1
|
Fathi E, Farahzadi R, Montazersaheb S, Bagheri Y. Epigenetic Modifications in Acute Lymphoblastic Leukemia: From Cellular Mechanisms to Therapeutics. Curr Gene Ther 2021; 21:60-71. [PMID: 33183201 DOI: 10.2174/1566523220999201111194554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epigenetic modification pattern is considered as a characteristic feature in blood malignancies. Modifications in the DNA methylation modulators are recurrent in lymphoma and leukemia, so that the distinct methylation pattern defines different types of leukemia. Generally, the role of epigenetics is less understood, and most investigations are focused on genetic abnormalities and cytogenic studies to develop novel treatments for patients with hematologic disorders. Recently, understanding the underlying mechanism of acute lymphoblastic leukemia (ALL), especially epigenetic alterations as a driving force in the development of ALL opens a new era of investigation for developing promising strategy, beyond available conventional therapy. OBJECTIVE This review will focus on a better understanding of the epigenetic mechanisms in cancer development and progression, with an emphasis on epigenetic alterations in ALL including, DNA methylation, histone modification, and microRNA alterations. Other topics that will be discussed include the use of epigenetic alterations as a promising therapeutic target in order to develop novel, well-suited approaches against ALL. CONCLUSION According to the literature review, leukemogenesis of ALL is extensively influenced by epigenetic modifications, particularly DNA hyper-methylation, histone modification, and miRNA alteration.
Collapse
Affiliation(s)
- Ezzatollah Fathi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasin Bagheri
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
2
|
Coordinated Dialogue between UHRF1 and DNMT1 to Ensure Faithful Inheritance of Methylated DNA Patterns. Genes (Basel) 2019; 10:genes10010065. [PMID: 30669400 PMCID: PMC6360023 DOI: 10.3390/genes10010065] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/22/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferases (DNMTs), is an epigenetic mark that needs to be faithfully replicated during mitosis in order to maintain cell phenotype during successive cell divisions. This epigenetic mark is located on the 5′-carbon of the cytosine mainly within cytosine–phosphate–guanine (CpG) dinucleotides. DNA methylation is asymmetrically positioned on both DNA strands, temporarily generating a hemi-methylated state after DNA replication. Hemi-methylation is a particular status of DNA that is recognized by ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1) through its SET- (Su(var)3-9, Enhancer-of-zeste and Trithorax) and RING-associated (SRA) domain. This interaction is considered to be involved in the recruitment of DNMT1 to chromatin in order to methylate the adequate cytosine on the newly synthetized DNA strand. The UHRF1/DNMT1 tandem plays a pivotal role in the inheritance of DNA methylation patterns, but the fine-tuning mechanism remains a mystery. Indeed, because DNMT1 experiences difficulties in finding the cytosine to be methylated, it requires the help of a guide, i.e., of UHRF1, which exhibits higher affinity for hemi-methylated DNA vs. non-methylated DNA. Two models of the UHRF1/DNMT1 dialogue were suggested to explain how DNMT1 is recruited to chromatin: (i) an indirect communication via histone H3 ubiquitination, and (ii) a direct interaction of UHRF1 with DNMT1. In the present review, these two models are discussed, and we try to show that they are compatible with each other.
Collapse
|
3
|
Rahmani M, Talebi M, Hagh MF, Feizi AAH, Solali S. Aberrant DNA methylation of key genes and Acute Lymphoblastic Leukemia. Biomed Pharmacother 2017; 97:1493-1500. [PMID: 29793312 DOI: 10.1016/j.biopha.2017.11.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is a dynamic process influencing gene expression by altering either coding or non-coding loci. Despite advances in treatment of Acute Lymphoblastic Leukemia (ALL); relapse occurs in approximately 20% of patients. Nowadays, epigenetic factors are considered as one of the most effective mechanisms in pathogenesis of malignancies. These factors are reversible elements which can be potentially regarded as therapy targets and disease prognosis. DNA methylation, which primarily serves as transcriptional suppressor, mostly occurs in CpG islands of the gene promoter regions. This was shown as a key epigenetic factor in inactivating various tumor suppressor genes during cancer initiation and progression. We aimed to review methylation status of key genes involved in hematopoietic malignancies such as IKZF1, CDKN2B, TET2, CYP1B1, SALL4, DLC1, DLX family, TP73, PTPN6, and CDKN1C; and their significance in pathogenesis of ALL. The DNA methylation alterations in promoter regions of the genes have been shown to play crucial roles in tumorigenesis. Methylation -based inactivation of these genes has also been reported as associated with prognosis in acute leukemia. In this review, we also addressed the association of gene expression and methylation pattern in ALL patients.
