1
|
Jacob R, Gorek LS. Intracellular galectin interactions in health and disease. Semin Immunopathol 2024; 46:4. [PMID: 38990375 PMCID: PMC11239732 DOI: 10.1007/s00281-024-01010-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/07/2024] [Indexed: 07/12/2024]
Abstract
In the galectin family, a group of lectins is united by their evolutionarily conserved carbohydrate recognition domains. These polypeptides play a role in various cellular processes and are implicated in disease mechanisms such as cancer, fibrosis, infection, and inflammation. Following synthesis in the cytosol, manifold interactions of galectins have been described both extracellularly and intracellularly. Extracellular galectins frequently engage with glycoproteins or glycolipids in a carbohydrate-dependent manner. Intracellularly, galectins bind to non-glycosylated proteins situated in distinct cellular compartments, each with multiple cellular functions. This diversity complicates attempts to form a comprehensive understanding of the role of galectin molecules within the cell. This review enumerates intracellular galectin interaction partners and outlines their involvement in cellular processes. The intricate connections between galectin functions and pathomechanisms are illustrated through discussions of intracellular galectin assemblies in immune and cancer cells. This underscores the imperative need to fully comprehend the interplay of galectins with the cellular machinery and to devise therapeutic strategies aimed at counteracting the establishment of galectin-based disease mechanisms.
Collapse
Affiliation(s)
- Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany.
| | - Lena-Sophie Gorek
- Department of Cell Biology and Cell Pathology, Philipps University of Marburg, Karl-von-Frisch-Str. 14, D-35043, Marburg, Germany
| |
Collapse
|
2
|
Wu J, Gu X. HOXA1 promotes epithelial-mesenchymal transition and malignant characteristics of laryngeal squamous cell carcinoma. Mutat Res 2024; 829:111882. [PMID: 39243570 DOI: 10.1016/j.mrfmmm.2024.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Despite considerable advancements in the diagnosis and treatment of LSCC, there has been no significant improvement in survival rate. Consequently, identifying molecular targets for this cancer is of paramount importance. HOXA1, a constituent of the homeobox transcription factor cluster, plays a role in the development of various types of cancer. Nevertheless, the specific function and mechanism of HOXA1 in LSCC remains unclear. This study aimed to clarify the impact of HOXA1 on the advancement of LSCC and uncover its underlying mechanism. Our findings indicate that HOXA1 exhibits a significantly elevated expression level in LSCC. Suppression of HOXA1 inhibited the proliferation of LSCC cells. Furthermore, the ablation of HOXA1 triggered the apoptosis of LSCC cells and inhibited EMT. Functionally, HOXA1 has a role in initiating the activation of the PI3K/AKT/mTOR pathway in LSCC cells. In summary, HOXA1 significantly contributes to the EMT of LSCC cells via the PI3K/AKT/mTOR signaling pathway, thereby facilitating the proliferation and motility of LSCC cells. Consequently, HOXA1 presents itself as a viable therapeutic target for LSCC interventions.
Collapse
Affiliation(s)
- Jun Wu
- Department of Otolaryngology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213004, China.
| | - Xiaofeng Gu
- Department of Otolaryngology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, Jiangsu 213004, China
| |
Collapse
|
3
|
Han Z, Hu H, Yin M, Lin Y, Yan Y, Han P, Liu B, Jing B. HOXA1 participates in VSMC-to-macrophage-like cell transformation via regulation of NF-κB p65 and KLF4: a potential mechanism of atherosclerosis pathogenesis. Mol Med 2023; 29:104. [PMID: 37528397 PMCID: PMC10394793 DOI: 10.1186/s10020-023-00685-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/12/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Macrophage-like transformation of vascular smooth muscle cells (VSMCs) is a risk factor of atherosclerosis (AS) progression. Transcription factor homeobox A1 (HOXA1) plays functional roles in differentiation and development. This study aims to explore the role of HOXA1 in VSMC transformation, thereby providing evidence for the potential mechanism of AS pathogenesis. METHODS High fat diet (HFD)-fed apolipoprotein E knockout (ApoE-/-) mice were applied as an in vivo model to imitate AS, while 1-palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine (POV-PC)-treated VSMCs were applied as an in vitro model. Recombinant adeno-associated-virus-1 (AAV-1) vectors that express short-hairpin RNAs targeting HOXA1, herein referred as AAV1-shHOXA1, were generated for the loss-of-function experiments throughout the study. RESULTS In the aortic root of AS mice, lipid deposition was severer and HOXA1 expression was higher than the wide-type mice fed with normal diet or HFD. Silencing of HOXA1 inhibited the AS-induced weight gain, inflammatory response, serum and liver lipid metabolism disorder and atherosclerotic plaque formation. Besides, lesions from AS mice with HOXA1 knockdown showed less trans-differentiation of VSMCs to macrophage-like cells, along with a suppression of krüppel-like factor 4 (KLF4) and nuclear factor (NF)-κB RelA (p65) expression. In vitro experiments consistently confirmed that HOXA1 knockdown suppressed lipid accumulation, VSMC-to-macrophage phenotypic switch and inflammation in POV-PC-treated VSMCs. Mechanism investigations further illustrated that HOXA1 transcriptionally activated RelA and KLF4 to participate in the pathological manifestations of VSMCs. CONCLUSIONS HOXA1 participates in AS progression by regulating VSMCs plasticity via regulation of NF-κB p65 and KLF4. HOXA1 has the potential to be a biomarker or therapeutic target for AS.
Collapse
Affiliation(s)
- Zhiyang Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Haidi Hu
- Department of General and Vascular Surgery, Shengjing Hospital of China Medical University, Shenyang, 110001, Liaoning, China
| | - MingZhu Yin
- Department of Dermatology, Xiangya Hospital Central South University, Changsha, 410008, Hunan, China
- Human Engineering Research Center of Skin Health and Disease, Changsha, 410008, Hunan, China
| | - Yu Lin
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Yan Yan
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Peng Han
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bing Liu
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China
| | - Bao Jing
- Department of Vascular Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
4
|
Ko FCF, Yan S, Lee KW, Lam SK, Ho JCM. Chimera and Tandem-Repeat Type Galectins: The New Targets for Cancer Immunotherapy. Biomolecules 2023; 13:902. [PMID: 37371482 DOI: 10.3390/biom13060902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
In humans, a total of 12 galectins have been identified. Their intracellular and extracellular biological functions are explored and discussed in this review. These galectins play important roles in controlling immune responses within the tumour microenvironment (TME) and the infiltration of immune cells, including different subsets of T cells, macrophages, and neutrophils, to fight against cancer cells. However, these infiltrating cells also have repair roles and are hijacked by cancer cells for pro-tumorigenic activities. Upon a better understanding of the immunomodulating functions of galectin-3 and -9, their inhibitors, namely, GB1211 and LYT-200, have been selected as candidates for clinical trials. The use of these galectin inhibitors as combined treatments with current immune checkpoint inhibitors (ICIs) is also undergoing clinical trial investigations. Through their network of binding partners, inhibition of galectin have broad downstream effects acting on CD8+ cytotoxic T cells, regulatory T cells (Tregs), Natural Killer (NK) cells, and macrophages as well as playing pro-inflammatory roles, inhibiting T-cell exhaustion to support the fight against cancer cells. Other galectin members are also included in this review to provide insight into potential candidates for future treatment(s). The pitfalls and limitations of using galectins and their inhibitors are also discussed to cognise their clinical application.
