1
|
Zhong Z, Wu Z, Zhou R, Yu X, Zhou Y, Zhai Y, Lin H, Jiang F. Ribo-seq and RNA-seq analyses enrich the regulatory network of tomato fruit cracking. BMC PLANT BIOLOGY 2024; 24:1214. [PMID: 39701980 DOI: 10.1186/s12870-024-05937-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/05/2024] [Indexed: 12/21/2024]
Abstract
Tomato (Solanum lycopersicum L.), one of the most widely grown vegetable crops in the world, faces cracking problems before and after harvest. Fruit cracking reduces the commercial value and seriously affects the economic performance of the fruits by affecting the appearance and quality of the fruit. Clarifying the molecular mechanism underlying tomato fruit cracking is of great importance for selecting and breeding cracking-resistant varieties. At present, research on the molecular mechanism of tomato fruit cracking has made progress, but few studies have been conducted to explore the genes related to fruit cracking regulation using combined multi-omics analysis. We applied Ribo-seq (ribosome analysis sequencing) and RNA-seq (RNA-sequencing) techniques to uncover potential fruit cracking regulatory genes and improve the regulatory network of fruit cracking using extremely cracking-resistant (CR) and cracking-susceptible (CS) tomato genotypes. Combining these two sets of histological data and translation efficiency, 41 genes were identified to be associated with fruit cracking. The genes played functions on hormone synthesis (e.g. Solyc09g089580.4, Solyc07g049530.3), reactive oxygen species regulation (e.g. Solyc08g080940.3), cell wall metabolism (e.g. Solyc04g071070.2, Solyc03g123630.4), aquaporins activity (e.g. Solyc03g096290.3, Solyc10g083880.2), cuticle and wax composition, as well as mineral elements transport (e.g. Solyc10g006660.3, Solyc01g057770.3), while 10 of them were transcription factors (TF) (e.g. Solyc05g015850.4, Solyc08g078190.2). Based on the investigation of the interaction relationship between these genes, the synergistic regulation of multi-gene tomato fruit cracking was predicted. This study suggests that the synergistic action of transcription and translation is an important molecular mechanism in regulating tomato fruit cracking.
Collapse
Affiliation(s)
- Zhaojiang Zhong
- Nanjing Agricultural University, Jiangsu, Nanjing, 090102, China
| | - Zhen Wu
- Nanjing Agricultural University, Jiangsu, Nanjing, 090102, China
| | - Rong Zhou
- Nanjing Agricultural University, Jiangsu, Nanjing, 090102, China
- Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N, 8200, Denmark
| | - Xiaowei Yu
- Nanjing Agricultural University, Jiangsu, Nanjing, 090102, China
| | - Yuanyuan Zhou
- Kunshan Youlaigu Science and Technology Innovation Center, Jiangsu, Kunshan, China
| | - Yinghao Zhai
- Nanjing Agricultural University, Jiangsu, Nanjing, 090102, China
| | - Haowei Lin
- Nanjing Agricultural University, Jiangsu, Nanjing, 090102, China
| | - Fangling Jiang
- Nanjing Agricultural University, Jiangsu, Nanjing, 090102, China.
| |
Collapse
|
2
|
Nazir MF, Jia T, Zhang Y, Dai L, Xu J, Zhao Y, Zou S. Deciphering the Genetic and Biochemical Drivers of Fruit Cracking in Akebia trifoliata. Int J Mol Sci 2024; 25:12388. [PMID: 39596453 PMCID: PMC11594767 DOI: 10.3390/ijms252212388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates the molecular mechanisms underlying fruit cracking in Akebia trifoliata, a phenomenon that significantly impacts fruit quality and marketability. Through comprehensive physiological, biochemical, and transcriptomic analyses, we identified key changes in cell wall components and enzymatic activities during fruit ripening. Our results revealed that ventral suture tissues exhibit significantly elevated activities of polygalacturonase (PG) and β-galactosidase compared to dorsoventral line tissues, indicating their crucial roles in cell wall degradation and structural weakening. The cellulose content in VS tissues peaked early and declined during ripening, while DL tissues maintained relatively stable cellulose levels, highlighting the importance of cellulose dynamics in fruit cracking susceptibility. Transcriptomic analysis revealed differentially expressed genes (DEGs) associated with pectin biosynthesis and catabolism, cell wall organization, and oxidoreductase activities, indicating significant transcriptional regulation. Key genes like AKT032945 (pectinesterase) and AKT045678 (polygalacturonase) were identified as crucial for cell wall loosening and pericarp dehiscence. Additionally, expansin-related genes AKT017642, AKT017643, and AKT021517 were expressed during critical stages, promoting cell wall loosening. Genes involved in auxin-activated signaling and oxidoreductase activities, such as AKT022903 (auxin response factor) and AKT054321 (peroxidase), were also differentially expressed, suggesting roles in regulating cell wall rigidity. Moreover, weighted gene co-expression network analysis (WGCNA) identified key gene modules correlated with traits like pectin lyase activity and soluble pectin content, pinpointing potential targets for genetic manipulation. Our findings offer valuable insights into the molecular basis of fruit cracking in A. trifoliata, laying a foundation for breeding programs aimed at developing crack-resistant varieties to enhance fruit quality and commercial viability.
