modulate gene expression in animals is strongly biased by studying a handful of model species that mainly belong to three groups: Insecta, Nematoda and Vertebrata. However, over half of the animal phyla belong to Spiralia, a morphologically and ecologically diverse animal clade with many species of economic and biomedical importance. Therefore, investigating genome regulation in this group is central to uncovering ancestral and derived features in genome functioning in animals, which can also be of significant societal impact. Here, we focus on five aspects of gene expression regulation to review our current knowledge of functional genomics in Spiralia. Although some fields, such as single-cell transcriptomics, are becoming more common, the study of chromatin accessibility, DNA methylation, histone post-translational modifications and genome architecture are still in their infancy. Recent efforts to generate chromosome-scale reference genome assemblies for greater species diversity and optimise state-of-the-art approaches for emerging spiralian research systems will address the existing knowledge gaps in functional genomics in this animal group.
Collapse
Affiliation(s)
- Francisco M Martín-Zamora
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Billie E Davies
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Rory D Donnellan
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Kero Guynes
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - José M Martín-Durán
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
6
|
Catto MA, Labadie PE, Jacobson AL, Kennedy GG, Srinivasan R, Hunt BG. Pest status, molecular evolution, and epigenetic factors derived from the genome assembly of Frankliniella fusca, a thysanopteran phytovirus vector. BMC Genomics 2023; 24:343. [PMID: 37344773 DOI: 10.1186/s12864-023-09375-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/13/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND The tobacco thrips (Frankliniella fusca Hinds; family Thripidae; order Thysanoptera) is an important pest that can transmit viruses such as the tomato spotted wilt orthotospovirus to numerous economically important agricultural row crops and vegetables. The structural and functional genomics within the order Thysanoptera has only begun to be explored. Within the > 7000 known thysanopteran species, the melon thrips (Thrips palmi Karny) and the western flower thrips (Frankliniella occidentalis Pergrande) are the only two thysanopteran species with assembled genomes. RESULTS A genome of F. fusca was assembled by long-read sequencing of DNA from an inbred line. The final assembly size was 370 Mb with a single copy ortholog completeness of ~ 99% with respect to Insecta. The annotated genome of F. fusca was compared with the genome of its congener, F. occidentalis. Results revealed many instances of lineage-specific differences in gene content. Analyses of sequence divergence between the two Frankliniella species' genomes revealed substitution patterns consistent with positive selection in ~ 5% of the protein-coding genes with 1:1 orthologs. Further, gene content related to its pest status, such as xenobiotic detoxification and response to an ambisense-tripartite RNA virus (orthotospovirus) infection was compared with F. occidentalis. Several F. fusca genes related to virus infection possessed signatures of positive selection. Estimation of CpG depletion, a mutational consequence of DNA methylation, revealed that F. fusca genes that were downregulated and alternatively spliced in response to virus infection were preferentially targeted by DNA methylation. As in many other insects, DNA methylation was enriched in exons in Frankliniella, but gene copies with homology to DNA methyltransferase 3 were numerous and fragmented. This phenomenon seems to be relatively unique to thrips among other insect groups. CONCLUSIONS The F. fusca genome assembly provides an important resource for comparative genomic analyses of thysanopterans. This genomic foundation allows for insights into molecular evolution, gene regulation, and loci important to agricultural pest status.
Collapse
Affiliation(s)
- Michael A Catto
- Department of Entomology, University of Georgia, Athens, GA, 30602, USA
| | - Paul E Labadie
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University College of Agriculture, Auburn, AL, 36849, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Brendan G Hunt
- Department of Entomology, University of Georgia, Griffin, GA, 30223, USA.
