1
|
Kakumoto A, Nishimura K, Toki D, Kasajima R, Kuroda H, Nagashima Y, Kondo T, Miyagi Y, Masunaga A. Whole exome sequencing identified mutations of forkhead box I 1 (FOXI1), keratin 6 C (KRT6C) and gap junction protein delta 2 (GJD2) in a low-grade oncocytic tumor of the kidney: a case report. Diagn Pathol 2025; 20:21. [PMID: 39980061 PMCID: PMC11844160 DOI: 10.1186/s13000-025-01616-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Low-grade oncocytic tumor (LOT) of the kidney is an emerging entity among renal oncocytic tumors. While the histological features of LOT of the kidney are similar to those of renal oncocytoma, LOT immunohistochemically expresses keratin 7 (KRT7) but not KIT while renal oncocytoma expresses KIT. Molecular analyses of LOTs of the kidney using next generation sequencing revealed those tumors harbor mutations of mTOR-related genes. CASE PRESENTATION An 80-year-old Japanese man with a history of clear cell renal cell carcinoma and prostatic cancer underwent resection of the tumor of the right kidney, 10 mm in diameter, which was monitored for six years. The tumor was histologically composed of oncocytic cells that expressed KRT7, vimentin, SDHA, SDHB and fumarate hydratase, but not KIT, GATA3 and alpha-methylacyl-CoA racemase. We diagnosed the tumor as LOT of the kidney. Whole-exome sequencing of the LOT revealed single nucleotide variants in the DNA-binding region of forkhead box I1 (FOXI1), the coil 1B domain of keratin 6 C (KRT6C) and the intracytoplasmic region of gap junction delta 2 (GJD2), which encodes connexin 36. However, there was no mutations in mTOR-related genes. No copy number alterations were detected in the tumor. CONCLUSIONS We report three mutations in genes that have not been previously reported in LOT of the kidney. The genes are not related to the mTOR pathway. Therefore, LOT of the kidney might occur through several mechanisms and/or include several types of renal oncocytic tumors.
Collapse
Affiliation(s)
- Akinari Kakumoto
- Department of Diagnostic Pathology, Tokyo Women's Medical University, Adachi Medical Center, Tokyo, Japan
- Department of Surgical Pathology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Koichi Nishimura
- Department of Urology, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Daisuke Toki
- Department of Urology, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Rika Kasajima
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Hajime Kuroda
- Department of Diagnostic Pathology, Tokyo Women's Medical University, Adachi Medical Center, Tokyo, Japan
| | - Yoji Nagashima
- Department of Surgical Pathology, Tokyo Women's Medical University Hospital, Tokyo, Japan
| | - Tsunenori Kondo
- Department of Urology, Tokyo Women's Medical University Adachi Medical Center, Tokyo, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Atsuko Masunaga
- Department of Diagnostic Pathology, Tokyo Women's Medical University, Adachi Medical Center, Tokyo, Japan.
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan.
| |
Collapse
|
2
|
Shi Z, Sang Z, Xiao J, Hou J, Geng M. Prediction of the Survival Status, Immunotherapy Response, and Medication of Lung Adenocarcinoma Patients Based on Hypoxia- and Apoptosis-Related Genes. Horm Metab Res 2025; 57:55-66. [PMID: 39577840 DOI: 10.1055/a-2458-7088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
To predict patient survival prognosis, we aimed to establish a novel set of gene features associated with hypoxia and apoptosis. RNA-seq and clinical data of LUAD were sourced from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, while hypoxia and apoptosis-related genes were obtained from the Molecular Signatures Database (MsigDB). A 13-gene-prognostic model incorporating hypoxia and apoptosis genes was developed using univariate/multivariate Cox regression, Nonnegative Matrix Factorization (NMF) clustering, and LASSO regression. Patients were divided into high-risk (HR) and low-risk (LR) groups according to the median risk score. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed distinct biological processes between HR and LR groups, including hormone regulation and lipid metabolism pathways. Single sample gene set enrichment analysis (ssGSEA) indicated elevated cell infiltration levels of Neutrophils and T_helper_cells in the LR group, while NK cells and Th1cells were higher in the HR group. Immunophenoscore (IPS) and tumor immune dysfunction and exclusion (TIDE) analyses suggested potential benefits of immunotherapy for LR group patients. In conclusion, this prognostic feature integrating hypoxia- and apoptosis-related genes offers insights into predicting survival, immune status, and treatment response in LUAD patients, paving the way for personalized treatment strategies.