Collapse
Affiliation(s)
- Mian Faisal Nazir
- Jiangxi Provincial Key Laboratory of Plant Germplasm Resources Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.F.N.); (Y.Z.); (L.D.); (J.X.); (Y.Z.)
| | - Tianjiao Jia
- Jiangxi Key Laboratory for Sustainable Utilization of Chinese Materia Medica Resources, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China;
| | - Yi Zhang
- Jiangxi Provincial Key Laboratory of Plant Germplasm Resources Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.F.N.); (Y.Z.); (L.D.); (J.X.); (Y.Z.)
| | - Longyu Dai
- Jiangxi Provincial Key Laboratory of Plant Germplasm Resources Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.F.N.); (Y.Z.); (L.D.); (J.X.); (Y.Z.)
| | - Jie Xu
- Jiangxi Provincial Key Laboratory of Plant Germplasm Resources Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.F.N.); (Y.Z.); (L.D.); (J.X.); (Y.Z.)
| | - Yafang Zhao
- Jiangxi Provincial Key Laboratory of Plant Germplasm Resources Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.F.N.); (Y.Z.); (L.D.); (J.X.); (Y.Z.)
| | - Shuaiyu Zou
- Jiangxi Provincial Key Laboratory of Plant Germplasm Resources Innovation and Genetic Improvement, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (M.F.N.); (Y.Z.); (L.D.); (J.X.); (Y.Z.)
| |
Collapse
|
3
|
Du K, Xu Y, Wang N, Qin L, Tao J. Transcriptomic Remodeling Occurs During Cambium Activation and Xylem Cell Development in Taxodium ascendens. Curr Issues Mol Biol 2024; 46:11927-11941. [PMID: 39590302 PMCID: PMC11592639 DOI: 10.3390/cimb46110708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Taxodium ascendens has been extensively cultivated in the wetlands of the Yangtze River in south China and has significantly contributed to ecology and timber production. Until now, research on T. ascendens genomics has yet to be conducted due to its large and complex genome, which hinders the development of T. ascendens genomic resources. Combined with the microstructural changes during cambium cell differentiation across various growth periods, we investigate the transcriptome expression and regulatory mechanisms governing cambium activity in T. ascendens. Using RNA sequencing (RNA-Seq) technology, we identified the genes involved in the cambium development of cells at three stages (dormancy, reactivation, and activity). These genes encode the regulatory and control factors associated with the cambial activity, cell division, cell expansion, and biosynthesis of cell wall components. Blast comparison revealed that three genes (TR_DN69961_c0_g1, TRINITY_DN17100_c1_g1, TRINITY_DN111727_c0_g1) from the MYB and NAC families might regulate transcription during lignin formation in wood thickening. These results illustrate the dynamic changes in the transcriptional network during vascular cambium development. Additionally, they shed light on the genetic regulation mechanism of secondary growth in T. ascendens and guide further elucidation of the candidate genes involved in regulating cambium differentiation and wood formation.
