1
|
Agoni L. Alternative and aberrant splicing of human endogenous retroviruses in cancer. What about head and neck? —A mini review. Front Oncol 2022; 12:1019085. [PMID: 36338752 PMCID: PMC9631305 DOI: 10.3389/fonc.2022.1019085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) are transcribed in many cancer types, including head and neck cancer. Because of accumulating mutations at proviral loci over evolutionary time, HERVs are functionally defective and cannot complete their viral life cycle. Despite that, HERV transcripts, including full-length viral RNAs and viral RNAs spliced as expected at the conventional viral splice sites, can be detected in particular conditions, such as cancer. Interestingly, non-viral–related transcription, including aberrant, non-conventionally spliced RNAs, has been reported as well. The role of HERV transcription in cancer and its contribution to oncogenesis or progression are still debated. Nonetheless, HERVs may constitute a suitable cancer biomarker or a target for therapy. Thus, ongoing research aims both to clarify the basic mechanisms underlying HERV transcription in cancer and to exploit its potential toward clinical application. In this mini-review, we summarize the current knowledge, the most recent findings, and the future perspectives of research on HERV transcription and splicing, with particular focus on head and neck cancer.
Collapse
|
2
|
Zhang M, Zheng S, Liang JQ. Transcriptional and reverse transcriptional regulation of host genes by human endogenous retroviruses in cancers. Front Microbiol 2022; 13:946296. [PMID: 35928153 PMCID: PMC9343867 DOI: 10.3389/fmicb.2022.946296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) originated from ancient retroviral infections of germline cells millions of years ago and have evolved as part of the host genome. HERVs not only retain the capacity as retroelements but also regulate host genes. The expansion of HERVs involves transcription by RNA polymerase II, reverse transcription, and re-integration into the host genome. Fast progress in deep sequencing and functional analysis has revealed the importance of domesticated copies of HERVs, including their regulatory sequences, transcripts, and proteins in normal cells. However, evidence also suggests the involvement of HERVs in the development and progression of many types of cancer. Here we summarize the current state of knowledge about the expression of HERVs, transcriptional regulation of host genes by HERVs, and the functions of HERVs in reverse transcription and gene editing with their reverse transcriptase.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shu Zheng,
| | - Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Faculty of Medicine, Center for Gut Microbiota Research, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Jessie Qiaoyi Liang,
| |
Collapse
|
3
|
Ko EJ, Kim ET, Kim H, Lee CM, Koh SB, Eo WK, Kim H, Oh YL, Ock MS, Kim KH, Cha HJ. Effect of human endogenous retrovirus-K env gene knockout on proliferation of ovarian cancer cells. Genes Genomics 2022; 44:1091-1097. [PMID: 35802343 DOI: 10.1007/s13258-022-01280-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Among various human endogenous retroviruses (HERVs), the HERV-K (HML-2) group has been reported to be highly related to cancer. In pancreatic cancer cells, shRNA-mediated downregulation of HERV-K env RNA decreases cell proliferation and tumor growth through the RAS-ERK-RSK pathway; in colorectal cancer, CRISPR-Cas9 knockout (KO) of the HERV-K env gene affects tumorigenic characteristics through the nupr-1 gene. OBJECTIVE The effect of HERV-K env KO has not been studied in ovarian cancer cell lines. In this study, we analyzed the tumorigenic characteristics of ovarian cancer cell lines, including cell proliferation, migration, and invasion, and the expression patterns of related proteins after CRISPR-Cas9 KO of the HERV-K env gene. METHODS The HERV-K env gene KO was achieved using the CRISPR-Cas9 system in ovarian cancer cell lines SKOV3 and OVCAR3. Tumorigenic characteristics including cell proliferation, migration, and invasion were analyzed, and related protein expression was investigated by western blot analysis. RESULTS The expression of the HERV-K env gene in KO cells was significantly reduced at RNA and protein levels, and tumorigenic characteristics including cell proliferation, migration, and invasion were significantly reduced. In HERV-K env KO SKOV3 cells, the expression of the RB protein was significantly up-regulated and the cyclin B1 protein level was significantly reduced. In contrast, in HERV-K env KO OVCAR3 cells, the level of phospho-RB protein was significantly reduced, but other protein levels were not changed. CONCLUSION The results of this study showed that HERV-K env gene KO affects cell proliferation, invasion, and migration of ovarian cells through RB and Cyclin B1 proteins, but the specific regulation pattern can differ by cell line.