Collapse
Affiliation(s)
- Frankie Chi Fat Ko
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Sheng Yan
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - Ka Wai Lee
- Pathology Department, Baptist Hospital, Waterloo Road, Kowloon, Hong Kong, China
| | - Sze Kwan Lam
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| | - James Chung Man Ho
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Queen Mary Hospital, 102 Pokfulam Road, Hong Kong, China
| |
Collapse
|
5
|
Chen L, Luo C, Xu Y, Hu J, Chen H. Circ_0058063 regulates the development of esophageal cancer through miR-377-3p/HOXA1 axis. Anticancer Drugs 2023; 34:495-506. [PMID: 36729977 DOI: 10.1097/cad.0000000000001454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Esophageal cancer is one of the deadliest cancers. Circular RNA (CircRNA) can be used as a tumor marker. Therefore, this provides an important idea for our research. Real-time quantitative PCR (RT-qPCR) was used to analyze the expression of circ_0058063, miR-377-3p and homeobox protein Hox-A1 (HOXA1), western blot was used to analyze the protein levels of HOXA1 and cyclinD1, B cell leukemia/lymphoma 2 associated X (Bax). Cell Counting Kit-8 (CCK-8) assay, colony formation assay and wound healing assay were used to analyze cell proliferation and migration; apoptosis was analyzed by flow cytometry. Dual-luciferase reporter assays were performed to analyze the luciferase activities. Transwell assay was used to analyze the cell invasion. A glycolysis metabolism assay was used to analyze cell glycolysis ability. Xenograft models were used to validate the effect of circ_0009035 in the growth of esophageal cancer in vivo . Circ_0009035 and HOXA1 were upregulated, while miR-377 was downregulated in esophageal cancer.. Circ_0058063 targeted miR-377-3p, and HOX4 was a target of miR-377-3p. Knockdown of circ_0058063 inhibited migration, invasion and proliferation and promoted apoptosis of esophageal cancer cells. MiR-377-3p inhibition or HOXA1 overexpression could restore the effect of si-circ_0058063 on esophageal cancer cells. Knockdown of circ_0058063 repressed the growth of esophageal cancer tumors in vivo. Our study found that circ_0058063 could regulate the expression of HOXA1 by targeting miR-377-3p, thereby affecting the progress of esophageal cancer.
Collapse
Affiliation(s)
- Lisha Chen
- Department of Gastroenterology, Huizhou Municipal Central Hospital, Huizhou Central People's Hospital, Huizhou, China
| | | | | | | | | |
Collapse
|
6
|
Placental Galectins in Cancer: Why We Should Pay More Attention. Cells 2023; 12:cells12030437. [PMID: 36766779 PMCID: PMC9914345 DOI: 10.3390/cells12030437] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/15/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The first studies suggesting that abnormal expression of galectins is associated with cancer were published more than 30 years ago. Today, the role of galectins in cancer is relatively well established. We know that galectins play an active role in many types of cancer by regulating cell growth, conferring cell death resistance, or inducing local and systemic immunosuppression, allowing tumor cells to escape the host immune response. However, most of these studies have focused on very few galectins, most notably galectin-1 and galectin-3, and more recently, galectin-7 and galectin-9. Whether other galectins play a role in cancer remains unclear. This is particularly true for placental galectins, a subgroup that includes galectin-13, -14, and -16. The role of these galectins in placental development has been well described, and excellent reviews on their role during pregnancy have been published. At first sight, it was considered unlikely that placental galectins were involved in cancer. Yet, placentation and cancer progression share several cellular and molecular features, including cell invasion, immune tolerance and vascular remodeling. The development of new research tools and the concomitant increase in database repositories for high throughput gene expression data of normal and cancer tissues provide a new opportunity to examine the potential involvement of placental galectins in cancer. In this review, we discuss the possible roles of placental galectins in cancer progression and why they should be considered in cancer studies. We also address challenges associated with developing novel research tools to investigate their protumorigenic functions and design highly specific therapeutic drugs.
Collapse
|
7
|
Durmus S, Gelisgen R, Uzun H. DNA Methylation Biomarkers in Cancer: Current Clinical Utility and Future Perspectives. Biomark Med 2022. [DOI: 10.2174/9789815040463122010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epigenetic alterations are related to inherited but reversible changes in
modifications that regulate gene activity beyond the DNA sequence. DNA methylation
is the best characterized epigenetic modification, controlling DNA stability, DNA
structure, transcription, and regulation, contributing to normal development and
differentiation. In this section, we first discuss the cellular functions of DNA
methylation and focus on how this fundamental biological process is impaired in
cancer. Changes in DNA methylation status in cancer have been heralded as promising
targets for the development of diagnostic, prognostic, and predictive biomarkers due to
their noninvasive accessibility in bodily fluids (such as blood, urine, stool),
reversibility, stability, and frequency. The absence of markers for definitive diagnosis
of most types of cancer and, in some cases, DNA methylation biomarkers being more
specific and sensitive than commonly used protein biomarkers indicate a strong need
for continued research to expand DNA methylation markers. Although the information
on changes in DNA methylation status in cancer and research on its clinical relevance
is rapidly increasing, the number of DNA methylation biomarkers currently available
as commercial tests is very small. Here, we focus on the importance of DNA
methylation location and target genes likely to be developed in the future for the
development of biomarkers in addition to existing commercial tests. Following a
detailed study of possible target genes, we summarize the current clinical application
status of the most studied and validated DNA methylation biomarkers, including
SEPT9, SDC2, BMP3, NDRG4, SFRP2, TFPI2, VIM and MGMT.
Collapse
Affiliation(s)
- Sinem Durmus
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Remise Gelisgen
- Cerrahpasa Faculty of Medicine, Istanbul University,Department of Biochemistry,Department of Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul,Turkey
| | - Hafize Uzun
- Department of Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul,Turkey
| |
Collapse
|
8
|
Targeted delivery of miR-218 via decorated hyperbranched polyamidoamine for liver cancer regression. Int J Pharm 2021; 610:121256. [PMID: 34732362 DOI: 10.1016/j.ijpharm.2021.121256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/15/2021] [Accepted: 10/28/2021] [Indexed: 01/28/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of most common causes of cancer death worldwide. MicroRNA (miRNA) replacement gene therapy is a novel approach for HCC management. MiR-218 is a promising tumor suppressor miRNA that is down-regulated in HCC. Here, our aim was the targeted delivery of miR-218 expressing DNA plasmid (pmiR-218) to suppress HCC in vitro and in vivo. Hyperbranched polyamidoamine was synthesized via simple and economically one-pot reaction followed by decoration with lactobionic acid (LA-PAMAM) to selectively deliver and restore miR-218 expression in HCC. In vitro cytotoxicity investigations revealed the high biocompatibility of LA-PAMAM. Furthermore, decoration of hyperbranched polymer with LA moieties enabled LA-PAMAM to deliver pmiR-218 more efficiently to HepG2 cells compared to both PMAMA and naked pmiR-218. Such efficient delivery of miR-218 resulted in suppression of HepG2 proliferation and down-regulation of its oncogenic HOXA1 target. In vivo, LA-PAMAM/pmiR-218 treatment of HCC induced by DEN and CCl4 in mice leads to an obvious decrease in the number and size of HCC nodules. In addition, LA-PAMAM/pmiR-218 significantly improved the liver histological features, as well as down-regulated the HOXA1 in liver tissue. In conclusion, this study showed the potential of LA-PAMAM carrier for the targeted delivery of tumor suppressor miR-218 as a therapeutic candidate for HCC.
Collapse
|
9
|
Belpaire M, Ewbank B, Taminiau A, Bridoux L, Deneyer N, Marchese D, Lima-Mendez G, Baurain JF, Geerts D, Rezsohazy R. HOXA1 Is an Antagonist of ERα in Breast Cancer. Front Oncol 2021; 11:609521. [PMID: 34490074 PMCID: PMC8417444 DOI: 10.3389/fonc.2021.609521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is a heterogeneous disease and the leading cause of female cancer mortality worldwide. About 70% of breast cancers express ERα. HOX proteins are master regulators of embryo development which have emerged as being important players in oncogenesis. HOXA1 is one of them. Here, we present bioinformatic analyses of genome-wide mRNA expression profiles available in large public datasets of human breast cancer samples. We reveal an extremely strong opposite correlation between HOXA1 versus ER expression and that of 2,486 genes, thereby supporting a functional antagonism between HOXA1 and ERα. We also demonstrate in vitro that HOXA1 can inhibit ERα activity. This inhibition is at least bimodal, requiring an intact HOXA1 DNA-binding homeodomain and involving the DNA-binding independent capacity of HOXA1 to activate NF-κB. We provide evidence that the HOXA1-PBX interaction known to be critical for the transcriptional activity of HOXA1 is not involved in the ERα inhibition. Finally, we reveal that HOXA1 and ERα can physically interact but that this interaction is not essential for the HOXA1-mediated inhibition of ERα. Like other HOX oncoproteins interacting with ERα, HOXA1 could be involved in endocrine therapy resistance.