Collapse
Affiliation(s)
| | - Youming Xu
- College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, China; (K.D.); (N.W.); (L.Q.); (J.T.)
| | | | | | | |
Collapse
|
4
|
Wang Y, Hu Y, Ren H, Zhao X, Yuan Z. Integrated transcriptomic, metabolomic, and functional analyses unravel the mechanism of bagging delaying fruit cracking of pomegranate (Punica granatum L.). Food Chem 2024; 451:139384. [PMID: 38692235 DOI: 10.1016/j.foodchem.2024.139384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
The economic impact of fruit cracking in pomegranate products is substantial. In this study, we present the inaugural comprehensive analysis of transcriptome and metabolome in the outermost pericarp of pomegranate fruit in bagging conditions. Our investigation revealed a notable upregulation of differentially expressed genes (DEGs) associated with the calcium signaling pathway (76.92%) and xyloglucan endotransglucosylase/hydrolase (XTH) genes (87.50%) in the fruit peel of non-cracking fruit under bagging. Metabolomic analysis revealed that multiple phenolics, flavonoids, and tannins were identified in pomegranate. Among these, calmodulin-like 23 (PgCML23) exhibited a significant correlation with triterpenoids and demonstrated a marked upregulation under bagging treatment. The transgenic tomatoes overexpressing PgCML23 exhibited significantly higher cellulose content and xyloglucan endotransglucosylase (XET) enzyme activity in the pericarp at the red ripening stage compared to the wild type. Conversely, water-soluble pectin content, polygalacturonase (PG), and β-galactosidase (β-GAL) enzyme activities were significantly lower in the transgenic tomatoes. Importantly, the heterologous expression of PgCML23 led to a substantial reduction in the fruit cracking rate in tomatoes. Our findings highlight the reduction of fruit cracking in bagging conditions through the manipulation of PgCML23 expression.
Collapse
Affiliation(s)
- Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yaping Hu
- Key Laboratory of Plant Innovation and Utilization, Institute of Subtropical Crops of Zhejiang Province, Zhejiang Academy of Agricultural Sciences, Wenzhou 325005, China
| | - Hongfang Ren
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Huang S, Yang X, Wang T, Li H, Deng L, Bi X, Hu J, Gong Y, Li Y, Qin Z, Yao Y, Sun G, Liao L, Zhang M, He S, Jiang L, Wang Z. Physiological Mechanisms of Citrus Fruit Cracking: Study on Cell Wall Components, Osmoregulatory Substances, and Antioxidant Enzyme Activities. PLANTS (BASEL, SWITZERLAND) 2024; 13:257. [PMID: 38256810 PMCID: PMC10820700 DOI: 10.3390/plants13020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/18/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
Fruit cracking affects both the yield and economic efficiency of citrus; however, the underlying mechanism remains unclear. Therefore, this study focused on resistant and susceptible cultivars to identify the mechanisms underlying fruit cracking. The results showed that in 'Mingrijian', pectin morphological transformation and hemicellulose and lignin degradation in the pericarp were important contributing factors. During the critical fruit-cracking period (115-150 days after flowering), the water-soluble pectin, protopectin, and lignin contents in the pericarp of 'Daya' presented inverse changes relative to those in 'Mingrijian', thus enhancing the mechanical properties and resistance of pericarp. From 115 to 150 days after flowering, the soluble sugar content in the pulp of 'Mingrijian' increased rapidly by 97.35%, aiding in pulp water absorption and expansion. Moreover, the soluble protein content in the pericarp of 'Mingrijian' exhibited a declining trend and was lower than that of 'Daya', thus affecting the overall metabolism. The superoxide dismutase (SOD) activity in the pericarp of 'Mingrijian' gradually decreased from 115 to 180 days after flowering, while the peroxidase (POD) activity remained at a low level, resulting in weaker antioxidant capacity and lower environmental resistance. This study provides valuable insights into the mechanisms of citrus fruit cracking, laying the foundation for preventive and control strategies.