| |
Collapse
|
7
|
Genome-wide identification and transcriptional modulation of histone variants and modification related genes in the low pH-exposed marine rotifer Brachionus koreanus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100748. [PMID: 33032078 DOI: 10.1016/j.cbd.2020.100748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/05/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022]
Abstract
Histone modification is considered to be a major epigenetic control mechanism. These modifications (e.g. acetylation, phosphorylation, and methylation) may affect the interaction of histones with DNA and/or regulate DNA-based processes (e.g., recombination, repair, replication, and transcription) and chromatin remodeling complexes. Despite their significance in metazoan life and evolution, few studies have been conducted to identify genes undergoing epigenetic control modification in aquatic invertebrates. In this study, we identified whole core histones (70 total genes) and post-translational modification (PTM) histone genes (63 total genes) in the marine rotifer Brachionus koreanus through whole-genome analysis, and annotated them according to the human nomenclature. Notably, upon comparative analysis of cis-regulatory motif sequences, we found that B. koreanus core histone protein structures were similar to those of mammals. Furthermore, to examine the effect of parental low pH stress on the offspring's epigenetic regulation, we investigated the expression of PTM genes in two generations of B. koreanus exposed to low pH conditions. Given that the B. koreanus genome does not possess DNA methyltransferase 1 and 3 genes, we concluded that histone genes could be involved as an important epigenetic mechanism in B. koreanus. Therefore, the histone-associated genes identified in this study could be useful for ecotoxicological studies and facilitate the application of chromatin immunoprecipitation sequencing using high-throughput DNA sequencing based on the genome-wide identification of transcription factor binding sites in rotifers.
Collapse
|
8
|
Lee YH, Kang HM, Kim MS, Lee JS, Wang M, Hagiwara A, Jeong CB, Lee JS. Multigenerational Mitigating Effects of Ocean Acidification on In Vivo Endpoints, Antioxidant Defense, DNA Damage Response, and Epigenetic Modification in an Asexual Monogonont Rotifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7858-7869. [PMID: 32490673 DOI: 10.1021/acs.est.0c01438] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ocean acidification (OA) is caused by changes in ocean carbon chemistry due to increased atmospheric pCO2 and is predicted to have deleterious effects on marine ecosystems. While the potential impacts of OA on many marine species have been studied, the multigenerational effects on asexual organisms remain unknown. We found that low seawater pH induced oxidative stress and DNA damage, decreasing growth rates, fecundity, and lifespans in the parental generation, whereas deleterious effects on in vivo endpoints in F1 and F2 offspring were less evident. The findings suggest that multigenerational adaptive effects play a role in antioxidant abilities and other defense mechanisms. OA-induced DNA damage, including double-strand breaks (DSBs), was fully repaired in F1 offspring of parents exposed to OA for 7 days, indicating that an adaptation mechanism may be the major driving force behind multigenerational adaptive effects. Analysis of epigenetic modification in response to OA involved examination of histone modification of DNA repair genes and a chromatin immunoprecipitation assay, as Bombus koreanus has no methylation pattern for CpG in its genome. We conclude that DSBs, DNA repair, and histone modification play important roles in multigenerational plasticity in response to OA in an asexual monogonont rotifer.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
- Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
9
|
Fellous A, Labed‐Veydert T, Locrel M, Voisin A, Earley RL, Silvestre F. DNA methylation in adults and during development of the self-fertilizing mangrove rivulus, Kryptolebias marmoratus. Ecol Evol 2018; 8:6016-6033. [PMID: 29988456 PMCID: PMC6024129 DOI: 10.1002/ece3.4141] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/18/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