Collapse
Affiliation(s)
- Mina Rahmani
- Department of Immunology, Division of Hematology and Transfusion Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Farshdousti Hagh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Saeed Solali
- Department of Immunology, Division of Hematology and Transfusion Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Abstract
Activation of oncogenes or the deactivation of tumor suppressor genes has long been established as the fundamental mechanism leading towards carcinogenesis. Although this age old axiom is vastly accurate, thorough study over the last 15years has given us unprecedented information on the involvement of epigenetic in cancer. Various biochemical pathways that are essential towards tumorigenesis are regulated by the epigenetic phenomenons like remodeling of nucleosome by histone modifications, DNA methylation and miRNA mediated targeting of various genes. Moreover the presence of mutations in the genes controlling the epigenetic players has further strengthened the association of epigenetics in cancer. This merger has opened up newer avenues for targeted anti-cancer drug therapy with numerous pharmaceutical industries focusing on expanding their research and development pipeline with epigenetic drugs. The information provided here elaborates the elementary phenomena of the various epigenetic regulators and discusses their alteration associated with the development of cancer. We also highlight the recent developments in epigenetic drugs combining preclinical and clinical data to signify this evolving field in cancer research.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India.
| |
Collapse
|
5
|
Song D, Yue L, Wu G, Ma S, Yang H, Liu Q, Zhang D, Xia Z, Jia J, Wang J. Evaluation of promoter hypomethylation and expression of p73 as a diagnostic and prognostic biomarker in Wilms' tumour. J Clin Pathol 2015; 69:12-8. [PMID: 26184366 DOI: 10.1136/jclinpath-2015-203150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/30/2015] [Indexed: 12/14/2022]
Abstract
AIMS A member of the p53 family, the p73 gene is essential for the maintenance of genomic stability, DNA repair and apoptosis regulation. This study was designed to evaluate the utility of expression and DNA methylation patterns of the p73 gene in the early diagnosis and prognosis of Wilms' tumour (WT). METHODS Methylation-specific PCR, semi-quantitative (sq-PCR), real-time quantitative PCR (qRT-PCR), receiver operating characteristic (ROC), and survival and hazard function curve analyses were utilised to measure the expression and DNA methylation patterns of p73 in WT tissue samples with a view to assessing diagnostic and prognostic value. RESULTS The relative expression of p73 mRNA was higher, while the promoter methylation level was lower in the WT than the control group (p<0.05) and closely associated with poor survival prognosis in children with WT (p<0.05). Increased expression and decreased methylation of p73 were correlated with increasing tumour size, clinical stage and unfavourable histological differentiation (p<0.05). ROC curve analysis showed areas under the curve of 0.544 for methylation and 0.939 for expression in WT venous blood, indicating the higher diagnostic yield of preoperative p73 expression. CONCLUSIONS Preoperative venous blood p73 level serves as an underlying biomarker for the early diagnosis of WT. p73 overexpression and concomitantly decreased promoter methylation are significantly associated with poor survival in children with WT.