Collapse
Affiliation(s)
- Ziliang Shi
- Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Zi Sang
- Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Junmeng Xiao
- Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Jianbin Hou
- Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Mingfei Geng
- Thoracic Surgery, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| |
Collapse
|
3
|
Nałęcz D, Świętek A, Hudy D, Wiczkowski K, Złotopolska Z, Strzelczyk JK. Assessment of Concentration KRT6 Proteins in Tumor and Matching Surgical Margin from Patients with Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:7356. [PMID: 39000463 PMCID: PMC11242288 DOI: 10.3390/ijms25137356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are one of the most frequently detected cancers in the world; not all mechanisms related to the expression of keratin in this type of cancer are known. The aim of this study was to evaluate type II cytokeratins (KRT): KRT6A, KRT6B, and KRT6C protein concentrations in 54 tumor and margin samples of head and neck squamous cell carcinoma (HNSCC). Moreover, we examined a possible association between protein concentration and the clinical and demographic variables. Protein concentrations were measured using enzyme-linked immunosorbent assay (ELISA). Significantly higher KRT6A protein concentration was found in HNSCC samples compared to surgical margins. An inverse relationship was observed for KRT6B and KRT6C proteins. We showed an association between the KRT6C protein level and clinical parameters T and N in tumor and margin samples. When analyzing the effect of smoking and drinking on KRT6A, KRT6B, and KRT6C levels, we demonstrated a statistically significant difference between regular or occasional tobacco and alcohol habits and patients who do not have any tobacco and alcohol habits in tumor and margin samples. Moreover, we found an association between KRT6B and KRT6C concentration and proliferative index Ki-67 and HPV status in tumor samples. Our results showed that concentrations of KRT6s were different in the tumor and the margin samples and varied in relation to clinical and demographic parameters. We add information to the current knowledge about the role of KRT6s isoforms in HNSCC. We speculate that variations in the studied isoforms of the KRT6 protein could be due to the presence and development of the tumor and its microenvironment. It is important to note that the analyses were performed in tumor and surgical margins and can provide more accurate information on the function in normal and cancer cells and regulation in response to various factors.
Collapse
Affiliation(s)
- Dariusz Nałęcz
- Department of Otolaryngology and Maxillofacial Surgery, St. Vincent De Paul Hospital, 1 Wójta Radtkego St., 81-348 Gdynia, Poland
| | - Agata Świętek
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
- Silesia LabMed Research and Implementation Centre, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Dorota Hudy
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Karol Wiczkowski
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
- Students' Scientific Association, Department of Medical and Molecular Biology, Medical University of Silesia, Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| | - Zofia Złotopolska
- Department of Otolaryngology and Maxillofacial Surgery, St. Vincent De Paul Hospital, 1 Wójta Radtkego St., 81-348 Gdynia, Poland
| | - Joanna Katarzyna Strzelczyk
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana St., 41-808 Zabrze, Poland
| |
Collapse
|
4
|
Chen JL, Wu CY, Luo XY, Wang XY, Wang FM, Huang X, Yuan W, Guo Q. Down-regulation of KLRB1 is associated with increased cell growth, metastasis, poor prognosis, as well as a dysfunctional immune microenvironment in LUAD. Sci Rep 2024; 14:11782. [PMID: 38782996 PMCID: PMC11116539 DOI: 10.1038/s41598-024-60414-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Killer cell lectin-like receptor B1 (KLRB1) is implicated in cancer progression and immunity. In this study, we aimed to evaluate the expression levels of KLRB1 in lung adenocarcinoma (LUAD) and analyze the relationship between KLRB1 expression levels, LUAD progression, and the tumor immune microenvironment. KLRB1 levels in LUAD were analyzed using data from the TCGA and XENA databases. Additionally, the diagnostic values of KLRB1 were analyzed in patients with LUAD. Survival and meta-analyses were employed to investigate the relationship between KLRB1 levels and other prognostic factors in patients with LUAD. Bioinformatics and cellular experiments were used to understand the functions and mechanisms of KLRB1. In addition, correlation analysis was used to investigate the relationship between KLRB1 levels and the immune microenvironment in LUAD. Reduced KLRB1 expression in LUAD was found to positively correlate with tumor size, distant metastasis, pathological stage, age, overall survival, diagnostic value, and disease-specific survival in patients with LUAD (P < 0.05). Conversely, increased KLRB1 expression was found to positively correlate with the overall survival and disease-specific survival in patients with LUAD (P < 0.05). We also found that the overexpression of KLRB1 can inhibit the proliferation, migration, and invasion of LUAD cells and promote apoptosis. KLRB1 was involved in immune cell differentiation, NF-kB, PD-L1, and PD-1 checkpoint pathways and others. Additionally, KLRB1 expression was linked to tumor purity, stromal, immune, and estimate scores, the levels of immune cells including B cells, CD8+ T cells, and CD4+ T cells, and immune cell markers in LUAD. Reduced KLRB1 expression has a significant positive correlation with diagnosis, poor prognosis, and immunity to cancer in patients with LUAD. KLRB1 inhibited cell proliferation and migration in patients with LUAD. These results suggest that KLRB1 may serve as a potential therapeutic target in patients with LUAD.