Collapse
Affiliation(s)
- Eun-Ji Ko
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Eun Taeg Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan, South Korea
| | - Heungyeol Kim
- Department of Obstetrics and Gynecology, Hannah Hospital, Busan, South Korea
| | - Chul Min Lee
- Department of Obstetrics and Gynecology, Cha University, Ilsan Medical Center School of Medicine, Seoul, South Korea
| | - Suk Bong Koh
- Department of Obstetrics and Gynecology, Daegu Catholic University School of Medicine, Daegu, South Korea
| | - Wan Kyu Eo
- Department of Internal Medicine, College of Medicine, Kyung Hee University, Seoul, South Korea
| | - Hongbae Kim
- Department of Obstetrics and Gynecology, Kangnam Sacred Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Chuncheon, South Korea
| | - Young Lim Oh
- Department of Obstetrics and Gynecology, Kosin University College of Medicine, Busan, South Korea
| | - Mee Sun Ock
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea
| | - Ki Hyung Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Biomedical Research Institute and Pusan Cancer Center, Pusan National University Hospital, Busan, South Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, Kosin University College of Medicine, Busan, South Korea.
| |
Collapse
|
4
|
Lan H, Lin C, Yuan H. Knockdown of KRAB domain-associated protein 1 suppresses the proliferation, migration and invasion of thyroid cancer cells by regulating P68/DEAD box protein 5. Bioengineered 2022; 13:11945-11957. [PMID: 35549637 PMCID: PMC9275928 DOI: 10.1080/21655979.2022.2067289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
KRAB domain-associated protein 1 (KAP-1) has been reported to be an oncogene in diverse tumors. KAP-1 was found to have abundant existence in malignant thyroid tissues, but its role in thyroid cancer hasn’t been elucidated clearly. This study was carried out to explore the role of KAP-1 in thyroid cancer, and to clarify its molecular mechanism. The expressions of KAP-1 and P68/DEAD box protein 5 (DDX5) were assessed under the help of qRT-PCR and western blot. Then, we downregulated KAP-1 or upregulated DDX5 by cell transfection in TPC-1 cells. A series of cellular experiments on proliferation, apoptosis, migration and invasion were conducted with CCK-8, EdU, TUNEL, wound-healing and Transwell assays. Besides, the relationship between KAP-1 and DDX5 was verified by co-immunoprecipitation (Co-IP). The results showed that both of KAP-1 and DDX5 were upregulated in thyroid cancer cells. Loss-of-function experiments revealed that KAP-1 knockdown imparted suppressive effects on cell proliferation, migration and invasion, but promoted cell apoptosis. Additionally, KAP-1 was demonstrated to interact with DDX5 and positively regulate DDX5 expression. The following rescued experiments exhibited that the inhibitory effects of KAP-1 knockdown on cellular activities of thyroid cancer and Wnt/β-catenin signaling were also partly reversed by DDX5 overexpression. Moreover, activation of Wnt/β-catenin signaling retarded the anti-tumor activity of KAP-1 knockdown. In conclusion, the data in this study disclosed that KAP-1 silence helped to repress the cell proliferation, migration and invasion by degrading DDK5, so as to hinder the development of thyroid cancer.
Collapse
Affiliation(s)
- Hai Lan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Congyao Lin
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hongyin Yuan
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Müller MD, Holst PJ, Nielsen KN. A Systematic Review of Expression and Immunogenicity of Human Endogenous Retroviral Proteins in Cancer and Discussion of Therapeutic Approaches. Int J Mol Sci 2022; 23:1330. [PMID: 35163254 PMCID: PMC8836156 DOI: 10.3390/ijms23031330] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023] Open
Abstract
Human endogenous retroviruses (HERVs) are remnants of ancient retroviral infections that have become fixed in the human genome. While HERV genes are typically silenced in healthy somatic cells, there are numerous reports of HERV transcription and translation across a wide spectrum of cancers, while T and B cell responses against HERV proteins have been detected in cancer patients. This review systematically categorizes the published evidence on the expression of and adaptive immune response against specific HERVs in distinct cancer types. A systematic literature search was performed using Medical Search Headings (MeSH) in the PubMed/Medline database. Papers were included if they described the translational activity of HERVs. We present multiple tables that pair the protein expression of specific HERVs and cancer types with information on the quality of the evidence. We find that HERV-K is the most investigated HERV. HERV-W (syncytin-1) is the second-most investigated, while other HERVs have received less attention. From a therapeutic perspective, HERV-K and HERV-E are the only HERVs with experimental demonstration of effective targeted therapies, but unspecific approaches using antiviral and demethylating agents in combination with chemo- and immunotherapies have also been investigated.