Collapse
Affiliation(s)
- Shengjia Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Economic Forest Research, Sichuan Academy of Forestry, Chengdu 610081, China
| | - Xinxia Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Tie Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hang Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijun Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyi Bi
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Juan Hu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunjie Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zeyu Qin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan Yao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Ling Liao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Siya He
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingping Jiang
- Agricultural and Rural Bureau, Shimian, Ya’an 625400, China
| | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
6
|
Jiang Y, Du Y, Chen C, Wang D, Zhong Y, Deng Y. Integrative Metabolomic and Transcriptomic Landscape during Akebia trifoliata Fruit Ripening and Cracking. Int J Mol Sci 2023; 24:16732. [PMID: 38069056 PMCID: PMC10706055 DOI: 10.3390/ijms242316732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Akebia trifoliata fruit is prone to crack after ripening, but little is known about the mechanism underlying the cracking process. This study integrated transcriptomic and metabolomic data, revealing significant changes in 398 metabolites and 8414 genes during ripening and cracking, mainly impacting cell-wall metabolism. Multi-omics joint analysis indicated that genes related to polygalacturonase, pectate lyase, α-amylase, and glycogen phosphorylase were up-regulated after cracking, degrading cell wall and starch. Concurrently, diminished photosynthetic metabolism and heightened phenylpropanoid metabolism suggested alterations in cuticle structure, potentially impacting cell-wall robustness. Numerous auxin and abscisic acid signaling-related genes were expressed, and we assume that they contributed to the promoting peel growth. These alterations collectively might compromise peel strength and elevate expanding pressure, potentially leading to A. trifoliata cracking. Transcription factors, predominantly ethylene response factors and helix-loop-helix family members, appeared to regulate these metabolic shifts. These findings provide valuable insights into A. trifoliata cracking mechanisms; however, direct experimental validation of these assumptions is necessary to strengthen these conclusions and expedite their commercial utilization.
Collapse
Affiliation(s)
- Yongli Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.J.); (Y.D.); (C.C.)
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China (Y.Z.)
| | - Yanlin Du
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.J.); (Y.D.); (C.C.)
| | - Chongyang Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; (Y.J.); (Y.D.); (C.C.)
| | - Danfeng Wang
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China (Y.Z.)
| | - Yu Zhong
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China (Y.Z.)
| | - Yun Deng
- Department of Food Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China (Y.Z.)
| |
Collapse
|
7
|
Santos M, Egea-Cortines M, Gonçalves B, Matos M. Molecular mechanisms involved in fruit cracking: A review. FRONTIERS IN PLANT SCIENCE 2023; 14:1130857. [PMID: 36937999 PMCID: PMC10016354 DOI: 10.3389/fpls.2023.1130857] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Several fleshy fruits are highly affected by cracking, a severe physiological disorder that compromises their quality and causes high economical losses to the producers. Cracking can occur due to physiological, genetic or environmental factors and may happen during fruit growth, development and ripening. Moreover, in fleshy fruits, exocarp plays an important role, acting as a mechanical protective barrier, defending against biotic or abiotic factors. Thus, when biochemical properties of the cuticle + epidermis + hypodermis are affected, cracks appear in the fruit skin. The identification of genes involved in development such as cell wall modifications, biosynthesis and transport of cuticular waxes, cuticular membrane deposition and associated transcription factors provides new insights to better understand how fruit cracking is affected by genetic factors. Amongst the major environmental stresses causing cracking are excessive water during fruit development, leading to imbalances in cations such as Ca. This review focus on expression of key genes in these pathways, in their influence in affected fruits and the potential for molecular breeding programs, aiming to develop cultivars more resistant to cracking under adverse environmental conditions.
Collapse
Affiliation(s)
- Marlene Santos
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Marcos Egea-Cortines
- Instituto de Biotecnología Vegetal, Universidad Politécnica de Cartagena, Cartagena, Spain
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Department of Biology and Environment (DeBA), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Manuela Matos
- Department of Genetics and Biotechnology (DGB), University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| |
Collapse
|
8
|
Yu J, Wang R, Ma W, Lei S, Zhu M, Yang G. Pectate Lyase Gene VvPL1 Plays a Role in Fruit Cracking of Table Grapes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1643-1654. [PMID: 36638364 DOI: 10.1021/acs.jafc.2c05996] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Fruit cracking seriously affects the commercial value of table grapes. To explore whether cell wall disassembly influences grape berry cracking, first, the differences in the cell wall metabolism were compared between cracking-resistant "Shennongjinhuanghou" (SN) and cracking-susceptible "Xiangfei" (XF) varieties. Our results showed that cell wall disassembly events were extremely different between "SN" and "XF." The cracking-resistant "SN" had a higher pectinmethylesterase activity in the early stage and lower polygalacturonase, β-galactosidase, pectate lyase, and cellulase activities from veraison, cooperatively yielding higher ionically bound pectin, covalently bound pectin, hemicellulose, and lower water-soluble pectin, leading to a stronger skin break force and elasticity and conferring "SN" with higher cracking resistance. Furthermore, the function of the VvPL1 gene in fruit cracking was verified by heterologously transforming tomatoes. The transgenic experiment showed that overexpressed fruits had a higher activity of pectate lyase from the breaking stage and a lower level of covalently bound pectin, ionically bound pectin, cellulose, and hemicellulose and a higher level of water-soluble pectin at the red ripe stage, which resulted in a significantly reduced skin break force and flesh firmness and increased fruit cracking incidences. In conclusion, our results demonstrated that the cracking susceptibility of the grape berry is closely related to cell wall disassembly events and VvPL1 plays an important role in fruit cracking.