Collapse
Affiliation(s)
- Magali Belpaire
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Bruno Ewbank
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Arnaud Taminiau
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Noémie Deneyer
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Damien Marchese
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Gipsi Lima-Mendez
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| | - Jean-François Baurain
- Pôle d'imagerie moléculaire, radiothérapie et oncologie (MIRO), Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Woluwe-Saint-Lambert, Belgium.,King Albert II Cancer Institute, Cliniques Universitaires St Luc, Woluwe-Saint-Lambert, Belgium
| | - Dirk Geerts
- Department of Medical Biology, Amsterdam University Medical Centrum (AMC), University of Amsterdam, Amsterdam, Netherlands
| | - René Rezsohazy
- Louvain Institute of Biomolecular Science and Technology (LIBST), UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
10
|
Weidle UH, Nopora A. MicroRNAs Involved in Small-cell Lung Cancer as Possible Agents for Treatment and Identification of New Targets. Cancer Genomics Proteomics 2021; 18:591-603. [PMID: 34479913 DOI: 10.21873/cgp.20283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
Small-cell lung cancer, a neuro-endocrine type of lung cancers, responds very well to chemotherapy-based agents. However, a high frequency of relapse due to adaptive resistance is observed. Immunotherapy-based treatments with checkpoint inhibitors has resulted in improvement of treatment but the responses are not as impressive as in other types of tumor. Therefore, identification of new targets and treatment modalities is an important issue. After searching the literature, we identified eight down-regulated microRNAs involved in radiation- and chemotherapy-induced resistance, as well as three up-regulated and four down-regulated miRNAs with impacts on proliferation, invasion and apoptosis of small-cell lung cancer cells in vitro. Furthermore, one up-regulated and four down-regulated microRNAs with in vivo activity in SCLC cell xenografts were identified. The identified microRNAs are candidates for inhibition or reconstitution therapy. The corresponding targets are candidates for inhibition or functional reconstitution with antibody-based moieties or small molecules.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Adam Nopora
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
11
|
Guo H, Li C, Su X, Huang X. A Five-mRNA Expression Signature to Predict Survival in Oral Squamous Cell Carcinoma by Integrated Bioinformatic Analyses. Genet Test Mol Biomarkers 2021; 25:517-527. [PMID: 34406843 PMCID: PMC8403201 DOI: 10.1089/gtmb.2021.0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objectives: This study was designed to identify a messenger RNA (mRNA) expression signature to predict survival in patients with oral squamous cell carcinoma (OSCC). Methods: mRNA expression profiles were integrated with clinical data from 280 samples, including 19 normal tissues and 261 OSCC tissues in The Cancer Genome Atlas. We identified differentially expressed mRNAs (DEmRNAs) between the OSCC and normal tissue samples and developed a novel mRNA-focused expression signature using a Cox regression analysis and other bioinformatic methods. The prognostic value of this signature was evaluated by Kaplan–Meier analysis, multivariable COX regression, and receiver operating characteristic (ROC) curve analysis. Protein–protein interaction (PPI) network, gene ontology, and Kyoto Encyclopedia of Genes and Genomes enrichment analysis were performed to predict the function of the DEmRNAs. Signature-related mRNAs were analyzed by gene set enrichment analyses (GSEA) and validated by quantitative real-time polymerase chain reaction (qRT-PCR) in 20 paired OSCC and adjacent healthy tissues. Results: We identified a novel 5-mRNA expression signature (HOXA1, CELSR3, HIST1H3J, ZFP42, and ASCL4) that could predict patient outcomes in OSCC. The risk score based on the signature was able to separate OSCC patients into high- and low-risk groups that showed significantly different overall survival (p < 0.001, log-rank test). The signature was further validated as an effective independent prognostic predictor of OSCC by multivariate Cox regression analysis (hazard ratio = 3.747, confidence interval: 2.279–5.677, p < 0.001) and ROC curve of the third year (area under the curve = 0.733). Functional analysis demonstrated that the key hub genes in the PPI network were mainly enriched in cell division, cell proliferation, and the p53 signaling pathway. GSEA results showed that the 5 mRNAs were significantly enriched in mismatch repair, DNA replication, and the NOTCH signaling pathway. Finally, qRT-PCR results showed that the 5 mRNAs were upregulated in OSCC tissue in agreement with the predictions from our bioinformatics analysis. Conclusions: We identified a novel 5-mRNA signature that could predict the survival of patients with OSCC and may be a promising biomarker for personalized cancer treatments.
Collapse
Affiliation(s)
- Hejia Guo
- Guangxi Medical University College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Medical Scientific Research Center, College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Department of Oral and Maxillofacial Surgery, the Affiliated Stomatology Hospital of Guangxi Medical University, Nanning, P.R. China
| | - Cuiping Li
- Guangxi Medical University College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Medical Scientific Research Center, College of Stomatology, Guangxi Medical University, Nanning, P.R. China
| | - Xiaoping Su
- Guangxi Medical University College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Medical Scientific Research Center, College of Stomatology, Guangxi Medical University, Nanning, P.R. China
| | - Xuanping Huang
- Guangxi Medical University College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Guangxi Key Laboratory of the Rehabilitation and Reconstruction of Oral and Maxillofacial Research, College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Guangxi Colleges and Universities Key Laboratory of Treatment and Research for Oral and Maxillofacial Surgery Disease, College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Medical Scientific Research Center, College of Stomatology, Guangxi Medical University, Nanning, P.R. China.,Department of Oral and Maxillofacial Surgery, the Affiliated Stomatology Hospital of Guangxi Medical University, Nanning, P.R. China
| |
Collapse
|
12
|
Lyu P, Zhai Z, Hao Z, Zhang H, He J. CircWHSC1 serves as an oncogene to promote hepatocellular carcinoma progression. Eur J Clin Invest 2021; 51:e13487. [PMID: 33410156 DOI: 10.1111/eci.13487] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/16/2020] [Accepted: 01/03/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs) function as vital regulators in multifarious cancers, including hepatocellular carcinoma (HCC). However, the roles of circRNA Wolf-Hirschhorn syndrome candidate gene-1 (circWHSC1) in HCC are barely known. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted for the levels of circWHSC1, miR-142-3p, miR-421, miR-665 and homeobox A1 (HOXA1) mRNA. Cell Counting Kit-8 (CCK-8) assay, colony formation assay and 5'-ethynyl-2'-deoxyuridine (EdU) assay were used to evaluate cell proliferation ability. Transwell assay was adopted for cell migration and invasion. Western blot assay was employed for protein levels. RNA pull-down assay, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were executed to verify the interaction between miR-142-3p and circWHSC1 or HOXA1. Murine xenograft model assay was conducted for the role of circWHSC1 in vivo. The morphology of exosomes was observed by transmission electron microscopy (TEM). RESULTS CircWHSC1 was elevated in HCC tissues and cells, and high level of circWHSC1 was associated with worse overall survival of HCC patients. Knockdown of circWHSC1 suppressed HCC cell proliferation and metastasis in vitro and restrained tumorigenesis in vivo. CircWHSC1 functioned as the sponge for miR-142-3p, which directly targeted HOXA1. Inhibition of miR-142-3p ameliorated the effects of circWHSC1 knockdown on HCC cell proliferation and metastasis. Moreover, miR-142-3p overexpression restrained the growth and motility of HCC cells, with HOXA1 elevation reversing the impacts. Additionally, circWHSC1 was increased in HCC patients' serum and might be a diagnostic indicator for HCC. CONCLUSION CircWHSC1 played a tumour-promoting role in HCC by elevating HOXA1 through sponging miR-142-3p.