Collapse
Affiliation(s)
- Dongjian Song
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lifang Yue
- Department of Ultrasonography, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Gang Wu
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shanshan Ma
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Heying Yang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qiuliang Liu
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Da Zhang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Ziqiang Xia
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jia Jia
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiaxiang Wang
- Department of Pediatric Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| |
Collapse
|
6
|
Liu K, Huang W, Gao W, He W. Effect of combined 5-aza-2'deoxycytidine and cisplatin treatment on the P15 lung adenocarcinoma cell line. Oncol Lett 2015; 9:2007-2012. [PMID: 26137003 DOI: 10.3892/ol.2015.2986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 02/10/2015] [Indexed: 11/06/2022] Open
Abstract
Aberrant promoter hypermethylation resulting in the epigenetic silencing of apoptosis-associated genes is a key process in the chemotherapeutic treatment of cancer. The nucleoside analog, 5-aza-2'deoxycytidine (DAC), inhibits the activity of DNA methyltransferase enzymes and is able to restore the expression levels of genes that have been silenced by aberrant DNA methylation. The aim of the present study was to investigate the effect of combined treatment with DAC and cisplatin (CDDP) on the lung adenocarcinoma cell line, P15. Growth inhibition was examined using a clone formation assay and growth inhibitory activities by cell counting during treatment with DAC alone, CDDP alone or DAC followed by CDDP. In addition, changes in the mRNA expression levels of various apoptosis-associated genes following treatment with increasing concentrations of DAC were determined using reverse transcription-polymerase chain reaction. Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) analysis was used to detect the number of apoptotic P15 tumor cells following treatment with DAC and/or CDDP. The results indicated that DAC treatment alone restored the mRNA expression levels of p73, p16INK4a , B-cell lymphoma (Bcl)-2-associated agonist of cell death and Bcl-2-associated X protein. In addition, combined therapy with DAC and CDDP was found to significantly suppress the growth of P15 tumor cells compared with DAC or CDDP treatment alone. In conclusion, DAC may enhance the chemosensitivity of the P15 cell line to treatment with CDDP.
Collapse
Affiliation(s)
- Kaishan Liu
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wenyan Huang
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Weisong Gao
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Wenfang He
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
7
|
Sun Z, Pei J, Cui F, Jing Y, Hu C. Lack of association between IL-4 -588C>T polymorphism and NHL susceptibility. Tumour Biol 2014; 35:4897-900. [DOI: 10.1007/s13277-014-1642-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/09/2014] [Indexed: 11/28/2022] Open
|
8
|
Association between interleukin-4 -590C > T polymorphism and non-Hodgkin's lymphoma risk. Tumour Biol 2013; 35:3041-5. [PMID: 24272083 DOI: 10.1007/s13277-013-1394-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022] Open
Abstract
Many studies were performed to assess the association between IL-4 -590C > T polymorphism and non-Hodgkin's lymphoma (NHL) risk, but no consensus was available up to now. We conducted a meta-analysis to examine the association between IL-4 -590C > T polymorphism and NHL risk. We used odds ratios (ORs) to assess the strength of the association and 95% confidence intervals (CIs) to give a sense of the precision of the estimate. A total of six studies were found to be eligible for meta-analyses of IL-4 -590C > T variant. Results from this study showed that IL-4 -590C > T polymorphism was not significantly associated with NHL risk under all genetic models in overall population. Further sensitivity analysis confirmed the results. In subgroup analyses stratified by race, no significant association was found in either Caucasian or mixed populations. The meta-analysis indicated that elected -590C > T polymorphism of IL-4 may not be a risk factor for NHL development.
Collapse
|
9
|
LIU KAISHAN, ZHUANG XIAOMEI, MAI ZHUOYING. p73 expression is associated with cellular chemosensitivity in human non-small cell lung cancer cell lines. Oncol Lett 2013; 5:583-587. [PMID: 23420689 PMCID: PMC3573009 DOI: 10.3892/ol.2012.1035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 11/09/2012] [Indexed: 12/24/2022] Open
Abstract
p73 is a member of the p53 tumor suppressor protein family and induces apoptosis in tumor cells that lack functional p53. It has been demonstrated that methylation of CpG islands in the promoter and exon 1 region may result in silencing of the p73 gene. The aim of this study was to investigate the correlation between p73 gene expression and chemosensitivity in non-small cell lung cancer (NSCLC) cell lines. The expression of the p73 transcript in six NSCLC cell lines was investigated by reverse transcription-polymerase chain reaction (RT-PCR). The methylation status in these cell lines was determined by methylation-specific PCR (MSP) analysis. An in vitro demethylation assay was conducted using the DNA methyltransferase inhibitor 5-aza-2-deoxycytidine (5-aza-dC). Restored expression of p73 in the human lung squamous cell carcinoma cell line C57, both at the mRNA and protein level, was investigated by RT-PCR and immunohistochemistry, respectively. A colony formation assay was used to measure the surviving fraction of the C57 cell line. Transcript silencing of the p73 gene in the six NSCLC cell lines was observed and related to aberrant methylation. The expression of the p73 transcript and protein in the C57 cell line was restored by 5-aza-dC. The surviving fraction for colony formation in C57 cells pre-treated with 5-aza-dC was 0.059±0.006, which was significantly different from that of the control group (0.12±0.008; P<0.05). Our data demonstrated a significant correlation between expression of p73 and cellular chemosensitivity in NSCLC.
