1
|
Eryilmaz IE, Egeli U, Cecener G. An in vitro redox adaptation model for metastatic prostate cancer: Establishing, characterizing, and Cabazitaxel response evaluating. Clin Exp Pharmacol Physiol 2022; 49:1094-1104. [PMID: 35751096 DOI: 10.1111/1440-1681.13694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
Little is known about the redox-adapted cancer cells for understanding their pharmacologically targetable features and chemotherapeutic responses. Thus, we presented the first in vitro redox adaptation model for metastatic prostate cancer (mPC), LNCaP-HPR, with enhanced oxidative stress resistance accompanying poor Cabazitaxel response. After establishing, the cells were characterized by comparing the viability, death, oxidative stress, total GSH levels, and the mRNA and protein levels of the redox-sensitive transcription factors responsible for the adaptation, Nrf-2, NF-κB, and HIF-1α. Then, the apoptotic effect of Cabazitaxel was evaluated in LNCaP mPC, LNCaP-HPR, and C4-2 metastatic castration-resistant (mCRPC) cells. In response to H2 O2 , viability, oxidative stress, and the total GSH levels of LNCaP-HPR cells have confirmed the oxidative stress resistance. Nrf-2, NF-κB, and HIF-1α were upregulated in LNCaP-HPR cells, not in LNCaP, confirming that resistant cells were much less affected by exogenous oxidative stress. Unlike LNCaP, LNCaP-HPR cells were less sensitive to Cabazitaxel, as closer to the response of C4-2 mCRPC cells, indicating that redox adaptation decreased Cabazitaxel response. This is the first evaluated association between redox adaptation and poor Cabazitaxel response, suggesting that in vitro Cabazitaxel efficiency is affected by PC cells' endogenous oxidative stress tolerance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Isil Ezgi Eryilmaz
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Bursa, Turkey
| | - Unal Egeli
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Bursa, Turkey
| | - Gulsah Cecener
- Bursa Uludag University, Faculty of Medicine, Medical Biology Department, Bursa, Turkey
| |
Collapse
|
2
|
Deliu Z, Tamas T, Chowdhury J, Aqil M, Bassiony M, Radosevich JA. Expression of cross-tolerance to a wide range of conditions in a human lung cancer cell line after adaptation to nitric oxide. Tumour Biol 2017; 39:1010428317723778. [PMID: 28936924 DOI: 10.1177/1010428317723778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Previously, we have shown that A549, a human lung adenocarcinoma, can be adapted to nitric oxide (NO●). NO● is a nitrogen-based free radical that is synthesized by a family of enzymes known as nitric oxide synthases. NO● has been shown to be overexpressed in patient populations of different cancers. In addition, it has been observed that patients who express high levels of nitric oxide synthases tend to have poorer clinical outcomes than those with low levels of expression. The original cell line A549 (parent) and the adapted A549-HNO (high nitric oxide) cell line serve as a useful model system to investigate the role of NO● in tumor progression and prognosis. We have previously shown that the A549-HNO-adapted cells grow aggressively when compared to A549-parent cells. Furthermore, we have shown that the A549-HNO-adapted cells exhibit a higher percentage of cell viability when exposed to ultraviolet and X-ray radiation than the A549-parent cells. Cancer patients who develop resistance to one treatment often become resistant to other previously unencountered forms of treatment. This phenomenon is known as cross-tolerance. To determine whether NO● is a potential cross-tolerance causing agent, we have expanded our research by conducting parallel studies to a variety of other agents and conditions beyond radiation and ultraviolet exposure. We exposed both cell lines to varying levels of chemotherapeutic drugs (taxol and doxorubicin), temperature, pH, calcium chloride, cadmium chloride, copper chloride, sodium chloride, ferrous chloride, and sodium-R-lipoic acid. Our results show that the A549-HNO cells exhibit greater viability than the A549-parent cells when exposed to each of the various conditions. Therefore, NO● is one potential driving force that can make tumor cells exhibit cross-tolerance.