Collapse
Affiliation(s)
- Pengfei Lyu
- Department of General Surgery, Shanxi Provincial Cancer Hospital, Taiyuan City, Shanxi Province, China
| | - Zhensheng Zhai
- Department of hepatobiliary surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan City, Shanxi Province, China
| | - Zhengwen Hao
- Department of General Surgery, Shanxi Provincial Cancer Hospital, Taiyuan City, Shanxi Province, China
| | - Haoruo Zhang
- Department of General Surgery, Shanxi Provincial Cancer Hospital, Taiyuan City, Shanxi Province, China
| | - Jiefeng He
- Department of hepatobiliary surgery, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Tongji Medical College, Huazhong University of Science and Technology, Taiyuan City, Shanxi Province, China
| |
Collapse
|
13
|
Li H, Wang X, Zhang M, Wang M, Zhang J, Ma S. Identification of HOXA1 as a Novel Biomarker in Prognosis of Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 7:602068. [PMID: 33763449 PMCID: PMC7982851 DOI: 10.3389/fmolb.2020.602068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022] Open
Abstract
Hox genes, a highly conserved homolog in most animals, play vital functions in cell development and organ formation. In recent years, researchers have discovered that it can act as a tumor regulator, and its members can participate in tumorigenesis by regulating receptor signaling, cell differentiation, apoptosis, migration, EMT, and angiogenesis. Hox genes and which major members play a vital role in the progress of head and neck squamous cell carcinoma (HNSCC) is still unclear. After analyzing the expression differences and prognostic value of all Hox genes through the TCGA-HNSC database, we use histochemistry stains in 52 pairs of HNSCC slices to verify the expression level of the key member-HOXA1. In correlation analysis, we found that high HOXA1 expression is related to poor pathological grade (p = 0.0077), advanced T stage (p = 0.021) and perineural invasion (PNI) (p = 0.0019). Furthermore, we used Cox univariate and multivariate regression analysis to confirm the independent predictive power of HOXA1 expression. To explore the underlying mechanisms behind HOXA1, we ran GSVA and GSEA and found fourteen mutual signaling pathways, including neuroprotein secretion and transport, tumor-associated signaling pathways, cell adhere junction and metabolic reprogramming. Finally, we found that the high expression of HOXA1 is significantly related to the decrease of CD8+ T cell infiltration and the decline of DNA methylation level. Our findings demonstrated that HOXA1, as a notable member of the HOX family, maybe an independent prognostic indicator in HNSCC.
Collapse
Affiliation(s)
- Hui Li
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaomin Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mengjun Wang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Junjie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shiyin Ma
- Department of Otolaryngology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
14
|
Zhang Y, Pan Q, Shao Z. Tumor-Suppressive Role of microRNA-202-3p in Hepatocellular Carcinoma Through the KDM3A/HOXA1/MEIS3 Pathway. Front Cell Dev Biol 2021; 8:556004. [PMID: 33520978 PMCID: PMC7843525 DOI: 10.3389/fcell.2020.556004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents a malignant tumor predominantly arising in the setting of cirrhosis and is the third most common cause of cancer-associated death on a global scale. The heterogeneous nature of HCC and limited well-recognized biomarkers may contribute to poor patient prognosis and treatment failure. In this study, we identified expression pattern of microRNA-202-3p (miR-202-3p) in HCC and characterized its functional role as well as related mechanisms. First, we collected 50 HCC tissues and 38 normal liver tissues, and after bioinformatics prediction, the expression of miR-202-3p and KDM3A was determined in the tissues. We found lowly expressed miR-202-3p and overexpressed KDM3A in HCC tissues. Then, dual-luciferase reporter gene assay was employed to test the presence of miR-202-3p binding sites in the 3’UTR of KDM3A and chromatin immunoprecipitation (ChIP) assay to homeobox A1 (HOXA1) interaction with KDM3A and MEIS3. It has been confirmed that miR-202-3p negatively regulated KDM3A responsible for increasing the expression of HOXA1 by eliminating the histone H3 lysine 9 (H3K9)me2 in HCC cells. HOXA1 could evidently increase H3K4me1 and H3K27ac enrichment in the MEIS3 enhancer region and enhance the expression of MEIS3. Functional assays were also performed with the results showing that upregulated miR-202-3p or downregulated KDM3A retarded HCC cell viability, migration, and invasion. In addition, HepG2 cells were xenografted into nude mice, and we demonstrated that upregulated miR-202-3p reduced the growth of human HCC cells in vivo. Taken together, the present study elicits a novel miR-202-3p/KDM3A/HOXA1/MEIS3 pathway in HCC, potentiating an exquisite therapeutic target for HCC.
Collapse
Affiliation(s)
- Yijie Zhang
- Department of Organ Transplantation and Hepatobiliary, Key Laboratory of Organ Transplantation of Liaoning Province, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Qi Pan
- Department of Organ Transplantation and Hepatobiliary, Key Laboratory of Organ Transplantation of Liaoning Province, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Zigong Shao
- Department of Organ Transplantation and Hepatobiliary, Key Laboratory of Organ Transplantation of Liaoning Province, The First Affiliated Hospital, China Medical University, Shenyang, China
| |
Collapse
|
15
|
Han W, Ren X, Yang Y, Li H, Zhao L, Lin Z. microRNA-100 functions as a tumor suppressor in non-small cell lung cancer via regulating epithelial-mesenchymal transition and Wnt/β-catenin by targeting HOXA1. Thorac Cancer 2020; 11:1679-1688. [PMID: 32364673 PMCID: PMC7262897 DOI: 10.1111/1759-7714.13459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is a leading subtype in lung cancer, with high morbidities and mortalities worldwide. microRNA (miRNA) has appeared to play indispensable roles in a variety of solid carcinomas. The current study focused on the functions of miR-100 in NSCLC. METHODS qRT-PCR was performed to detect miR-100 and HOXA1 expressions in NSCLC tissues and cells. MTT and transwell assays were used to determine the functions of miR-100 in NSCLC cell proliferation, invasion and migration abilities. Western blot was used to measure related protein expressions. RESULTS qRT-PCR results showed that miR-100 expressions were dramatically decreased in NSCLC tissues. MTT assays indicated that miR-100 restoration inhibited NSCLC cell proliferation. Furthermore, transwell assay was performed to determine the impacts of miR-100 on NSCLC invasion and migration abilities. As expected, the invasion and migration capacities were significantly repressed. Direct interactions between HOXA1 and miR-100 were also verified via dual-luciferase reporter assays. Western blot analysis demonstrated that miR-100 exerted suppressive functions via regulating EMT and Wnt/β-catenin in NSCLC cells. CONCLUSIONS Our results showed that miR-100 served antitumor roles in NSCLC, providing new evidence of miR-100 as a promising therapeutic biomarker in NSCLC.
Collapse
Affiliation(s)
- Weizhong Han
- Department of Respiratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaoxia Ren
- Department of Cardiothoracic Surgey, Yantaishan Hospital, Yantai, China
| | - Yupeng Yang
- Department of General Surgery, Jinan Zhangqiu District Hospital of TCM, Jinan, China
| | - Haixia Li
- Department of Anesthesiology, The People's Hospital of Zhangqiu Area, Jinan, China
| | - Lin Zhao
- Department of Respiratory Medicine, People's Hospital of Rizhao, Rizhao, China
| | - Zhaoxia Lin
- Department of Clinical Laboratory, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
16
|
Li X, Pang L, Yang Z, Liu J, Li W, Wang D. LncRNA HOTAIRM1/HOXA1 Axis Promotes Cell Proliferation, Migration And Invasion In Endometrial Cancer. Onco Targets Ther 2019; 12:10997-11015. [PMID: 31853186 PMCID: PMC6917485 DOI: 10.2147/ott.s222334] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background Long non-coding RNA (lncRNA) microarray screening previously identified that HOXA transcript antisense RNA myeloid-specific 1 (HOTAIRM1) was significantly upregulated in type I endometrial cancer (EC). The present study aimed to determine the potential role of HOTAIRM1 and its sense transcript HOXA1 in the development and progression of type I EC. Methods We detected the expression levels of HOTAIRM1 and HOXA1 in type I EC tissues by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting and analyzed associated clinical data. Gain- or loss-of-function experiments were used to investigate the biological function of HOTAIRM1 and HOXA1 in type I EC, both in vitro and in vivo. Results The expression levels of HOTAIRM1 and HOXA1 were significantly upregulated in type I EC tissues. Furthermore, the expression of HOTAIRM1 and HOXA1 were both significantly correlated with International Federation of Gynecology and Obstetrics (FIGO) stage and lymph node metastasis. The expression of HOTAIRM1 was significantly correlated with that of HOXA1. Knockdown of HOTAIRM1 significantly inhibited cell proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) in vitro, while the over-expression of HOTAIRM1 led to the opposite effects. Moreover, we identified that HOTAIRM1 acts as a regulator for the expression of the HOXA1 gene in type I EC cells. As an oncogene, HOXA1 silencing also caused suppressive effects on tumors by inhibiting cell proliferation, migration and invasion. In addition, we also confirmed the role of HOTAIRM1 and HOXA1 in promoting tumor growth in vivo. Conclusion Our findings are the first to identify that HOTAIRM1 functions as an oncogene to promote cell proliferation, migration and invasion by regulating HOXA1 in type I EC. Therefore, the HOTAIRM1/HOXA1 axis is a novel potential prognostic biomarker and new potential therapeutic target for type I EC.
