1
|
Xin X, Dong L, Li J, Chen W, Qiu Y, Lian F, Wu H. Exploring lncRNA expression in follicular fluid exosomes of patients with obesity and polycystic ovary syndrome based on high-throughput sequencing technology. J Ovarian Res 2024; 17:220. [PMID: 39529075 PMCID: PMC11552169 DOI: 10.1186/s13048-024-01552-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Infertility is a reproductive health problem that attracts worldwide attention. Polycystic ovary syndrome (PCOS) is a major cause of female infertility and patients with obesity and PCOS are particularly common in clinical practice. Long non-coding RNA (lncRNAs) are a functional core in cells that regulate gene expression, transcription, and chromatin modification processes, and participate in epigenetics, cell cycle, and cell differentiation. LncRNAs are assumed to play a role in the occurrence and development of PCOS; however, their specific mechanism of action remains to be elucidated. METHODS High-throughput sequencing technology has been used to sequence and analyze lncRNAs in exosomes from the follicular fluid of patients with obesity and PCOS and those who underwent assisted reproductive therapy owing to male factors. Specific expression profiles of patients with obesity and PCOS were obtained and functional information analysis combined with a literature review were performed to screen for differentially expressed lncRNAs, which were validated using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR). RESULTS High-throughput sequencing analysis revealed that compared to normal patients with male infertility, patients with obesity and PCOS had a total of 20 lncRNAs with significant expression differences in follicular fluid exosomes. Among them, 17 lncRNAs were upregulated and three were downregulated. Functional analysis showed that differentially expressed genes were mainly enriched in "cell metabolism," "cell adhesion," and other aspects: related gene pathways mainly involved Huntington's disease, Parkinson's disease, spliceosomes, non-alcoholic fatty liver disease, and ribosomes. Verification of differentially expressed lncRNAs revealed that the expression of lncRNAs TPT1-AS1, PTOV1-AS1, PTPRG-AS1, and SNHG14 in follicular fluid exosomes was consistent with the sequencing results. CONCLUSION A preliminary differential expression profile of lncRNAs in exosomes of patients with obesity and PCOS was established by transcriptomic analysis of these individuals. Our bioinformatics analysis results may be applicable to further study of the impact mechanism involving obesity and PCOS. These differentially expressed lncRNAs maybe served as potential biomarkers for in-depth studies of the occurrence, development on Follicle quality and function for patients with PCOS in the future.
Collapse
Affiliation(s)
- Xin Xin
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Li Dong
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Jiaxi Li
- Shandong Wendeng Osteopathic Hospital, Wendeng, Shandong, 264400, China
| | - Wen Chen
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250011, China
| | - Yue Qiu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| | - Fang Lian
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| | - Haicui Wu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, China.
| |
Collapse
|
2
|
Ding Z, Greenberg ZF, Serafim MF, Ali S, Jamieson JC, Traktuev DO, March K, He M. Understanding molecular characteristics of extracellular vesicles derived from different types of mesenchymal stem cells for therapeutic translation. EXTRACELLULAR VESICLE 2024; 3:100034. [PMID: 38957857 PMCID: PMC11218754 DOI: 10.1016/j.vesic.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have been studied for decades as candidates for cellular therapy, and their secretome, including secreted extracellular vesicles (EVs), has been identified to contribute significantly to regenerative and reparative functions. Emerging evidence has suggested that MSC-EVs alone, could be used as therapeutics that emulate the biological function of MSCs. However, just as with MSCs, MSC-EVs have been shown to vary in composition, depending on the tissue source of the MSCs as well as the protocols employed in culturing the MSCs and obtaining the EVs. Therefore, the importance of careful choice of cell sources and culture environments is receiving increasing attention. Many factors contribute to the therapeutic potential of MSC-EVs, including the source tissue, isolation technique, and culturing conditions. This review illustrates the molecular landscape of EVs derived from different types of MSC cells along with culture strategies. A thorough analysis of publicly available omic datasets was performed to advance the precision understanding of MSC-EVs with unique tissue source-dependent molecular characteristics. The tissue-specific protein and miRNA-driven Reactome ontology analysis was used to reveal distinct patterns of top Reactome ontology pathways across adipose, bone marrow, and umbilical MSC-EVs. Moreover, a meta-analysis assisted by an AI technique was used to analyze the published literature, providing insights into the therapeutic translation of MSC-EVs based on their source tissues.
Collapse
Affiliation(s)
- Zuo Ding
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary F. Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Samantha Ali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C. Jamieson
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Dmitry O. Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Keith March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
3
|
Ouyang Y, Hong Y, Mai C, Yang H, Wu Z, Gao X, Zeng W, Deng X, Liu B, Zhang Y, Fu Q, Huang X, Liu J, Li X. Transcriptome analysis reveals therapeutic potential of NAMPT in protecting against abdominal aortic aneurysm in human and mouse. Bioact Mater 2024; 34:17-36. [PMID: 38173843 PMCID: PMC10761368 DOI: 10.1016/j.bioactmat.2023.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Abdominal Aortic Aneurysm (AAA) is a life-threatening vascular disease characterized by the weakening and ballooning of the abdominal aorta, which has no effective therapeutic approaches due to unclear molecular mechanisms. Using single-cell RNA sequencing, we analyzed the molecular profile of individual cells within control and AAA abdominal aortas. We found cellular heterogeneity, with increased plasmacytoid dendritic cells and reduced endothelial cells and vascular smooth muscle cells (VSMCs) in AAA. Up-regulated genes in AAA were associated with muscle tissue development and apoptosis. Genes controlling VSMCs aberrant switch from contractile to synthetic phenotype were significantly enriched in AAA. Additionally, VSMCs in AAA exhibited cell senescence and impaired oxidative phosphorylation. Similar observations were made in a mouse model of AAA induced by Angiotensin II, further affirming the relevance of our findings to human AAA. The concurrence of gene expression changes between human and mouse highlighted the impairment of oxidative phosphorylation as a potential target for intervention. Nicotinamide phosphoribosyltransferase (NAMPT, also named VISFATIN) signaling emerged as a signature event in AAA. NAMPT was significantly downregulated in AAA. NAMPT-extracellular vesicles (EVs) derived from mesenchymal stem cells restored NAMPT levels, and offered protection against AAA. Furthermore, NAMPT-EVs not only repressed injuries, such as cell senescence and DNA damage, but also rescued impairments of oxidative phosphorylation in both mouse and human AAA models, suggesting NAMPT supplementation as a potential therapeutic approach for AAA treatment. These findings shed light on the cellular heterogeneity and injuries in AAA, and offered promising therapeutic intervention for AAA treatment.
Collapse
Affiliation(s)
- Yu Ouyang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
- Department of Emergency Medicine, The Key Laboratory of Advanced Interdisciplinary Studies , The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yimei Hong
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangdong, 510006, China
| | - Cong Mai
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangdong, 510006, China
| | - Hangzhen Yang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
- Global Health Research Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zicong Wu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510006, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, 510006, China
| | - Xiaoyan Gao
- School of Medicine, South China University of Technology, Guangdong, 510006, China
| | - Weiyue Zeng
- School of Medicine, South China University of Technology, Guangdong, 510006, China
| | - Xiaohui Deng
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510006, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, 510006, China
| | - Baojuan Liu
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
| | - Yuelin Zhang
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Road II, Guangzhou, 510006, China
- Extracellular Vesicle Research and Clinical Translational Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong, 510006, China
| | - Xiaojia Huang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Juli Liu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xin Li
- Department of Emergency Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, 510006, China
- School of Medicine, South China University of Technology, Guangdong, 510006, China
| |
Collapse
|