Collapse
Affiliation(s)
- Jiu-Ling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang-Yu Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xue-Ying Wang
- Department of Basic Medicine, Hubei University of Medicine, Shiyan, China
| | - Fang-Ming Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Department of Thoracic Surgery, People's Hospital of Dongxihu District, Wuhan, China.
| | - Wei Yuan
- Department of Basic Medicine, Hubei University of Medicine, Shiyan, China.
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China.
| |
Collapse
|
5
|
Ding H, Teng Y, Gao P, Zhang Q, Wang M, Yu Y, Fan Y, Zhu L. Construction of a prognostic model for lung adenocarcinoma based on m6A/m5C/m1A genes. Hum Mol Genet 2024; 33:563-582. [PMID: 38142284 DOI: 10.1093/hmg/ddad208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/15/2023] [Accepted: 12/07/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND Developing a prognostic model for lung adenocarcinoma (LUAD) that utilizes m6A/m5C/m1A genes holds immense importance in providing precise prognosis predictions for individuals. METHODS This study mined m6A/m5C/m1A-related differential genes in LUAD based on public databases, identified LUAD tumor subtypes based on these genes, and further built a risk prognostic model grounded in differential genes between subtypes. The immune status between high- and low-risk groups was investigated, and the distribution of feature genes in tumor immune cells was analyzed using single-cell analysis. Based on the expression levels of feature genes, a projection of chemotherapeutic and targeted drugs was made for individuals identified as high-risk. Ultimately, cell experiments were further verified. RESULTS The 6-gene risk prognosis model based on differential genes between tumor subtypes had good predictive performance. Individuals classified as low-risk exhibited a higher (P < 0.05) abundance of infiltrating immune cells. Feature genes were mainly distributed in tumor immune cells like CD4+T cells, CD8+T cells, and regulatory T cells. Four drugs with relatively low IC50 values were found in the high-risk group: Elesclomol, Pyrimethamine, Saracatinib, and Temsirolimus. In addition, four drugs with significant positive correlation (P < 0.001) between IC50 values and feature gene expression were found, including Alectinib, Estramustine, Brigatinib, and Elesclomol. The low expression of key gene NTSR1 reduced the IC50 value of irinotecan. CONCLUSION Based on the m6A/m5C/m1A-related genes in LUAD, LUAD patients were divided into 2 subtypes, and a m6A/m5C/m1A-related LUAD prognostic model was constructed to provide a reference for the prognosis prediction of LUAD.
