1
|
Lin Y, Chen Y, Gan L, Li Z, Shen F. A prognostic model based on tumor microenvironment and immune cell in colorectal cancer. Scand J Gastroenterol 2024; 59:304-315. [PMID: 37978827 DOI: 10.1080/00365521.2023.2281252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/30/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of cancer-related death. Immunotherapy is one of the new options for cancer treatment. This study aimed to develop an immune-related signature associated with CRC. METHODS We performed differential analysis to screen out the differentially expressed genes (DEGs) of The Cancer Genome Atlas-Colorectal Cancer (TCGA-CRC) datasets. Weighted gene co-expression network analysis (WGCNA) was performed to obtain the key module genes associated with differential immune cells. The candidate genes were obtained through overlapping key DEGs and key module genes. The univariate and multivariate Cox regression analyses were adopted to build a CRC prognostic signature. We further conducted immune feature estimation and chemotherapy analysis between two risk subgroups. Finally, we verified the expression of immune-related prognostic genes at the transcriptional level. RESULTS A total of 61 candidate genes were obtained by overlapping key DEGs and key module genes associated with differential immune cells. Then, an immune-related prognostic signature was built based on the three prognostic genes (HAMP, ADAM8, and CD1B). The independent prognostic analysis suggested that age, stage, and RiskScore could be used as independent prognostic factors. Further, we found significantly higher expression of three prognostic genes in the CRC group compared with the normal group. Finally, real-time polymerase chain reaction verified the expression of three genes in patients with CRC. CONCLUSION The prognostic signature comprising HAMP, ADAM8, and CD1B based on immune cells was established, providing a theoretical basis and reference value for the research of CRC.
Collapse
Affiliation(s)
- Yufu Lin
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Yabo Chen
- Department of General Practice, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Lu Gan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhiyong Li
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
| | - Feng Shen
- Department of Oncology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, China
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Pianetti S, Miller KD, Chen HH, Althouse S, Cao S, Michael SJ, Sonenshein GE, Mineva ND. ADAM8 is expressed widely in breast cancer and predicts poor outcome in hormone receptor positive, HER-2 negative patients. Cancer Cell Int 2023; 23:165. [PMID: 37568162 PMCID: PMC10422820 DOI: 10.1186/s12935-023-03024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/06/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Breast malignancies are the predominant cancer-related cause of death in women. New methods of diagnosis, prognosis and treatment are necessary. Previously, we identified the breast cancer cell surface protein ADAM8 as a marker of poor survival, and a driver of Triple-Negative Breast Cancer (TNBC) growth and spread. Immunohistochemistry (IHC) with a research-only anti-ADAM8 antibody revealed 34.0% of TNBCs (17/50) expressed ADAM8. To identify those patients who could benefit from future ADAM8-based interventions, new clinical tests are needed. Here, we report on the preclinical development of a highly specific IHC assay for detection of ADAM8-positive breast tumors. METHODS Formalin-fixed paraffin-embedded sections of ADAM8-positive breast cell lines and patient-derived xenograft tumors were used in IHC to identify a lead antibody, appropriate staining conditions and controls. Patient breast cancer samples (n = 490) were used to validate the assay. Cox proportional hazards models assessed association between survival and ADAM8 expression. RESULTS ADAM8 staining conditions were optimized, a lead anti-human ADAM8 monoclonal IHC antibody (ADP2) identified, and a breast staining/scoring control cell line microarray (CCM) generated expressing a range of ADAM8 levels. Assay specificity, reproducibility, and appropriateness of the CCM for scoring tumor samples were demonstrated. Consistent with earlier findings, 36.1% (22/61) of patient TNBCs expressed ADAM8. Overall, 33.9% (166/490) of the breast cancer population was ADAM8-positive, including Hormone Receptor (HR) and Human Epidermal Growth Factor Receptor-2 (HER2) positive cancers, which were tested for the first time. For the most prevalent HR-positive/HER2-negative subtype, high ADAM8 expression identified patients at risk of poor survival. CONCLUSIONS Our studies show ADAM8 is widely expressed in breast cancer and provide support for both a diagnostic and prognostic value of the ADP2 IHC assay. As ADAM8 has been implicated in multiple solid malignancies, continued development of this assay may have broad impact on cancer management.