Collapse
Affiliation(s)
- Jun Yu
- College of Horticulture, Hunan Agricultural University, Nongda Road No. 1, Furong District, Changsha410128, Hunan, China
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi417000, Hunan, China
| | - Rong Wang
- College of Horticulture, Hunan Agricultural University, Nongda Road No. 1, Furong District, Changsha410128, Hunan, China
| | - Wentao Ma
- College of Horticulture, Hunan Agricultural University, Nongda Road No. 1, Furong District, Changsha410128, Hunan, China
| | - Shumin Lei
- College of Horticulture, Hunan Agricultural University, Nongda Road No. 1, Furong District, Changsha410128, Hunan, China
| | - Mingtao Zhu
- College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi417000, Hunan, China
| | - Guoshun Yang
- College of Horticulture, Hunan Agricultural University, Nongda Road No. 1, Furong District, Changsha410128, Hunan, China
| |
Collapse
|
9
|
Huai B, Wu Y, Liang C, Tu P, Mei T, Guan A, Yao Q, Li J, Chen J. Effects of calcium on cell wall metabolism enzymes and expression of related genes associated with peel creasing in Citrus fruits. PeerJ 2022; 10:e14574. [PMID: 36570013 PMCID: PMC9784343 DOI: 10.7717/peerj.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Fruit peel creasing is a serious pre-harvest physiological disorder in citrus, influencing fruit quality, storage, and yield. Four- and eight-year-old 'Hongjiang' oranges grafted onto Canton lemon rootstocks were treated with calcium and calcium inhibitors, respectively, to study the effects of different treatments on fruit creasing rate, mechanical properties of the peel, cell wall metabolism enzyme activities, and the expression of related genes. Foliar application of 0.5% calcium nitrate significantly reduced the fruit creasing rate, while treatment with EGTA and LaCl3, inhibitors of calcium uptake, increased the fruit creasing rate; But the effect of calcium nitrate treatment on changing the mechanical properties of pericarp and inhibiting the activity of hydrolase (PG, Cx and PE) was not very significant. Furthermore, it was observed that the expression levels of genes (PG, Cx, and PE) encoding cell wall-degrading enzymes were significantly lower in the normal fruit peel than in the creased fruit peel. Meanwhile, the expression levels of PG, Cx, and PE were higher in the peel of shaded fruit than in the peel of exposed fruit. During the high incidence period of fruit creasing, calcium nitrate treatment down-regulated the expression of PG, Cx, and PE, while EGTA treatment up-regulated the expression of these genes. In conclusion, foliar spraying of calcium nitrate at the fruit rapid enlargement stage can increase the Ca content in the peel of 'Hongjiang' orange and significantly suppress the expression of cell wall degrading enzymes genes (PG, PE and Cx) in 'Hongjiang' orange peel during the high occurrence period of fruit creasing, resulting in reducing the occurrence of fruit creasing and cracking.