Collapse
Affiliation(s)
- Zane Deliu
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Timothy Tamas
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Juel Chowdhury
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Madeeha Aqil
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Maaly Bassiony
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - James A Radosevich
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Glutamine at focus: versatile roles in cancer. Tumour Biol 2015; 37:1541-58. [PMID: 26700676 DOI: 10.1007/s13277-015-4671-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/16/2015] [Indexed: 02/01/2023] Open
Abstract
During the past decade, a heightened understanding of metabolic pathways in cancer has significantly increased. It is recognized that many tumor cells are genetically programmed and have involved an abnormal metabolic state. Interestingly, this increased metabolic autonomy generates dependence on various nutrients such as glucose and glutamine. Both of these components participate in various facets of metabolic activity that allow for energy production, synthesis of biomass, antioxidant defense, and the regulation of cell signaling. Here, we outline the emerging data on glutamine metabolism and address the molecular mechanisms underlying glutamine-induced cell survival. We also discuss novel therapeutic strategies to exploit glutamine addiction of certain cancer cell lines.
Collapse
|
4
|
A549 cells adapted to high nitric oxide show reduced surface CEACAM expression and altered adhesion and migration properties. Tumour Biol 2014; 36:1871-9. [PMID: 25500969 DOI: 10.1007/s13277-014-2789-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
The migration and adhesion properties of tumors affect their metastatic rate. In the present study, we investigated carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 1, 5, and 6 expression in high nitric oxide (HNO)-adapted lung cancer cells compared to parent cells. We observed high transcript levels of CEACAM 1 (4S, 4L), CEACAM 5, and CEACAM 6 in HNO cells compared to parent cells. However, the surface expression was low in HNO cells. Interestingly, the intracellular protein levels were high for these three CEACAMs. We confirmed these results with immunohistochemical experiments. Further, the adhesion and migration assays showed reduced clumping in HNO-adapted A549 (A549-HNO) cells and faster migration rates, respectively. These results document the altered adhesion and migration properties of cells adapted to HNO. Further, our studies also indicate a dynamic regulation of CEACAM protein expression and surface transport in HNO cells.
Collapse
|
5
|
Part I-mechanism of adaptation: high nitric oxide adapted A549 cells show enhanced DNA damage response and activation of antiapoptotic pathways. Tumour Biol 2013; 35:2403-15. [PMID: 24241898 DOI: 10.1007/s13277-013-1318-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/14/2013] [Indexed: 12/21/2022] Open
Abstract
Our previous studies demonstrate that A549, a human lung adenocarcinoma line, could be adapted to the free radical nitric oxide (NO([Symbol: see text])). NO([Symbol: see text]) has been shown to be overexpressed in human tumors. The original cell line, A549 (parent), and the newly adapted A549-HNO (which has a more aggressive phenotype) serves as a useful model system to study the role of NO([Symbol: see text]) in tumor biology. It is well known that DNA damage response (DDR) is altered in cancer cells and NO([Symbol: see text]) is known to cause DNA damage. Modulations in molecular mechanisms involved in DNA damage response in A549-HNO cells can provide better insights into the enhanced growth behavior of these cells. Thus, here, we carried out a series of time course experiments by treating A549 and A549-HNO cells with NO([Symbol: see text]) donor and examining levels of proteins involved in the DDR pathway. We observed induced expression of key components of DDR pathway in A549-HNO cells. The HNO cells showed sustained expression of key proteins involved in both nonhomologous end joining (NHEJ) and homologous recombination pathways, whereas parent cells only expressed low levels of NHEJ pathway proteins. Further with prolonged NO([Symbol: see text]) exposure, ATR, Chk1, and p53 were activated and upregulated in HNO cells. Activation of p53 results in inhibition of apoptosis through induced Mcl1 expression. It also leads to cell cycle modulation. Interestingly, several reports show that cancer stem cells have enhanced expression of proteins involved in DNA damage response and also activated an antiapoptotic response. Our results here suggest that our HNO adapted A549 cells have increased activation of DNA damage response pathway proteins which can lead to better DNA repair function. Enhanced DDR leads to activation of antiapoptosis response and modulation in the cell cycle which may lead to better survival of these cells under harsh conditions. Thus, our present investigation further supports the hypothesis that HNO exposure leads to survival of these cells.