Collapse
Affiliation(s)
- Hao Ding
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Yuanyuan Teng
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Ping Gao
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Qi Zhang
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Mengdi Wang
- Department of Respiratory Disease, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| | - Yi Yu
- Department of General Practice, Jiankang Road Community Health Service Center, NO. 239 Zhongshan East Road, Jingkou District, Zhenjiang City, Jiangsu Province 212008, China
| | - Yueping Fan
- Department of Respiratory, Jurong Branch Hospital, Affiliated Hospital of Jiangsu University, NO. 8 Huayang South Road, Jurong City, Zhenjiang City, Jiangsu Province 212400, China
| | - Li Zhu
- Department of Nephrology, Affiliated People's Hospital of Jiangsu University, NO. 8 Dianli Road, Runzhou District, Zhenjiang City, Jiangsu Province 212002, China
| |
Collapse
|
6
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
7
|
Guo C, Qu X, Tang X, Song Y, Wang J, Hua K, Qiu J. Spatiotemporally deciphering the mysterious mechanism of persistent HPV-induced malignant transition and immune remodelling from HPV-infected normal cervix, precancer to cervical cancer: Integrating single-cell RNA-sequencing and spatial transcriptome. Clin Transl Med 2023; 13:e1219. [PMID: 36967539 PMCID: PMC10040725 DOI: 10.1002/ctm2.1219] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND The mechanism underlying cervical carcinogenesis that is mediated by persistent human papillomavirus (HPV) infection remains elusive. AIMS Here, for the first time, we deciphered both the temporal transition and spatial distribution of cellular subsets during disease progression from normal cervix tissues to precursor lesions to cervical cancer. MATERIALS & METHODS We generated scRNA-seq profiles and spatial transcriptomics data from nine patient samples, including two HPV-negative normal, two HPV-positive normal, two HPV-positive HSIL and three HPV-positive cancer samples. RESULTS We not only identified three 'HPV-related epithelial clusters' that are unique to normal, high-grade squamous intraepithelial lesions (HSIL) and cervical cancer tissues but also discovered node genes that potentially regulate disease progression. Moreover, we observed the gradual transition of multiple immune cells that exhibited positive immune responses, followed by dysregulation and exhaustion, and ultimately established an immune-suppressive microenvironment during the malignant program. In addition, analysis of cellular interactions further verified that a 'homeostasis-balance-malignancy' change occurred within the cervical microenvironment during disease progression. DISCUSSION We for the first time presented a spatiotemporal atlas that systematically described the cellular heterogeneity and spatial map along the four developmental steps of HPV-related cervical oncogenesis, including normal, HPV-positive normal, HSIL and cancer. We identified three unique HPV-related clusters, discovered critical node genes that determined the cell fate and uncovered the immune remodeling during disease escalation. CONCLUSION Together, these findings provided novel possibilities for accurate diagnosis, precise treatment and prognosis evaluation of patients with precancer and cervical cancer.
Collapse
Affiliation(s)
- Chenyan Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xinyu Qu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xiaoyan Tang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yu Song
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Jue Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
8
|
Zhao J, Guan K, Xing J. Construction and evaluation of an aging-associated genes-based model for pancreatic adenocarcinoma prognosis and therapies. Int J Immunopathol Pharmacol 2023; 37:3946320231172072. [PMID: 37072128 PMCID: PMC10127222 DOI: 10.1177/03946320231172072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023] Open
Abstract
Objectives: Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor. Despite extensive research, the precise role of aging-related genes in the initiation, microenvironment regulation, and progression of PAAD remains unclear.Methods: Patients with PAAD were selected from the International Cancer Genome Consortium (ICGC), and The Cancer Genome Atlas (TCGA) cohorts and the cell senescence-associated genes were obtained from CellAge. ConsensusClusterPlus was utilized for cluster identification. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was performed to construct a prognosis prediction model.Results: We identified three clusters (C1, C2, and C3) based on aging-associated gene profiles. The C1 cluster had a shorter overall survival time, advanced clinical grades, lower immune ESTIMATE score, and tumor immune dysfunction and exclusion (TIDE) score than the C3 subgroup. Moreover, signaling pathways for cell cycle activation were enriched in the C1 cluster. We also identified eight hub genes and constructed a risk model. The high cellular senescence-related signature (CSRS) score subtype exhibited poor prognosis, advanced clinical grades, M2 macrophage infiltration, higher immune checkpoint gene expression, and lower immunotherapeutic benefits.Conclusion: Our risk score model shows high prediction accuracy and survival prediction ability in individual clinical prognosis and pre-immunotherapy evaluation.
Collapse
Affiliation(s)
- Junjie Zhao
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Chin
| | - Kelei Guan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Chin
| | - Jiyuan Xing
- Infectious Diseases Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Wang Z, Dong J, Tian W, Qiao S, Wang H. Role of TRPV1 ion channel in cervical squamous cell carcinoma genesis. Front Mol Biosci 2022; 9:980262. [PMID: 36072430 PMCID: PMC9444153 DOI: 10.3389/fmolb.2022.980262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
The transient receptor potential (TRP) family is a widely expressed superfamily of ion channels that regulate intracellular Ca2+ homeostasis and signal transduction. Abnormal expression of TRPV1 is closely related to malignant tumors of the female reproductive system such as breast, ovarian, cervical and endometrial cancers. In this study, we found a significant reduction of TRPV1 expression in cervical squamous cell carcinoma and this expression is inversely association with the risk of cervical squamous cell carcinoma. Furthermore, TRPV1 is involved in cell differentiation, iron death, inflammatory response, and metabolic regulation in cervical squamous cell carcinoma. Meanwhile TRPV1 is positively correlated with T cells and negatively associated with macrophages, indicating that TRPV is associated with tumor cell immunity. Therefore, TRPV1 may be a potential marker of cervical cancer and a promising anti-cancer drug candidate.