Collapse
Affiliation(s)
- Mikkel Dons Müller
- Institute of Immunology and Microbiology, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark;
| | | | | |
Collapse
|
6
|
Tavakolian S, Goudarzi H, Moridi A, Faghihloo E. Analysing the HERV-K env, np9, rec and gag expression in cervical tissues. New Microbes New Infect 2021; 44:100936. [PMID: 34621524 PMCID: PMC8484807 DOI: 10.1016/j.nmni.2021.100936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Cervical cancer is considered to be the fourth common cancer. It is assumed that numerous risk factors, especially infectious ones, can have a detrimental effect on cervical cancer. In this study, we evaluated the expression of Herv-K env, np9, rec and gag in cervical tissues. After RNA extraction and cDNA sensitizing of 12 cervical cancer tissues and CIN3, 51 CIN1,2 and 18 normal ones, Herv-K env, np9, rec and gag were assessed using quantitative real-time PCR analysis. There was a decrease in the level of HERV-K env expression in cervical cancer and CIN 1-3 in compression with normal tissues. Cervical cancer and CIN3 indicated the most increase in expression. Meanwhile, we observed an increase in gag and rec expression in CIN 1,2; although cervical cancer and CIN 3 had a decrease in rec and gag expression, we did not report any changes in np expression. In conclusion, given the relationship between HERV-associated genes and cervical cancer, our study suggests that these genes can be useful for cancer diagnosis. However, further investigations are needed to provide a better perspective about the effectiveness of these genes in the diagnostic strategies of gastrointestinal cancer. These results are just an observation that could open a wider investigation to test the correlation between the expression of these genes and cervical cancer.
Collapse
Affiliation(s)
- S Tavakolian
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - H Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - A Moridi
- Clinical Research Development Center, Mahdiyeh Educational Hospital, Shahid Beheshti University Of Medical Sciences, Tehran, Iran
| | - E Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Dervan E, Bhattacharyya DD, McAuliffe JD, Khan FH, Glynn SA. Ancient Adversary - HERV-K (HML-2) in Cancer. Front Oncol 2021; 11:658489. [PMID: 34055625 PMCID: PMC8155577 DOI: 10.3389/fonc.2021.658489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Human endogenous retroviruses (HERV), ancient integrations of exogenous viruses, make up 8% of our genome. Long thought of as mere vestigial genetic elements, evidence is now accumulating to suggest a potential functional role in numerous pathologies including neurodegenerative diseases, autoimmune disorders, and multiple cancers. The youngest member of this group of transposable elements is HERV-K (HML-2). Like the majority of HERV sequences, significant post-insertional mutations have disarmed HERV-K (HML-2), preventing it from producing infectious viral particles. However, some insertions have retained limited coding capacity, and complete open reading frames for all its constituent proteins can be found throughout the genome. For this reason HERV-K (HML-2) has garnered more attention than its peers. The tight epigenetic control thought to suppress expression in healthy tissue is lost during carcinogenesis. Upregulation of HERV-K (HML-2) derived mRNA and protein has been reported in a variety of solid and liquid tumour types, and while causality has yet to be established, progressively more data are emerging to suggest this phenomenon may contribute to tumour growth and metastatic capacity. Herein we discuss its potential utility as a diagnostic tool and therapeutic target in light of the current in vitro, in vivo and clinical evidence linking HERV-K (HML-2) to tumour progression.
Collapse
Affiliation(s)
- Eoin Dervan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Dibyangana D Bhattacharyya
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland.,Laboratory of Cancer ImmunoMetabolism, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Jake D McAuliffe
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Faizan H Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| | - Sharon A Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway (NUIG), Galway, Ireland
| |
Collapse
|