Collapse
|
6
|
Ma W, Zhuang L, Han B, Tang B. Association between glutathione S-transferase T1 null genotype and gastric cancer risk: a meta-analysis of 48 studies. PLoS One 2013; 8:e60833. [PMID: 23585855 PMCID: PMC3621870 DOI: 10.1371/journal.pone.0060833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 03/03/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Glutathione S-transferases (GSTs) have proved to be involved in the detoxifying several carcinogens and may play an important role in carcinogenesis of cancer. Previous studies on the association between Glutathione S-transferase T1 (GSTT1) polymorphism and gastric cancer risk reported inconclusive results. To clarify the possible association, we conducted a meta-analysis of eligible studies. METHODS We searched in the Pubmed, Embase, and Wangfang Medicine databases for studies assessing the association between GSTT1 null genotype and gastric cancer risk. The pooled odds ratio (OR) and its 95% confidence interval (95%CI) was calculated to assess the strength of the association. A total of 48 studies with a total of 24,440 individuals were ultimately eligible for meta-analysis. RESULTS Overall, GSTT1 null genotype was significantly associated with increased risk of gastric cancer (Random-effect OR = 1.23, 95%CI 1.13-1.35, P OR <0.001, I(2) = 45.5%). Significant association was also found in Caucasians, East Asians, and Indians (P Caucasians = 0.010; P East Asians = 0.003; P Indians = 0.017). After adjusting for other confounding variables, GSTT1 null genotype was also significantly associated with increased risk of gastric cancer (Random-effect OR = 1.43, 95%CI 1.20-1.71, P OR <0.001, I(2) = 48.1%). CONCLUSION The meta-analysis provides strong evidence for the significant association between GSTT1 null genotype and increased risk of gastric cancer.
Collapse
Affiliation(s)
- Weiyuan Ma
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
| | - Le Zhuang
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, China
| | - Bo Han
- Institute of Pathology, School of Medicine, Shandong University, Jinan, China
| | - Bo Tang
- Department of Oncology, Southwest Hospital, the Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
De Vitto H, Mendonça BS, Elseth KM, Onul A, Xue J, Vesper BJ, Gallo CVM, Rumjanek FD, Paradise WA, Radosevich JA. Part III. Molecular changes induced by high nitric oxide adaptation in human breast cancer cell line BT-20 (BT-20-HNO): a switch from aerobic to anaerobic metabolism. Tumour Biol 2012; 34:403-13. [PMID: 23238817 DOI: 10.1007/s13277-012-0564-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/15/2012] [Indexed: 01/22/2023] Open
Abstract
Nutrient deprivation and reactive oxygen species (ROS) play an important role in breast cancer mitochondrial adaptation. Adaptations to these conditions allow cells to survive in the stressful microenvironment of the tumor bed. This study is directed at defining the consequences of High Nitric Oxide (HNO) exposure to mitochondria in human breast cancer cells. The breast cancer cell line BT-20 (parent) was adapted to HNO as previously reported, resulting in the BT-20-HNO cell line. Both cell lines were analyzed by a variety of methods including MTT, LDH leakage assay, DNA sequencing, and Western blot analysis. The LDH assay and the gene chip data showed that BT-20-HNO was more prone to use the glycolytic pathway than the parent cell line. The BT-20-HNO cells were also more resistant to the apoptotic inducing agent salinomycin, which suggests that p53 may be mutated in these cells. Polymerase chain reaction (PCR) followed by DNA sequencing of the p53 gene showed that it was, in fact, mutated at the DNA-binding site (L194F). Western blot analysis showed that p53 was significantly upregulated in these cells. These results suggest that free radicals, such as nitric oxide (NO), pressure human breast tumor cells to acquire an aggressive phenotype and resistance to apoptosis. These data collectively provide a mechanism by which the dysregulation of ROS in the mitochondria of breast cancer cells can result in DNA damage.
Collapse
Affiliation(s)
- H De Vitto
- Universidade Federal do Rio de Janeiro, IBqM, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Energy and redox homeostasis in tumor cells. Int J Cell Biol 2012; 2012:593838. [PMID: 22693511 PMCID: PMC3369431 DOI: 10.1155/2012/593838] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/16/2012] [Indexed: 02/06/2023] Open
Abstract
Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1). The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg's original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.
Collapse
|