In addition to genetic variation, epigenetic mechanisms such as DNA methylation might make important contributions to heritable phenotypic diversity in populations. However, it is often difficult to disentangle the contributions of genetic and epigenetic variation to phenotypic diversity. Here, we investigated global DNA methylation and mRNA expression of the methylation-associated enzymes during embryonic development and in adult tissues of one natural isogenic lineage of mangrove rivulus fish, Kryptolebias marmoratus. Being the best-known self-fertilizing hermaphroditic vertebrate affords the opportunity to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. Using the LUminometric Methylation Assay (LUMA), we described variable global DNA methylation at CpG sites in adult tissues, which differed significantly between hermaphrodite ovotestes and male testes (79.6% and 87.2%, respectively). After fertilization, an immediate decrease in DNA methylation occurred to 15.8% in gastrula followed by re-establishment to 70.0% by stage 26 (liver formation). Compared to zebrafish, at the same embryonic stages, this reprogramming event seems later, deeper, and longer. Furthermore, genes putatively encoding DNA methyltransferases (DNMTs), Ten-Eleven Translocation (TET), and MeCP2 proteins showed specific regulation in adult gonad and brain, and also during early embryogenesis. Their conserved domains and expression profiles suggest that these proteins play important roles during reproduction and development. This study raises questions about mangrove rivulus' peculiar reprogramming period in terms of epigenetic transmission and physiological adaptation of individuals to highly variable environments. In accordance with the general-purpose genotype model, epigenetic mechanisms might allow for the expression of diverse phenotypes among genetically identical individuals. Such phenotypes might help to overcome environmental challenges, making the mangrove rivulus a valuable vertebrate model for ecological epigenetic studies. The mangrove rivulus, Kryptolebias marmoratus, is the best-known self-fertilizing hermaphroditic vertebrate that allows to work with genetically identical individuals to examine, explicitly, the phenotypic effects of epigenetic variance. The reprogramming event is later, more dramatic and longer than in other described vertebrates. High evolutionary conservation and expression patterns of DNMT, TET, and MeCP2 proteins in K. marmoratus suggest biological roles for each member in gametogenesis and development.
Collapse
Affiliation(s)
- Alexandre Fellous
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Tiphaine Labed‐Veydert
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Mélodie Locrel
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Anne‐Sophie Voisin
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| | - Ryan L. Earley
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Frederic Silvestre
- Laboratory of Evolutionary and Adaptive PhysiologyInstitute of Life, Earth and EnvironmentUniversity of NamurNamurBelgium
| |
Collapse
|
10
|
Gribble KE, Mark Welch DB. Genome-wide transcriptomics of aging in the rotifer Brachionus manjavacas, an emerging model system. BMC Genomics 2017; 18:217. [PMID: 28249563 PMCID: PMC5333405 DOI: 10.1186/s12864-017-3540-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/02/2017] [Indexed: 12/22/2022] Open
Abstract
Background Understanding gene expression changes over lifespan in diverse animal species will lead to insights to conserved processes in the biology of aging and allow development of interventions to improve health. Rotifers are small aquatic invertebrates that have been used in aging studies for nearly 100 years and are now re-emerging as a modern model system. To provide a baseline to evaluate genetic responses to interventions that change health throughout lifespan and a framework for new hypotheses about the molecular genetic mechanisms of aging, we examined the transcriptome of an asexual female lineage of the rotifer Brachionus manjavacas at five life stages: eggs, neonates, and early-, late-, and post-reproductive adults. Results There are widespread shifts in gene expression over the lifespan of B. manjavacas; the largest change occurs between neonates and early reproductive adults and is characterized by down-regulation of developmental genes and up-regulation of genes involved in reproduction. The expression profile of post-reproductive adults was distinct from that of other life stages. While few genes were significantly differentially expressed in the late- to post-reproductive transition, gene set enrichment analysis revealed multiple down-regulated pathways in metabolism, maintenance and repair, and proteostasis, united by genes involved in mitochondrial function and oxidative phosphorylation. Conclusions This study provides the first examination of changes in gene expression over lifespan in rotifers. We detected differential expression of many genes with human orthologs that are absent in Drosophila and C. elegans, highlighting the potential of the rotifer model in aging studies. Our findings suggest that small but coordinated changes in expression of many genes in pathways that integrate diverse functions drive the aging process. The observation of simultaneous declines in expression of genes in multiple pathways may have consequences for health and longevity not detected by single- or multi-gene knockdown in otherwise healthy animals. Investigation of subtle but genome-wide change in these pathways during aging is an important area for future study. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3540-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristin E Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
| |
Collapse
|