Collapse
Affiliation(s)
| | - Junhong Dong
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Wenxiu Tian
- School of Basic Medicine, Weifang Medical University, Weifang, China
- Central of Translation Medicine, Zibo Central Hospital, Zibo, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
- Assisted Reproduction Center, Northwest Women's and Children's Hospital, Xi'an, China
- *Correspondence: Hongmei Wang, ; Sen Qiao,
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China
- *Correspondence: Hongmei Wang, ; Sen Qiao,
| |
Collapse
|
10
|
Müller C, Rosmark O, Åhrman E, Brunnström H, Wassilew K, Nybom A, Michaliková B, Larsson H, Eriksson LT, Schultz HH, Perch M, Malmström J, Wigén J, Iversen M, Westergren-Thorsson G. Protein Signatures of Remodeled Airways in Transplanted Lungs with Bronchiolitis Obliterans Syndrome Obtained Using Laser-Capture Microdissection. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1398-1411. [PMID: 34111430 DOI: 10.1016/j.ajpath.2021.05.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 10/25/2022]
Abstract
Bronchiolitis obliterans syndrome, a common form of chronic lung allograft dysfunction, is the major limitation to long-term survival after lung transplantation. The histologic correlate is progressive, fibrotic occlusion of small airways, obliterative bronchiolitis lesions, which ultimately lead to organ failure. The molecular composition of these lesions is unknown. In this sutdy, the protein composition of the lesions in explanted lungs from four end-stage bronchiolitis obliterans syndrome patients was analyzed using laser-capture microdissection and optimized sample preparation protocols for mass spectrometry. Immunohistochemistry and immunofluorescence were used to determine the spatial distribution of commonly identified proteins on the tissue level, and protein signatures for 14 obliterative bronchiolitis lesions were established. A set of 39 proteins, identified in >75% of lesions, included distinct structural proteins (collagen types IV and VI) and cellular components (actins, vimentin, and tryptase). Each respective lesion exhibited a unique composition of proteins (on average, n = 66 proteins), thereby mirroring the morphologic variation of the lesions. Antibody-based staining confirmed these mass spectrometry-based findings. The 14 analyzed obliterative bronchiolitis lesions showed variations in their protein content, but also common features. This study provides molecular and morphologic insights into the development of chronic rejection after lung transplantation. The protein patterns in the lesions were correlated to pathways of extracellular matrix organization, tissue development, and wound healing processes.
Collapse
Affiliation(s)
- Catharina Müller
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Oskar Rosmark
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Emma Åhrman
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden; Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Hans Brunnström
- Division of Pathology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden; Division of Laboratory Medicine, Department of Genetics and Pathology, Region Skåne, Lund, Sweden
| | - Katharina Wassilew
- Department of Pathology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Annika Nybom
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Barbora Michaliková
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hillevi Larsson
- Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Leif T Eriksson
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden; Department of Respiratory Medicine and Allergology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Hans H Schultz
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Michael Perch
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Jenny Wigén
- Lung Biology Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Martin Iversen
- Department of Cardiology, Section for Lung Transplantation, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
11
|
Jain A, Kotimoole CN, Ghoshal S, Bakshi J, Chatterjee A, Prasad TSK, Pal A. Identification of potential salivary biomarker panels for oral squamous cell carcinoma. Sci Rep 2021; 11:3365. [PMID: 33564003 PMCID: PMC7873065 DOI: 10.1038/s41598-021-82635-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers worldwide with the maximum number of incidences and deaths reported from India. One of the major causes of poor survival rate associated with OSCC has been attributed to late presentation due to non-availability of a biomarker. Identification of early diagnostic biomarker will help in reducing the disease morbidity and mortality. We validated 12 salivary proteins using targeted proteomics, identified initially by relative quantification of salivary proteins on LC-MS, in OSCC patients and controls. Salivary AHSG (p = 0.0041**) and KRT6C (p = 0.002**) were upregulated in OSCC cases and AZGP1 (p ≤ 0.0001***), KLK1 (p = 0.006**) and BPIFB2 (p = 0.0061**) were downregulated. Regression modelling resulted in a significant risk prediction model (p < 0.0001***) consisting of AZGP1, AHSG and KRT6C for which ROC curve had AUC, sensitivity and specificity of 82.4%, 78% and 73.5% respectively for all OSCC cases and 87.9%, 87.5% and 73.5% respectively for late stage (T3/T4) OSCC. AZGP1, AHSG, KRT6C and BPIFB2 together resulted in ROC curve (p < 0.0001***) with AUC, sensitivity and specificity of 94%, 100% and 77.6% respectively for N0 cases while KRT6C and AZGP1 for N+ cases with ROC curve (p < 0.0001***) having AUC sensitivity and specificity of 76.8%, 73% and 69.4%. Our data aids in the identification of biomarker panels for the diagnosis of OSCC cases with a differential diagnosis between early and late-stage cases.