Collapse
Affiliation(s)
- Xianli Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Li Pang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhuo Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Jing Liu
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Weishan Li
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| | - Danbo Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
17
|
Han Z, Guan Y, Liu B, Lin Y, Yan Y, Wang H, Wang H, Jing B. MicroRNA-99a-5p alleviates atherosclerosis via regulating Homeobox A1. Life Sci 2019; 232:116664. [DOI: 10.1016/j.lfs.2019.116664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 10/26/2022]
|
18
|
Lin X, Pavani KC, Smits K, Deforce D, Heindryckx B, Van Soom A, Peelman L. Bta-miR-10b Secreted by Bovine Embryos Negatively Impacts Preimplantation Embryo Quality. Front Genet 2019; 10:757. [PMID: 31507632 PMCID: PMC6713719 DOI: 10.3389/fgene.2019.00757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
In a previous study, we found miR-10b to be more abundant in a conditioned culture medium of degenerate embryos compared to that of blastocysts. Here, we show that miR-10b mimics added to the culture medium can be taken up by embryos. This uptake results in an increase in embryonic cell apoptosis and aberrant expression of DNA methyltransferases (DNMTs). Using several algorithms, Homeobox A1 (HOXA1) was identified as one of the potential miR-10b target genes and dual-luciferase assay confirmed HOXA1 as a direct target of miR-10b. Microinjection of si-HOXA1 into embryos also resulted in an increase in embryonic cell apoptosis and downregulation of DNMTs. Cell progression analysis using Madin–Darby bovine kidney cells (MDBKs) showed that miR-10b overexpression and HOXA1 knockdown results in suppressed cell cycle progression and decreased cell viability. Overall, this work demonstrates that miR-10b negatively influences embryo quality and might do this through targeting HOXA1 and/or influencing DNA methylation.
Collapse
Affiliation(s)
- Xiaoyuan Lin
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | - Katrien Smits
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Dieter Deforce
- Laboratory for Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Björn Heindryckx
- Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ann Van Soom
- Reproduction, Obstetrics and Herd Health, Ghent University, Ghent, Belgium
| | - Luc Peelman
- Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Zhang Y, Chen J, Wu SS, Lv MJ, Yu YS, Tang ZH, Chen XH, Zang GQ. HOXA10 knockdown inhibits proliferation, induces cell cycle arrest and apoptosis in hepatocellular carcinoma cells through HDAC1. Cancer Manag Res 2019; 11:7065-7076. [PMID: 31440094 PMCID: PMC6666378 DOI: 10.2147/cmar.s199239] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/29/2019] [Indexed: 12/15/2022] Open
Abstract
Background Homeobox A10 (HOXA10) has been implicated in the development and progression of various human cancers. However, the precise biological functions of HOXA10 in hepatocellular carcinoma (HCC) have not been defined. Methods In this study, we examined mRNA expression by quantitative real-time PCR (qRT-PCR) of HOXA10 as well as histone deacetylase (HDAC) and protein levels by Western blot of HOXA10, HDAC1, Cyclin D1, proliferating cell nuclear antigen (PCNA), Survivin and p53 acetylation in HCC tissues and cell lines. We also assessed cell proliferation using Cell Counting Kit-8 (CCK-8) and analyzed cell cycle by flow cytometry. Furthermore, tumor growth of HCC cells in vivo was monitored using the nude mouse xenograft model. Finally, HDAC1 promoter activity and binding in HCC cell lines were detected by luciferase reporter assay and chromatin immunoprecipitation (ChIP), respectively. Results We uncovered the elevated expression of HOXA10 in HCC tissues compared to adjacent normal liver tissues. RNA interference-mediated knockdown of HOXA10 inhibited HCC cell proliferation both in vitro and in vivo. HOXA10 knockdown also induced cell cycle arrest at G0/G1 phase and apoptosis, which were accompanied with the reduced expression of Cyclin D1, PCNA and Survivin. Notably, HOXA10 knockdown enhanced p53 acetylation (Lys382), which is crucial to the activation of p53. Likewise, HOXA10 knockdown suppressed the transcription of HDAC1, a potential deacetylase for p53. In line with these observations, HDAC1 downregulation abrogated the effects of HOXA10 overexpression on proliferation, cell cycle progression, apoptosis and p53 acetylation, indicating the role of HDAC1 in mediating HOXA10 functions. Conclusion Our results demonstrate that HOXA10 knockdown inhibits proliferation, induces cell cycle arrest and apoptosis in HCC cells by regulating HDAC1 transcription.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Jie Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Shan-Shan Wu
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Meng-Jiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Yong-Sheng Yu
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Zheng-Hao Tang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Xiao-Hua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Guo-Qing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| |
Collapse
|
20
|
Nolte C, De Kumar B, Krumlauf R. Hox genes: Downstream "effectors" of retinoic acid signaling in vertebrate embryogenesis. Genesis 2019; 57:e23306. [PMID: 31111645 DOI: 10.1002/dvg.23306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
One of the major regulatory challenges of animal development is to precisely coordinate in space and time the formation, specification, and patterning of cells that underlie elaboration of the basic body plan. How does the vertebrate plan for the nervous and hematopoietic systems, heart, limbs, digestive, and reproductive organs derive from seemingly similar population of cells? These systems are initially established and patterned along the anteroposterior axis (AP) by opposing signaling gradients that lead to the activation of gene regulatory networks involved in axial specification, including the Hox genes. The retinoid signaling pathway is one of the key signaling gradients coupled to the establishment of axial patterning. The nested domains of Hox gene expression, which provide a combinatorial code for axial patterning, arise in part through a differential response to retinoic acid (RA) diffusing from anabolic centers established within the embryo during development. Hence, Hox genes are important direct effectors of retinoid signaling in embryogenesis. This review focuses on describing current knowledge on the complex mechanisms and regulatory processes, which govern the response of Hox genes to RA in several tissue contexts including the nervous system during vertebrate development.
Collapse
Affiliation(s)
- Christof Nolte
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas
| |
Collapse
|
21
|
Liu J, Liu J, Lu X. HOXA1 upregulation is associated with poor prognosis and tumor progression in breast cancer. Exp Ther Med 2018; 17:1896-1902. [PMID: 30783466 DOI: 10.3892/etm.2018.7145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/06/2018] [Indexed: 01/18/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer and the second leading cause of cancer-associated mortality among females worldwide. As a member of the homeobox (HOX) gene family, HOXA1 is involved in tumor progression and prognosis in several types of human cancer. However, the clinical significance and biological functions of HOXA1 in BC remains unknown. The current study assessed the expression of HOXA1 in BC tissues and cells via western blotting and reverse transcription-quantitative polymerase chain reaction. The association between HOXA1 expression and the clinicopathological features of patients with BC was analyzed using the Chi-square test. The overall survival of patients was calculated using the Kaplan-Meier method and examined using the log-rank test. Cell proliferation was examined via an MTT assay. Cell cycle distribution and cell apoptosis were analyzed using flow cytometry. The current study demonstrated that HOXA1 mRNA and protein expression was upregulated in BC. In addition, HOXA1 overexpression was associated with poor prognosis and advanced clinicopathological features in patients with BC. Furthermore, knockdown of HOXA1 significantly inhibited cell proliferation by enhancing cell apoptosis and cell cycle arrest in BC cells, which was accompanied with aberrant expression of cell cycle and apoptosis-associated proteins, cyclin D1, B-cell lymphoma 2 (Bcl-2) and Bcl-2-like protein 4. Taken together, the results suggested that HOXA1 may serve as a novel prognostic marker and therapeutic target in BC.