Collapse
Affiliation(s)
- Stefania Pianetti
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111 USA
- Adecto Pharmaceuticals, Inc., 75 Kneeland St., 14th Floor, Boston, MA 02111 USA
| | - Kathy D. Miller
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN USA
| | - Hannah H. Chen
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA USA
| | - Sandra Althouse
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN USA
| | - Sha Cao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN USA
| | - Steven J. Michael
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111 USA
| | - Gail E. Sonenshein
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111 USA
- Adecto Pharmaceuticals, Inc., 75 Kneeland St., 14th Floor, Boston, MA 02111 USA
| | - Nora D. Mineva
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, 136 Harrison Ave., Boston, MA 02111 USA
- Adecto Pharmaceuticals, Inc., 75 Kneeland St., 14th Floor, Boston, MA 02111 USA
| |
Collapse
|
3
|
Kalita A, Sikora-Skrabaka M, Nowakowska-Zajdel E. Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review. Curr Issues Mol Biol 2023; 45:2917-2936. [PMID: 37185715 PMCID: PMC10136553 DOI: 10.3390/cimb45040191] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Gastrointestinal (GI) cancers are some of the most common cancers in the world and their number is increasing. Their etiology and pathogenesis are still unclear. ADAM proteins are a family of transmembrane and secreted metalloproteinases that play a role in cancerogenesis, metastasis and neoangiogenesis. MicroRNAs are small single-stranded non-coding RNAs that take part in the post-transcriptional regulation of gene expression. Some ADAM proteins can be targets for microRNAs. In this review, we analyze the impact of microRNA/ADAM protein axes in GI cancers.
Collapse
Affiliation(s)
- Agnieszka Kalita
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Magdalena Sikora-Skrabaka
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Ewa Nowakowska-Zajdel
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| |
Collapse
|
4
|
Harati R, Vandamme M, Blanchet B, Bardin C, Praz F, Hamoudi RA, Desbois-Mouthon C. Drug-Drug Interaction between Metformin and Sorafenib Alters Antitumor Effect in Hepatocellular Carcinoma Cells. Mol Pharmacol 2021; 100:32-45. [PMID: 33990407 DOI: 10.1124/molpharm.120.000223] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/09/2021] [Indexed: 01/21/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is one of the leading causes of cancer-related deaths worldwide. The multitarget inhibitor sorafenib is a first-line treatment of patients with advanced unresectable HCC. Recent clinical studies have evidenced that patients treated with sorafenib together with the antidiabetic drug metformin have a survival disadvantage compared with patients receiving sorafenib only. Here, we examined whether a clinically relevant dose of metformin (50 mg/kg per day) could influence the antitumoral effects of sorafenib (15 mg/kg per day) in a subcutaneous xenograft model of human HCC growth using two different sequences of administration, i.e., concomitant versus sequential dosing regimens. We observed that the administration of metformin 6 hours prior to sorafenib was significantly less effective in inhibiting tumor growth (15.4% tumor growth inhibition) than concomitant administration of the two drugs (59.5% tumor growth inhibition). In vitro experiments confirmed that pretreatment of different human HCC cell lines with metformin reduced the effects of sorafenib on cell viability, proliferation, and signaling. Transcriptomic analysis confirmed significant differences between xenografted tumors obtained under the concomitant and the sequential dosing regimens. Taken together, these observations call into question the benefit of parallel use of metformin and sorafenib in patients with advanced HCC and diabetes, as the interaction between the two drugs could ultimately compromise patient survival. SIGNIFICANCE STATEMENT: When drugs are administered sequentially, metformin alters the antitumor effect of sorafenib, the reference treatment for advanced hepatocellular carcinoma, in a preclinical murine xenograft model of liver cancer progression as well as in hepatic cancer cell lines. Defective activation of the AMP-activated protein kinase pathway as well as major transcriptomic changes are associated with the loss of the antitumor effect. These results echo recent clinical work reporting a poorer prognosis for patients with liver cancer who were cotreated with metformin and sorafenib.