Collapse
Affiliation(s)
- Anu Jain
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Chinmaya Narayana Kotimoole
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575018, India
| | - Sushmita Ghoshal
- Department of Radiotherapy, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Jaimanti Bakshi
- Department of Otolaryngology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bengaluru, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | | | - Arnab Pal
- Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
12
|
Wu J, Xu H, Ji H, Zhai B, Zhu J, Gao M, Zhu H, Wang X. Low Expression of Keratin17 is Related to Poor Prognosis in Bladder Cancer. Onco Targets Ther 2021; 14:577-587. [PMID: 33500631 PMCID: PMC7826064 DOI: 10.2147/ott.s287891] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/16/2020] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate the association between KRT17 and the prognosis in bladder cancer patients. Methods The clinical data of 101 patients with bladder cancer from May 2013 to May 2015 were retrospectively analyzed. At the same time, the expression of KRT17 and its correlation with clinicopathological factors were examined by immunohistochemistry. We search the prognostic value of KRT17 in bladder cancer from the cancer genome map (TCGA) online database. To explore the possible cellular mechanism, gene set enrichment analysis (GSEA) was used. The patients were divided into two groups: high expression of KRT17 and low expression of KRT17. The patients were followed up for 5 years to observe the survival. Kaplan–Meier method and Log rank test were used for univariate survival analysis, and Cox regression analysis was used for multivariate analysis. Finally, a nomogram was constructed on this basis for internal verification. Results Among the 101 patients, 46 (45.5%) were in the KRT17 low expression group and 55 (54.5%) in the high KRT17 expression group. After 5 years of follow-up, 79 patients survived with a survival rate of 78.2% and 22 patients died with a mortality rate of 21.8%. Kaplan–Meier survival analysis showed that OS and PFS of patients with high expression of KRT17 were significantly higher than those of patients with low expression of KRT17 (p<0.001, p=0.005). Cox multivariate analysis showed that KRT17 expression was an independent risk factor for tumor progression (p=0.019). And tumor size, vascular tumor thrombus, and T stage also affected tumor progression (p<0.05). In the internal validation, the c-index of nomogram was 0.898 (95% CI: 0.854–0.941). Conclusion The decreased expression of KRT17 is associated with poor prognosis in patients with bladder cancer. KRT17 can be used as a novel predictive biomarker to provide a new therapeutic target for bladder cancer patients.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Urology, Tumor Hospital Affiliated to Nantong University, Nantong University, Nantong 226361, People's Republic of China.,Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong University, Nantong 226361, People's Republic of China
| | - Haifei Xu
- Department of Urology, Tumor Hospital Affiliated to Nantong University, Nantong University, Nantong 226361, People's Republic of China
| | - Hao Ji
- Department of Urology, Tumor Hospital Affiliated to Nantong University, Nantong University, Nantong 226361, People's Republic of China
| | - Baoqian Zhai
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong University, Nantong 226361, People's Republic of China
| | - Jinfeng Zhu
- Department of Urology, Tumor Hospital Affiliated to Nantong University, Nantong University, Nantong 226361, People's Republic of China
| | - Mingde Gao
- Department of Urology, Medical College of Nantong University, Nantong 226019, People's Republic of China
| | - Haixia Zhu
- Cancer Research Center Nantong, Tumor Hospital Affiliated to Nantong University, Nantong University, Nantong 226361, People's Republic of China
| | - Xiaolin Wang
- Department of Urology, Tumor Hospital Affiliated to Nantong University, Nantong University, Nantong 226361, People's Republic of China
| |
Collapse
|
13
|
Transcript levels of keratin 1/5/6/14/15/16/17 as potential prognostic indicators in melanoma patients. Sci Rep 2021; 11:1023. [PMID: 33441834 PMCID: PMC7806772 DOI: 10.1038/s41598-020-80336-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Keratins (KRTs), the intermediate filament-forming proteins of epithelial cells, are extensively used as diagnostic biomarkers in cancers and associated with tumorigenesis and metastasis in multiple cancers. However, the diverse expression patterns and prognostic values of KRTs in melanoma have yet to be elucidated. In the current study, we examined the transcriptional and clinical data of KRTs in patients with melanoma from GEO, TCGA, ONCOMINE, GEPIA, cBioPortal, TIMER and TISIDB databases. We found that the mRNA levels of KRT1/2/5/6/8/10/14/15/16/17 were significantly differential expressed between primary melanoma and metastatic melanoma. The expression levels of KRT1/2/5/6/10/14/15/16/17 were correlated with advanced tumor stage. Survival analysis revealed that the high transcription levels of KRT1/5/6/14/15/16/17 were associated with low overall survival in melanoma patients. GSEA analysis indicated that the most involved hallmarks pathways were P53 pathway, KRAS signaling, estrogen response early and estrogen response late. Furthermore, we found some correlations among the expression of KRTs and the infiltration of immune cells. Our study may provide novel insights for the selection of prognostic biomarkers for melanoma.