Collapse
Affiliation(s)
- Bin Huai
- South China Agricultural University, Guangzhou, China
| | - Yunli Wu
- South China Agricultural University, Guangzhou, China
| | - Chunhui Liang
- Guangdong Agriculture Industry Business Polytechnic College, Guangzhou, China
| | - Panfeng Tu
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Tingting Mei
- South China Agricultural University, Guangzhou, China
| | - Anquan Guan
- Lianjiang Fruit Development Center, Lianjiang, China
| | - Qing Yao
- South China Agricultural University, Guangzhou, China
| | - Juan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jiezhong Chen
- South China Agricultural University, Guangzhou, China
| |
Collapse
|
10
|
Wang Y, Zhao Y, Wu Y, Zhao X, Hao Z, Luo H, Yuan Z. Transcriptional profiling of long non-coding RNAs regulating fruit cracking in Punica granatum L. under bagging. FRONTIERS IN PLANT SCIENCE 2022; 13:943547. [PMID: 36304394 PMCID: PMC9592827 DOI: 10.3389/fpls.2022.943547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Fruit cracking tremendously damages the appearance of fruit, easily leads to pathogen invasion, greatly reduces the marketability and causes immense economic losses. The pivotal role of long non-coding RNAs (lncRNAs) in diverse biological processes has been confirmed, while the roles of lncRNAs underlying fruit cracking remain poorly understood. In this study, the incidence of fruit cracking was 7.26% under the bagging treatment, the control group was 38.11%, indicating that bagging considerably diminished the fruit cracking rate. LncRNA libraries for fruit cracking (FC), fruit non-cracking (FNC) and fruit non-cracking under bagging (FB) in pomegranate (Punica granatum L.) were performed and analysed via high-throughput transcriptome sequencing. A total of 3194 lncRNAs were obtained with a total length of 4898846 nt and an average length of 1533.77 nt in pomegranate. We identified 42 differentially expressed lncRNAs (DELs) and 137 differentially expressed mRNAs (DEGs) in FC vs FNC and 35 DELs and 160 DEGs in FB vs FC that formed co-expression networks respectively, suggesting that there are involved in phytohormone signaling pathway, lignin catabolic process, lipid transport/binding, cutin biosynthetic process and cell wall organization. We also found that 18 cis-acting DELs regulated 18 target genes, and 10 trans-acting DELs regulated 24 target genes in FC vs FNC, 23 DELs regulate 23 target genes for the cis-acting lncRNAs and 12 DELs regulated 36 target genes in FB vs FC, which provides an understanding for the regulation of the fruit cracking. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results demonstrated that DELs participated in calcium ion binding, glycerophospholipid metabolism, flavonoid biosynthetic process, cell wall biogenesis, xyloglucan metabolic process, hormone signal transduction and starch and sucrose metabolism. Our findings provide new insights into the roles of lncRNAs in regulating the fruit cracking and lay the foundation for further improvement of pomegranate quality.
Collapse
Affiliation(s)
- Yuying Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yujie Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Xueqing Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhaoxiang Hao
- Zaozhuang Pomegranate Research Center, Institute of Botany, Zaozhuang, China
| | - Hua Luo
- Zaozhuang Pomegranate Research Center, Institute of Botany, Zaozhuang, China
| | - Zhaohe Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Exploring the mechanism of Akebia trifoliata fruit cracking based on cell-wall metabolism. Food Res Int 2022; 157:111219. [DOI: 10.1016/j.foodres.2022.111219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 02/06/2023]
|
12
|
Shi H, Zhou X, Qin M, Wang W, He X, Zhou W. Effect of CaCl 2 Sprays in Different Fruit Development Stages on Grape Berry Cracking. FRONTIERS IN PLANT SCIENCE 2022; 13:870959. [PMID: 35769303 PMCID: PMC9234641 DOI: 10.3389/fpls.2022.870959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Grape cracking is a common phenomenon that can reach more than 50% in some varieties and can cause enormous economic losses. "Li Xiu" grapes in different developmental stages were treated with calcium chloride (5 g/L), and the cracking rate and related biochemical and genetic indices were measured in the fruit ripening stage. The results showed that calcium treatment during the flowering period could significantly reduce grape cracking. Based on the experimental results, there are several reasons as follows: first, calcium spraying during the flowering period was more favorable to calcium absorption in grapes, and the increased calcium content in the peels helped to improve the mechanical properties of the peels, thus increasing crack resistance; second, calcium treatment reduced the expression levels of genes related to glucose metabolism, which in turn reduced PG and cellulase activities, delaying the degradation of pectin and cellulose and resulting in more structural integrity of the peels; third, calcium treatment increased fruit hardness and reduced fruit ventral pressure by decreasing the expression levels of ABA-related genes and synthesis of endogenous abscisic acid (ABA), soluble sugars (SSs), and total soluble solids (TSSs).