Collapse
Affiliation(s)
- KAISHAN LIU
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632,
P.R. China
| | - XIAOMEI ZHUANG
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632,
P.R. China
| | - ZHUOYING MAI
- Department of Pathology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632,
P.R. China
| |
Collapse
|
10
|
Abstract
Radiation-induced (RI) secondary cancers were not a major clinical concern even as little as 15 years ago. However, advances in cancer diagnostics, therapy, and supportive care have saved numerous lives and many former cancer patients are now living for 5, 10, 20, and more years beyond their initial diagnosis. The majority of these patients have received radiotherapy as a part of their treatment regimen and are now beginning to develop secondary cancers arising from normal tissue exposure to damaging effects of ionizing radiation. Because historically patients rarely survived past the extended latency periods inherent to these RI cancers, very little effort was channeled towards the research leading to the development of therapeutic agents intended to prevent or ameliorate oncogenic effects of normal tissue exposure to radiation. The number of RI cancers is expected to increase very rapidly in the near future, but the field of cancer biology might not be prepared to address important issues related to this phenomena. One such issue is the ability to accurately differentiate between primary tumors and de novo arising secondary tumors in the same patient. Another issue is the lack of therapeutic agents intended to reduce such cancers in the future. To address these issues, large-scale epidemiological studies must be supplemented with appropriate animal modeling studies. This work reviews relevant mouse (Mus musculus) models of inbred and F1 animals and methodologies of induction of most relevant radiation-associated cancers: leukemia, lymphoma, and lung and breast cancers. Where available, underlying molecular pathologies are included.
Collapse
Affiliation(s)
- Leena Rivina
- Department of Urology, Stanford University School of Medicine, Stanford, California, USA.
| | | |
Collapse
|
11
|
Mouse models for efficacy testing of agents against radiation carcinogenesis—a literature review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 10:107-43. [PMID: 23271302 PMCID: PMC3564133 DOI: 10.3390/ijerph10010107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/26/2012] [Accepted: 12/11/2012] [Indexed: 12/12/2022]
Abstract
As the number of cancer survivors treated with radiation as a part of their therapy regimen is constantly increasing, so is concern about radiation-induced cancers. This increases the need for therapeutic and mitigating agents against secondary neoplasias. Development and efficacy testing of these agents requires not only extensive in vitro assessment, but also a set of reliable animal models of radiation-induced carcinogenesis. The laboratory mouse (Mus musculus) remains one of the best animal model systems for cancer research due to its molecular and physiological similarities to man, small size, ease of breeding in captivity and a fully sequenced genome. This work reviews relevant M. musculus inbred and F1 hybrid animal models and methodologies of induction of radiation-induced leukemia, thymic lymphoma, breast, and lung cancer in these models. Where available, the associated molecular pathologies are also included.