Collapse
|
14
|
Liu Z, Zhou W, Lin C, Wang X, Zhang X, Zhang Y, Yang R, Chen W, Cao W. Dysregulation of FOXD2-AS1 promotes cell proliferation and migration and predicts poor prognosis in oral squamous cell carcinoma: a study based on TCGA data. Aging (Albany NY) 2020; 13:2379-2396. [PMID: 33318296 PMCID: PMC7880351 DOI: 10.18632/aging.202268] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
Abstract
FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) plays an important role in the pathogenesis of some cancers. However, its functional role in oral squamous cell carcinoma (OSCC) remains largely unknown. In this study, we conducted expressional and functional analyses of FOXD2-AS1 using data from the Cancer Genome Atlas (TCGA) and in vitro OSCC assays. FOXD2-AS1 dysregulation was remarkably associated with radiation therapy, anatomic location, high histologic grade, and lymphovascular invasion (P < 0.05). A nomogram based on FOXD2-AS1 expression was constructed for use as a diagnostic indicator for OSCC patients, and multivariate cox regression analysis showed that FOXD2-AS1 expression was an independent prognostic factor for OSCC patients. KEGG, gene set enrichment analysis, and immune infiltration evaluations indicated that FOXD2-AS1 was involved in tumor progression via epithelial-to-mesenchymal transition and cell cycle regulation and was negatively associated with mast cell, DCs, iDCs, and B cells. FOXD2-AS1 silencing suppressed the proliferation and migration of Cal27 cells. Our findings showed that an aberrantly high FOXD2-AS1 expression predicts poor prognosis in OSCC; FOXD2-AS1 may act as an oncogenic protein by regulating cell proliferation and migration and may suppress adaptive immunity by modulating the number and function of antigen-presenting cells.
Collapse
Affiliation(s)
- Zheqi Liu
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wenkai Zhou
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Chengzhong Lin
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
- Second Dental Clinic, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiaoning Wang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Xu Zhang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Yu Zhang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Rong Yang
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wantao Chen
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| | - Wei Cao
- Department of Oral and Maxillofacial, Head and Neck Oncology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011 China
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, China
| |
Collapse
|
15
|
Song Y, Guerrero-Juarez CF, Chen Z, Tang Y, Ma X, Lv C, Bi X, Deng M, Bu L, Tian Y, Liu R, Zhao R, Xu J, Sheng X, Du S, Liu Y, Zhu Y, Shan SJ, Chen HD, Zhao Y, Zhou G, Shuai J, Ren F, Xue L, Ying Z, Dai X, Lengner CJ, Andersen B, Plikus MV, Nie Q, Yu Z. The Msi1-mTOR pathway drives the pathogenesis of mammary and extramammary Paget's disease. Cell Res 2020; 30:854-872. [PMID: 32457396 PMCID: PMC7608215 DOI: 10.1038/s41422-020-0334-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/13/2020] [Indexed: 01/08/2023] Open
Abstract
Mammary and extramammary Paget's Diseases (PD) are a malignant skin cancer characterized by the appearance of Paget cells. Although easily diagnosed, its pathogenesis remains unknown. Here, single-cell RNA-sequencing identified distinct cellular states, novel biomarkers, and signaling pathways - including mTOR, associated with extramammary PD. Interestingly, we identified MSI1 ectopic overexpression in basal epithelial cells of human PD skin, and show that Msi1 overexpression in the epidermal basal layer of mice phenocopies human PD at histopathological, single-cell and molecular levels. Using this mouse model, we identified novel biomarkers of Paget-like cells that translated to human Paget cells. Furthermore, single-cell trajectory, RNA velocity and lineage-tracing analyses revealed a putative keratinocyte-to-Paget-like cell conversion, supporting the in situ transformation theory of disease pathogenesis. Mechanistically, the Msi1-mTOR pathway drives keratinocyte-Paget-like cell conversion, and suppression of mTOR signaling with Rapamycin significantly rescued the Paget-like phenotype in Msi1-overexpressing transgenic mice. Topical Rapamycin treatment improved extramammary PD-associated symptoms in humans, suggesting mTOR inhibition as a novel therapeutic treatment in PD.