Collapse
Affiliation(s)
- Hao Shi
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Agriculture and Forestry Science, Hunan Applied Technology University, Changde, China
| | - Xiangyu Zhou
- School of Food Science and Nutrition, University of Leeds, Leeds, United Kingdom
| | - Mengling Qin
- College of Agriculture and Forestry Science, Hunan Applied Technology University, Changde, China
| | - Wenlong Wang
- College of Agriculture and Forestry Science, Hunan Applied Technology University, Changde, China
| | - Xiaoe He
- College of Agriculture and Forestry Science, Hunan Applied Technology University, Changde, China
| | - Wenhua Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Agriculture and Forestry Science, Hunan Applied Technology University, Changde, China
| |
Collapse
|
13
|
Comparative Transcriptomic Analyses of Different Jujube Cultivars Reveal the Co-Regulation of Multiple Pathways during Fruit Cracking. Genes (Basel) 2022; 13:genes13010105. [PMID: 35052445 PMCID: PMC8775106 DOI: 10.3390/genes13010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/11/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
Fruit cracking is a common physiological disorder in many fruit species. Jujube (Ziziphus jujuba Mill.) is an economically valuable fruit in which fruit cracking seriously affects fruit yield and quality and causes significant economic losses. To elucidate cracking-related molecular mechanisms, the cracking-susceptible cultivars ‘Cuizaohong’ and ‘Jinsixiaozao’ and the cracking-resistant cultivar ‘Muzao’ were selected, and comparative transcriptome analyses of cracking and non-cracking ‘Cuizaohong’ (CC and NC), cracking and non-cracking ‘Jinsixiaozao’ (CJ and NJ), and non-cracking ‘Muzao’ (NM) were conducted. A total of 131 differentially expressed genes (DEGs) were common to the CC vs. NC and CJ vs. NJ comparisons. To avoid passive processes after fruit cracking, we also mainly focused on the 225 gradually downregulated DEGs in the CJ, NJ, and NM samples. The functional annotation of the candidate DEGs revealed that 61 genes related to calcium, the cell wall, the cuticle structure, hormone metabolism, starch/sucrose metabolism, transcription factors, and water transport were highly expressed in cracking fruits. We propose that expression-level changes in these genes might increase the turgor pressure and weaken mechanical properties, ultimately leading to jujube fruit cracking. These results may serve as a rich genetic resource for future investigations on fruit cracking mechanisms in jujube and in other fruit species.
Collapse
|
14
|
Gao Y, Hu Y, Shen J, Meng X, Suo J, Zhang Z, Song L, Wu J. Acceleration of Aril Cracking by Ethylene in Torreya grandis During Nut Maturation. FRONTIERS IN PLANT SCIENCE 2021; 12:761139. [PMID: 34745193 PMCID: PMC8565854 DOI: 10.3389/fpls.2021.761139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Torreya grandis 'Merrillii' is a famous nut with great nutritional value and high medicinal value. Aril cracking is an important process for seed dispersal, which is also an indicator of seed maturation. However, the cracking mechanism of T. grandis aril during the maturation stage remains largely unknown. Here, we provided a comprehensive view of the physiological and molecular levels of aril cracking in T. grandis by systematically analyzing its anatomical structure, physiological parameters, and transcriptomic response during the cracking process. These results showed that the length of both epidermal and parenchymatous cell layers significantly increased from 133 to 144 days after seed protrusion (DASP), followed by a clear separation between parenchymatous cell layers and kernel, which was accompanied by a breakage between epidermal and parenchymatous cell layers. Moreover, analyses of cell wall composition showed that a significant degradation of cellular wall polysaccharides occurred during aril cracking. To examine the global gene expression changes in arils during the cracking process, the transcriptomes (96 and 141 DASP) were analyzed. KEGG pathway analysis of DEGs revealed that 4 of the top 10 enriched pathways were involved in cell wall modification and 2 pathways were related to ethylene biosynthesis and ethylene signal transduction. Furthermore, combining the analysis results of co-expression networks between different transcription factors, cell wall modification genes, and exogenous ethylene treatments suggested that the ethylene signal transcription factors (ERF11 and ERF1A) were involved in aril cracking of T. grandis by regulation of EXP and PME. Our findings provided new insights into the aril cracking trait in T. grandis.
Collapse
Affiliation(s)
- Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jiayi Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Xuecheng Meng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an City, China
- Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an City, China
| |
Collapse
|