Collapse
Affiliation(s)
- Jintao Liu
- Department of Breast Surgery, Dalian Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Jinquan Liu
- Department of Clinical Medicine, Datong University School of Medicine, Datong, Shanxi 037009, P.R. China
| | - Xinyi Lu
- Department of Breast Surgery, Dalian Central Hospital Affiliated to Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| |
Collapse
|
22
|
Zhang Y, Fang J, Zhao H, Yu Y, Cao X, Zhang B. Retracted
: Downregulation of microRNA‐1469 promotes the development of breast cancer via targeting HOXA1 and activating PTEN/PI3K/AKT and Wnt/β‐catenin pathways. J Cell Biochem 2018; 120:5097-5107. [DOI: 10.1002/jcb.27786] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/06/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Yonghui Zhang
- Department of Breast Surgery Peking University International Hospital, Peking University Beijing China
| | - Jing Fang
- Department of Head and Neck Surgery Anhui Provincial Cancer Hospital, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China Hefei Anhui China
| | - Hongmeng Zhao
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Yue Yu
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Xuchen Cao
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| | - Bin Zhang
- The First Department of Breast Cancer Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer Tianjin China
- Key Laboratory of Cancer Prevention and Therapy Tianjin China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education Tianjin China
| |
Collapse
|
23
|
Dynamic regulation of Nanog and stem cell-signaling pathways by Hoxa1 during early neuro-ectodermal differentiation of ES cells. Proc Natl Acad Sci U S A 2018; 114:5838-5845. [PMID: 28584089 DOI: 10.1073/pnas.1610612114] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Homeobox a1 (Hoxa1) is one of the most rapidly induced genes in ES cell differentiation and it is the earliest expressed Hox gene in the mouse embryo. In this study, we used genomic approaches to identify Hoxa1-bound regions during early stages of ES cell differentiation into the neuro-ectoderm. Within 2 h of retinoic acid treatment, Hoxa1 is rapidly recruited to target sites that are associated with genes involved in regulation of pluripotency, and these genes display early changes in expression. The pattern of occupancy of Hoxa1 is dynamic and changes over time. At 12 h of differentiation, many sites bound at 2 h are lost and a new cohort of bound regions appears. At both time points the genome-wide mapping reveals that there is significant co-occupancy of Nanog (Nanog homeobox) and Hoxa1 on many common target sites, and these are linked to genes in the pluripotential regulatory network. In addition to shared target genes, Hoxa1 binds to regulatory regions of Nanog, and conversely Nanog binds to a 3' enhancer of Hoxa1 This finding provides evidence for direct cross-regulatory feedback between Hoxa1 and Nanog through a mechanism of mutual repression. Hoxa1 also binds to regulatory regions of Sox2 (sex-determining region Y box 2), Esrrb (estrogen-related receptor beta), and Myc, which underscores its key input into core components of the pluripotential regulatory network. We propose a model whereby direct inputs of Nanog and Hoxa1 on shared targets and mutual repression between Hoxa1 and the core pluripotency network provides a molecular mechanism that modulates the fine balance between the alternate states of pluripotency and differentiation.
Collapse
|
24
|
Zhang Y, Li XJ, He RQ, Wang X, Zhang TT, Qin Y, Zhang R, Deng Y, Wang HL, Luo DZ, Chen G. Upregulation of HOXA1 promotes tumorigenesis and development of non‑small cell lung cancer: A comprehensive investigation based on reverse transcription-quantitative polymerase chain reaction and bioinformatics analysis. Int J Oncol 2018; 53:73-86. [PMID: 29658571 PMCID: PMC5958640 DOI: 10.3892/ijo.2018.4372] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/29/2018] [Indexed: 12/19/2022] Open
Abstract
Homeobox A1 (HOXA1) serves an oncogenic role in multiple cancer types. However, the role of HOXA1 in non-small cell lung cancer (NSCLC) remains unclear. In the present study, use of reverse transcription-quantitative polymerase chain reaction and the databases of The Cancer Genome Atlas (TCGA), Oncomine, Gene Expression Profiling Interactive Analysis and the Multi Experiment Matrix were combined to assess the expression of HOXA1 and its co-expressed genes in NSCLC. Bioinformatic analyses, such as Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network and protein-protein interaction analyses, were used to investigate the underlying molecular mechanism effected by the co-expressed genes. Additionally, the potential miRNAs targeting HOXA1 were investigated. The results showed that HOXA1 was upregulated in NSCLC. The area under the curve of HOXA1 indicated a moderate diagnostic value of the HOXA1 level in NSCLC. According to GO and KEGG analyses, the co-expressed genes may be involved in 'dGTP metabolic processes', 'network-forming collagen trimers', 'centromeric DNA binding' and 'the p53 signaling pathway'. Three miRNAs (miR-181b-5p, miR-28-5p and miR-181d-5p) targeting HOXA1 were each predicted by 10 algorithms; miR-181b and miR-181d levels were downregulated in LUSC tissues compared with those in normal lung tissues based on data from the TCGA database, and inverse correlations were found between HOXA1 and miR-181b (r=−0.205, P<0.001) and miR-181d (r=−0.106, P=0.020). We speculate that HOXA1 may be the direct target of miR-181b-5p or miR-181d-5p in LUSC, and HOXA1 may serve a significant role in NSCLC by regulating various pathways, particularly the p53 signaling pathway. However, the detailed mechanism should be verified by functional experiments.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao-Jiao Li
- Department of Positron Emission Tomography-Computed Tomography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rong-Quan He
- Department of Medical Oncology,, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiao Wang
- Department of Orthopedics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tong-Tong Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yuan Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Rui Zhang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yun Deng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Han-Lin Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
25
|
Hoxa1 targets signaling pathways during neural differentiation of ES cells and mouse embryogenesis. Dev Biol 2017; 432:151-164. [DOI: 10.1016/j.ydbio.2017.09.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
|
26
|
Kraft S, Moore JB, Muzikansky A, Scott KL, Duncan LM. Differential UBE2C and HOXA1 expression in melanocytic nevi and melanoma. J Cutan Pathol 2017; 44:843-850. [DOI: 10.1111/cup.12997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 06/16/2017] [Accepted: 06/22/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Stefan Kraft
- Pathology Service and Dermatopathology Unit; Massachusetts General Hospital and Harvard Medical School; Boston Massachusetts
| | - Johanna B. Moore
- Pathology Service and Dermatopathology Unit; Massachusetts General Hospital and Harvard Medical School; Boston Massachusetts
- Department of Dermatopathology; Western Pathology Inc; San Luis Obispo California
| | - Alona Muzikansky
- Biostatistics Center; Massachusetts General Hospital and Harvard Medical School; Boston Massachusetts
| | - Kenneth L. Scott
- Department of Molecular and Human Genetics; Baylor College of Medicine; Houston Texas
| | - Lyn M. Duncan
- Pathology Service and Dermatopathology Unit; Massachusetts General Hospital and Harvard Medical School; Boston Massachusetts
| |
Collapse
|
27
|
Xu X, Nagel S, Quentmeier H, Wang Z, Pommerenke C, Dirks WG, Macleod RAF, Drexler HG, Hu Z. KDM3B shows tumor-suppressive activity and transcriptionally regulates HOXA1 through retinoic acid response elements in acute myeloid leukemia. Leuk Lymphoma 2017; 59:204-213. [PMID: 28540746 DOI: 10.1080/10428194.2017.1324156] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
KDM3B reportedly shows both tumor-suppressive and tumor-promoting activities in leukemia. The function of KDM3B is likely cell-type dependent and its seeming functional discordance may reflect its phenotypic dependence on downstream targets. Here, we first showed the underexpression of KDM3B in acute myeloid leukemia (AML) patients and AML cell lines with MLL-AF6/9 or PML-RARA translocations. Overexpression of KDM3B repressed colony formation of AML cell line with 5q deletion. We then performed global microarray profiling to identify potential downstream targets of KDM3B, notably HOXA1, which was verified by real time PCR and Western blotting. We further showed KDM3B binding at retinoic acid response elements (RARE) but not at the promoter region of HOXA1 gene. KDM3B knockdown resulted in increased mono-methylation but decreased di-methylation of H3K9 at RARE while eschewing the promoter region of HOXA1. Collectively, we found that KDM3B exhibits potential tumor-suppressive activity and transcriptionally modulates HOXA1 expression via RARE in AML.