Collapse
Affiliation(s)
- Yongli Song
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, Jilin Agricultural Science and Technology College, Changchun, Jilin, 100132, China
| | - Christian F Guerrero-Juarez
- Department of Mathematics, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | | | - Yichen Tang
- Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Xianghui Ma
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Cong Lv
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xueyun Bi
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Min Deng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Lina Bu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuhua Tian
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruiqi Liu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ran Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jiuzhi Xu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaole Sheng
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Sujuan Du
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Yunlu Zhu
- Shanghai Skin Disease Hospital, Shanghai, 200443, China
| | - Shi-Jun Shan
- Department of Dermatology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hong-Duo Chen
- Department of Dermatology, No.1 Hospital of China Medical University, Shenyang, Liaoning, 110001, China
| | - Yiqiang Zhao
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangbiao Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jianwei Shuai
- Department of Physics and State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, Fujian, 361005, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and, College of Food Sciences and Nutritional Engineering, China Agricultural University, Beijing, 100193, China
| | - Lixiang Xue
- Medical Research Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Zhaoxia Ying
- The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Xing Dai
- Departments of Biological Chemistry and Dermatology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Christopher J Lengner
- Department of Animal Biology, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19082, USA
| | - Bogi Andersen
- Departments of Medicine and Biological Chemistry, University of California, Irvine, CA, 92697, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Mathematics, NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research, Center for Complex Biological Systems, University of California, Irvine, CA, 92697, USA
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Xiao J, Kuang X, Dai L, Zhang L, He B. Anti-tumour effects of Keratin 6A in lung adenocarcinoma. CLINICAL RESPIRATORY JOURNAL 2020; 14:667-674. [PMID: 32162441 DOI: 10.1111/crj.13182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND To examine the effects of Keratin 6A (KRT6A) protein on the proliferation, migration and invasion abilities of lung adenocarcinoma cells, and to analyse the relationship between the expression level of KRT6A protein and the survival prognosis of lung adenocarcinoma patients. METHODS Western Blot was used to detect the expression of KRT6A protein in lung adenocarcinoma cell lines. CCK-8 experiment and colony formation assays were performed to detect the proliferation ability. Wound healing assay and transwell migration assay were conducted to detect the migration ability. Transwell invasion assay was conducted to detect the invasion ability. Immunohistochemistry was used to detect the expression of KRT6A protein in lung adenocarcinoma tissues. RESULTS We first found that the expression of KRT6A protein in lung adenocarcinoma cell lines was low. After overexpressed KRT6A protein in lung adenocarcinoma cells, we then found that KRT6A protein could not only inhibit the proliferation ability of lung adenocarcinoma cells but also inhibit them migration and invasion abilities. In addition, we also found that there had obvious difference in the expression of KRT6A protein in between patients. And through further analysis, we finally discovered that high expression of KRT6A protein was related to favourable prognosis in lung adenocarcinoma patients. CONCLUSIONS KRT6A protein inhibits the proliferation, migration and invasion abilities of lung adenocarcinoma cells, and high expression of KRT6A protein is a predictor of good prognosis in patients with lung adenocarcinoma.
Collapse
Affiliation(s)
- Jian Xiao
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Xiao Kuang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Longxia Dai
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Lihai Zhang
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Bixiu He
- Department of Geriatrics, Respiratory Medicine, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|