Collapse
|
12
|
Luo SQ, Hu JP, Qu Q, Li J, Ren W, Zhang JM, Zhong Y, Hu WX. The effects of promoter methylation on downregulation of DAZAP2 in multiple myeloma cell lines. PLoS One 2012; 7:e40475. [PMID: 22792345 PMCID: PMC3392238 DOI: 10.1371/journal.pone.0040475] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 06/08/2012] [Indexed: 01/10/2023] Open
Abstract
Our previous studies had shown that DAZAP2 was profoundly downregulated in bone marrow mononuclear cells from multiple myeloma patients. In this report, we analyzed epigenetic changes in multiple myeloma cell lines to understand the molecular mechanisms underlying the downregulation of DAZAP2. Four multiple myeloma cell lines, KM3, MM.1S, OPM-2 and ARH-77, were studied. The results of methylation specific PCR (MSP) showed that the promoter of DAZAP2 was methylated for KM3, MM.1S, OPM-2 and unmethylated for ARH-77. The DAZAP2 promoter region was amplified to obtain a series of different length sequences. All of the amplified sequences were inserted to luciferase reporter vector. The constructs were transfected into COS-7 cells and the luciferase activities were measured to search for the core region of DAZAP2 promoter. Two CpG islands were found in DAZAP2 promoter region. The results of luciferase assay showed that CpG island 1 displayed weak transcriptional activity, whereas CpG island 2 exhibited strong transcriptional activity (273 folds) compared to the control. The sequence that covered both CpG islands 1 and 2 showed higher activity (1,734 folds) compared to the control, suggesting that the two islands had synergistic effect on regulating DAZAP2 expression. We also found that M. Sss I methylase could inhibit the luciferase activity, whereas demethylation using 5-aza-2′-deoxycytidine treatment rescued the expression of DAZAP2 for multiple myeloma cell lines. These data revealed that methylation of DAZAP2 promoter was involved in downregulation of DAZAP2 in multiple myeloma cells.
Collapse
Affiliation(s)
- Sai-Qun Luo
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jing-Ping Hu
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Qiang Qu
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jiang Li
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wei Ren
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Jia-Ming Zhang
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Zhong
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
| | - Wei-Xin Hu
- Molecular Biology Research Center, Xiangya School of Medicine, Central South University, Changsha, Hunan, People’s Republic of China
- * E-mail:
| |
Collapse
|
13
|
Alexandrova EM, Moll UM. Role of p53 family members p73 and p63 in human hematological malignancies. Leuk Lymphoma 2012; 53:2116-29. [PMID: 22497596 DOI: 10.3109/10428194.2012.684348] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
p53, mutated in over half of human cancers and about 13% of all hematological malignancies, maintains genomic integrity and triggers cellular senescence and apoptosis of damaged cells. In contrast to p53, the homologs p73 and p63 play critical roles in development of the central nervous system and skin/limbs, respectively. Moreover, dependent on the context they can exert tumor suppressor activities that cooperate with p53. Unlike p53, p73 and p63 are rarely mutated in cancers. Instead, up-regulation of the anti-apoptotic dominant-negative ΔNp73 and ΔNp63 isoforms is the most frequent abnormality in solid cancers. In hematological malignancies the most frequent p73 defect is promoter methylation and loss of expression, associated with unfavorable clinical outcomes. This suggests an essential tumor suppressor role of p73 in blood cells, also supported by genetic mouse models. Many therapeutic approaches aiming to restore p73 activity are currently being investigated. In contrast, the most frequent p63 abnormality is protein overexpression, associated with higher disease grade and poorer prognosis. Surprisingly, although available data are still scarce, the emerging picture is up-regulation of transactivation-competent TAp63 isoforms, suggesting a tumor-promoting role in this context.
Collapse
|
14
|
Yao Y, Bellon M, Shelton SN, Nicot C. Tumor suppressors p53, p63TAα, p63TAy, p73α, and p73β use distinct pathways to repress telomerase expression. J Biol Chem 2012; 287:20737-47. [PMID: 22496369 DOI: 10.1074/jbc.m111.319236] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The promoter of the telomerase catalytic subunit (TERT) is subject to tight regulation and remains repressed in somatic cells to ensure their limited life span and to prevent tumor initiation. Here we report that the hTERT promoter is strongly repressed by p53 and the related family members p63 and p73. We found that p53-mediated repression was different in human and mouse cells and occurred through p53-dependent transcription inhibition of c-Myc or through E-box/E2F pathways, respectively. Although p63TAα-mediated repression occurred through SP1, p63TAy-mediated repression occurred through E2F signaling. Finally, p73α- and p73β-mediated repression occurred through NF-YB2. Our results show a complex multifactorial mechanism used by p53 and its family members to keep hTERT expression under tight control.
Collapse
Affiliation(s)
- Yuan Yao
- Center for Viral Oncology and Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|