Collapse
Affiliation(s)
- Xin Xu
- a Laboratory for Stem Cell and Regenerative Medicine , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| | - Stefan Nagel
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Hilmar Quentmeier
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Zhanju Wang
- c Department of Hematology , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| | - Claudia Pommerenke
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Wilhelm G Dirks
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Roderick A F Macleod
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Hans G Drexler
- b Department of Human and Animal Cell Culture , Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures , Braunschweig , Germany
| | - Zhenbo Hu
- a Laboratory for Stem Cell and Regenerative Medicine , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China.,c Department of Hematology , The Affiliated Hospital of Weifang Medical University , Weifang , Shandong , China
| |
Collapse
|
28
|
Li Q, Zhang X, Li N, Liu Q, Chen D. miR-30b inhibits cancer cell growth, migration, and invasion by targeting homeobox A1 in esophageal cancer. Biochem Biophys Res Commun 2017; 485:506-512. [PMID: 28189678 DOI: 10.1016/j.bbrc.2017.02.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/05/2017] [Indexed: 12/29/2022]
Abstract
Emerging evidence has shown that microRNAs (miRNAs) play important roles in tumor development and progression. In particular, miR-30b is thought to be closely related to the migration, invasion, proliferation, communication, and drug resistance of tumor cells. However, the potential value of miR-30b in human esophageal cancer (EC) remains unclear. In this study, we investigated the biological functions of miR-30b and its potential role in EC. The results indicated that the expression levels of miR-30b were decreased in EC tissues and were correlated with invasion classification (P < 0.01), lymph node metastasis (P < 0.01), and pathological stage (P < 0.05). Log-rank tests demonstrated that low expression of miR-30bwas strongly correlated with poor overall survival in patients with EC (P < 0.05). Moreover, overexpression of miR-30b markedly inhibited the growth, migration, and invasion of ECA109 and TE-1 cells by directly downregulating homeobox A1 (HOXA1). When HOXA1 was reintroduced into miR-30b-transfected ECA109 or TE-1 cells, the inhibitory effects of miR-30b on EC cell growth, migration, and invasion were markedly reversed. In conclusion, our findings demonstrated that miR-30b could inhibit tumor cell growth, migration, and invasion by directly targeting HOXA1 in EC cells.
Collapse
Affiliation(s)
- Qing Li
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medial University, Chongqing 400042, China
| | - Xuan Zhang
- Department of Oncology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Ning Li
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medial University, Chongqing 400042, China
| | - Qin Liu
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medial University, Chongqing 400042, China
| | - Dongfeng Chen
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medial University, Chongqing 400042, China.
| |
Collapse
|
29
|
Whole-transcriptome analysis of chordoma of the skull base. Virchows Arch 2016; 469:439-49. [PMID: 27401718 DOI: 10.1007/s00428-016-1985-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Revised: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
Fourteen skull base chordoma specimens and three normal specimens were microdissected from paraffin-embedded tissue. Pools of RNA from highly enriched preparations of these cell types were subjected to expression profiling using whole-transcriptome shotgun sequencing. Using strict criteria, 294 differentially expressed transcripts were found, with 28 % upregulated and 72 % downregulated. The transcripts were annotated using NCBI Entrez Gene and computationally analyzed with the Ingenuity Pathway Analysis program. From these significantly changed expressions, the analysis identified 222 cancer-related transcripts. These 294 differentially expressed genes and non-coding RNA transcripts provide here a set to specifically define skull base chordomas and to identify novel and potentially important targets for diagnosis, prognosis, and therapy of this cancer. Significance Genomic profiling to subtype skull base chordoma reveals potential candidates for specific biomarkers, with validation by IHC for selected candidates. The highly expressed developmental genes T, LMX1A, ZIC4, LHX4, and HOXA1 may be potential drivers of this disease.
Collapse
|
30
|
Yuan C, Zhu X, Han Y, Song C, Liu C, Lu S, Zhang M, Yu F, Peng Z, Zhou C. Elevated HOXA1 expression correlates with accelerated tumor cell proliferation and poor prognosis in gastric cancer partly via cyclin D1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:15. [PMID: 26791264 PMCID: PMC4721151 DOI: 10.1186/s13046-016-0294-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 01/13/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND HOXA1 is a member of the Homeobox gene family, which encodes a group of highly conserved transcription factors that are important in embryonic development. However, it has been reported that HOXA1 exhibits oncogenic properties in many malignancies. This study focused on the expression and clinical significance of HOXA1 in gastric cancer (GC). METHODS To assess the mRNA and protein expression of HOXA1 and cyclin D1 in GC tissues, we utilized qRT-PCR and western blotting, respectively. The effects of HOXA1 on GC cell proliferation, migration, and invasion, as well as xenograft tumor formation and the cell cycle were investigated in our established stable HOXA1 knockdown GC cell lines. The protein expression of HOXA1 and cyclin D1 was examined by immunohistochemistry using GC tissue microarrays (TMA) to analyze their relationship on a histological level. The Kaplan-Meier method and cox proportional hazards model were used to analyze the relationship of HOXA1 and cyclin D1 expression with GC clinical outcomes. RESULTS HOXA1 mRNA and protein expression were upregulated in GC tissues. Knockdown of HOXA1 in GC cells not only inhibited cell proliferation, migration, and invasion in vitro but also suppressed xenograft tumor formation in vivo. Moreover, HOXA1 knockdown induced changes in the cell cycle, and HOXA1 knockdown cells were arrested at the G1 phase, the number of cells in S phase was reduced, and the expression of cyclin D1 was decreased. In GC tissues, high cyclin D1 mRNA and protein expression were detected, and a significant correlation was found between the expression of HOXA1 and cyclin D1. Survival analysis indicated that HOXA1 and cyclin D1 expression were significantly associated with disease-free survival (DFS) and overall survival (OS). Interestingly, patients with tumors that were positive for HOXA1 and cyclin D1 expression showed worse prognosis. Multivariate analysis confirmed that the combination of HOXA1 and cyclin D1 was an independent prognostic indicator for OS and DFS. CONCLUSION Our data show that HOXA1 plays a crucial role in GC development and clinical prognosis. HOXA1, alone or combination with cyclin D1, may serve as a novel prognostic biomarker for GC.
Collapse
Affiliation(s)
- Chenwei Yuan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Xingwu Zhu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Yang Han
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenlong Song
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chenchen Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Su Lu
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Meng Zhang
- Department of Pathology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Fudong Yu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Zhihai Peng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China.
| | - Chongzhi Zhou
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, P. R. China. .,Department of General Surgery, Kashgar Prefecture Second People's Hospital, Kashgar, Xinjiang Uyghur Autonomous Region, 844000, P. R. China.
| |
Collapse
|
31
|
Long noncoding RNA-HOTAIR affects chemoresistance by regulating HOXA1 methylation in small cell lung cancer cells. J Transl Med 2016; 96:60-8. [PMID: 26707824 DOI: 10.1038/labinvest.2015.123] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/14/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023] Open
Abstract
Homeobox (HOX) transcript antisense RNA (HOTAIR), a long intergenic noncoding RNA (lincRNA), has been reported to play an oncogenic role in various cancers including small cell lung cancer (SCLC). However, it is not known whether HOTAIR can modulate chemoresistance in SCLC. The aim of this study is to investigate the roles of HOTAIR in chemoresistance of SCLC and its possible molecular mechanism. Knockdown of HOTAIR was carried out in SCLC multidrug-resistant cell lines (H69AR and H446AR) and the parental cell lines (H69 and H446) to assess its influence on chemoresistance. The results showed that downregulation of HOTAIR increased cell sensitivity to anticancer drugs through increasing cell apoptosis and cell cycle arrest, and suppressed tumor growth in vivo. Moreover, HOXA1 methylation increased in the resistant cells using bisulfite sequencing PCR. Depletion of HOTAIR reduced HOXA1 methylation by decreasing DNMT1 and DNMT3b expression. The interaction between HOTAIR and HOXA1 was validated by RNA immunoprecipitation. Taken together, our study suggested that HOTAIR mediates chemoresistance of SCLC by regulating HOXA1 methylation and could be utilized as a potential target for new adjuvant therapies against chemoresistance.
Collapse
|
32
|
Wang H, Liu G, Shen D, Ye H, Huang J, Jiao L, Sun Y. HOXA1 enhances the cell proliferation, invasion and metastasis of prostate cancer cells. Oncol Rep 2015; 34:1203-10. [PMID: 26135141 DOI: 10.3892/or.2015.4085] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/18/2015] [Indexed: 11/05/2022] Open
Abstract
HOXA1, a member of the HOX gene family, has been implicated in tumor progression. However, the role of HOXA1 in prostate cancer is not well-established. In the present study, we found that HOXA1 was highly expressed in prostate cancer cells. We then repressed the expression of HOXA1 by short hairpin RNA (shRNA) to investigate the function of HOXA1 in prostate cancer cells. Our in vitro data showed that knockdown of HOXA1 attenuated the growth, invasion and migration of prostate cancer DU-145 and PC-3 cells. Furthermore, knockdown of HOXA1 resulted in an increased E-cadherin level and decreased Snail and MMP-3 levels in the DU-145 cells. In addition, knockdown of HOXA1 inhibited activation of ERK1/2 and AKT in the DU-145 cells. Our in vivo data revealed that knockdown of HOXA1 suppressed the growth and metastasis of prostate cancer cells. Collectively, our findings suggest that HOXA1 is involved in the regulation of prostate cancer progression, including cell growth, migration, invasion and metastasis. Thus, downregulation of HOXA1 may be a novel approach for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Haitao Wang
- Department of E.N.T., Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Guanzhong Liu
- Department of Radiology Imaging, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Dan Shen
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Huamao Ye
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jinming Huang
- Department of Urologic Surgery, The 85th Hospital of PLA, Shanghai 200052, P.R. China
| | - Li Jiao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
33
|
Bao L, Zhao J, Dai X, Wang Y, Ma R, Su Y, Cui H, Niu J, Bai S, Xiao Z, Yuan H, Yang Z, Li C, Cheng R, Ren X. Correlation between miR-23a and onset of hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2014; 38:318-30. [PMID: 24417970 DOI: 10.1016/j.clinre.2013.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 10/28/2013] [Accepted: 12/10/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND AIMS To clarify the role of miR-23a in the onset and development of hepatocarcinoma on the cellular, genetic and molecular levels. PATIENTS AND METHODS Seventy-eight patients were included after hepatectomy. Relationships between the clinical pathological factors of tumor and paracancerous tissues were analyzed. Risk factors of overall and recurrence-free survival rates were subject to multi-variable analysis. Tissues were sequenced by digital miRNA expression profiling, and new miRNA was subject to target gene prediction. RESULTS miR-23a expression was correlated with the stage of the TNM Classification of Malignant Tumours most significantly, followed by tumor size (P=0.041 and 0.047). High miR-23a, vascular invasion, tumor size≥7cm, tumor capsule and late pathological stage were the risk factors of overall survival rate, and those of recurrence-free survival rate also included alpha-fetoprotein level≥200μg/L and multiple tumors. Compared with normal hepatic cell line L-02, the miR-23a expression levels in tumor cell lines SMMC-7721 and HepG2 were up-regulated and down-regulated respectively. Transfecting miR-23a inhibitor suppressed cell growth. Apoptotic rates of the control and those transfected with inhibitor-NC and miR-23a inhibitor for 48h were similar. CONCLUSION High miR-23a expression is the independent prognostic factor of overall and recurrence-free survival rates, and miR-23a may be involved in the onset of hepatocarcinoma as an oncogene.
Collapse
Affiliation(s)
- Lidao Bao
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China.
| | - Jianfen Zhao
- Department of Health Care for Cadres, Binzhou People's Hospital, 256610 Binzhou, PR China
| | - Xiaoxia Dai
- Department of Respiratory Medicine, Binzhou People's Hospital, 256610 Binzhou, PR China
| | - Yi Wang
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Ruilian Ma
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Yila Su
- Molecular Biotechnology Center of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Hongwei Cui
- Molecular Biotechnology Center of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Jianxiang Niu
- Department of Hepatobiliary Surgery, Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Shiming Bai
- Kitami Institute of Technology, 090-8507 Kitami, Japan
| | - Zhiying Xiao
- College of Chemistry and Chemical Engineering, Inner Mongolia University for Nationalities, 028043 Tongliao, PR China
| | - Hongwei Yuan
- Department of Pathology, Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Zhou Yang
- Department of Imaging, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Changqing Li
- Department of Geriatrics, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Rui Cheng
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China
| | - Xianhua Ren
- Department of Pharmacy, Affiliated Hospital of Inner Mongolia Medical University, 010059 Hohhot, PR China.
| |
Collapse
|
34
|
Huang YH, Chen ZK, Huang KT, Li P, He B, Guo X, Zhong JQ, Zhang QY, Shi HQ, Song QT, Yu ZP, Shan YF. Decreased expression of LKB1 correlates with poor prognosis in hepatocellular carcinoma patients undergoing hepatectomy. Asian Pac J Cancer Prev 2014; 14:1985-8. [PMID: 23679304 DOI: 10.7314/apjcp.2013.14.3.1985] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM To study any correlation of LKB1 expression with prognosis in hepatocellular carcinoma (HCC) cases. METHODS A total of 70 HCC patients and 20 primary intrahepatic stone patients in the first affiliated hospital of Wenzhou Medical College were enrolled in this study. LKB1 expression was detected by immunohistochemistry. Patients were followed-up and prognostic factors were evaluated. RESULT LKB1 expression was decreased in the HCC samples. Loss of LKB1 expression in HCC was significantly related to histologic grade (P=0.010), vascular invasion (P=0.025) and TMN stage (P=0.011). Patients showing negative LKB1 expression had a significantly shorter disease-free and overall survival than those with positive expression (P = 0.001, P=0.000, respectively). Multivariate Cox regression analysis indicated that LKB1 expression level was an independent factor of survival (P = 0.033). CONCLUSION HCC patients with decreased expression LKB1 have a poor prognosis. The loss of LKB1 expression is correlated with a lower survival rate.
Collapse
Affiliation(s)
- Yue-Han Huang
- Department of Hepatobiliary, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chen D, Chen Z, Jin Y, Dragas D, Zhang L, Adjei BS, Wang A, Dai Y, Zhou X. MicroRNA-99 family members suppress Homeobox A1 expression in epithelial cells. PLoS One 2013; 8:e80625. [PMID: 24312487 PMCID: PMC3849180 DOI: 10.1371/journal.pone.0080625] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/04/2013] [Indexed: 12/23/2022] Open
Abstract
The miR-99 family is one of the evolutionarily most ancient microRNA families, and it plays a critical role in developmental timing and the maintenance of tissue identity. Recent studies, including reports from our group, suggested that the miR-99 family regulates various physiological processes in adult tissues, such as dermal wound healing, and a number of disease processes, including cancer. By combining 5 independent genome-wide expression profiling experiments, we identified a panel of 266 unique transcripts that were down-regulated in epithelial cells transfected with miR-99 family members. A comprehensive bioinformatics analysis using 12 different sequence-based microRNA target prediction algorithms revealed that 81 out of these 266 down-regulated transcripts are potential direct targets for the miR-99 family. Confirmation experiments and functional analyses were performed to further assess 6 selected miR-99 target genes, including mammalian Target of rapamycin (mTOR), Homeobox A1 (HOXA1), CTD small phosphatase-like (CTDSPL), N-myristoyltransferase 1 (NMT1), Transmembrane protein 30A (TMEM30A), and SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily A member 5 (SMARCA5). HOXA1 is a known proto-oncogene, and it also plays an important role in embryonic development. The direct targeting of the miR-99 family to two candidate binding sequences located in the HOXA1 mRNA was confirmed using a luciferase reporter gene assay and a ribonucleoprotein-immunoprecipitation (RIP-IP) assay. Ectopic transfection of miR-99 family reduced the expression of HOXA1, which, in consequence, down-regulated the expression of its downstream gene (i.e., Bcl-2) and led to reduced proliferation and cell migration, as well as enhanced apoptosis. In summary, we identified a number of high-confidence miR-99 family target genes, including proto-oncogene HOXA1, which may play an important role in regulating epithelial cell proliferation and migration during physiological disease processes, such as dermal wound healing and tumorigenesis.
Collapse
Affiliation(s)
- Dan Chen
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zujian Chen
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Yi Jin
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dragan Dragas
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Leitao Zhang
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral and Maxillofacial Surgery, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Barima S. Adjei
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Anxun Wang
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yang Dai
- Department of Bioengineering, College of Engineering, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Xiaofeng Zhou
- Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Periodontics, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|