Collapse
Affiliation(s)
- Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Marc Vandamme
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Benoit Blanchet
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Christophe Bardin
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Françoise Praz
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Rifat Akram Hamoudi
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| | - Christèle Desbois-Mouthon
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy (R.H.), and Department of Clinical Sciences, College of Medicine (R.A.H), University of Sharjah, Sharjah, United Arab Emirates; Centre de Recherche Saint-Antoine (R.H., M.V., F.P., C.D.-M.) and Centre de Recherche des Cordeliers (C.D.-M.), Sorbonne Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Paris, France; Département de Pharmacocinétique et Pharmacochimie, Hôpital Cochin, AP-HP, CARPEM, Paris, France (B.B., C.B.); UMR8038 CNRS, U1268 INSERM, Faculté de Pharmacie, Université de Paris, PRES Sorbonne Paris Cité, Paris, France (B.B); Centre National de la Recherche Scientifique, Paris, France (F.P.); and Division of Surgery and Interventional Science, UCL, London, United Kingdom (R.A.H.)
| |
Collapse
|
5
|
Théret N, Bouezzeddine F, Azar F, Diab-Assaf M, Legagneux V. ADAM and ADAMTS Proteins, New Players in the Regulation of Hepatocellular Carcinoma Microenvironment. Cancers (Basel) 2021; 13:cancers13071563. [PMID: 33805340 PMCID: PMC8037375 DOI: 10.3390/cancers13071563] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Members of the adamalysin family are multi-domain proteins involved in many cancer-related functions. In this review, we will examine the literature on the involvement of adamalysins in hepatocellular carcinoma progression and their importance in the tumor microenvironment where they regulate the inflammatory response and the epithelial–mesenchymal transition. We complete this review with an analysis of adamalysin expression in a large cohort of patients with hepatocellular carcinoma from The Cancer Genome Atlas (TCGA) database. These original results give a new insight into the involvement of all adamalysins in the primary liver cancer. Abstract The tumor microenvironment plays a major role in tumor growth, invasion and resistance to chemotherapy, however understanding how all actors from microenvironment interact together remains a complex issue. The tumor microenvironment is classically represented as three closely connected components including the stromal cells such as immune cells, fibroblasts, adipocytes and endothelial cells, the extracellular matrix (ECM) and the cytokine/growth factors. Within this space, proteins of the adamalysin family (ADAM for a disintegrin and metalloproteinase; ADAMTS for ADAM with thrombospondin motifs; ADAMTSL for ADAMTS-like) play critical roles by modulating cell–cell and cell–ECM communication. During last decade, the implication of adamalysins in the development of hepatocellular carcinoma (HCC) has been supported by numerous studies however the functional characterization of most of them remain unsettled. In the present review we propose both an overview of the literature and a meta-analysis of adamalysins expression in HCC using data generated by The Cancer Genome Atlas (TCGA) Research Network.
Collapse
Affiliation(s)
- Nathalie Théret
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail)-UMR_S1085, University of Rennes 1, 35000 Rennes, France; (F.A.); (V.L.)
- Correspondence:
| | - Fidaa Bouezzeddine
- Molecular Cancer and Pharmaceutical Biology Laboratory, Faculty of Sciences II, Lebanese University Fanar, 1500 Beirut, Lebanon; (F.B.); (M.D.-A.)
| | - Fida Azar
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail)-UMR_S1085, University of Rennes 1, 35000 Rennes, France; (F.A.); (V.L.)
| | - Mona Diab-Assaf
- Molecular Cancer and Pharmaceutical Biology Laboratory, Faculty of Sciences II, Lebanese University Fanar, 1500 Beirut, Lebanon; (F.B.); (M.D.-A.)
| | - Vincent Legagneux
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail)-UMR_S1085, University of Rennes 1, 35000 Rennes, France; (F.A.); (V.L.)
| |
Collapse
|
6
|
ADAM8 in invasive cancers: links to tumor progression, metastasis, and chemoresistance. Clin Sci (Lond) 2019; 133:83-99. [PMID: 30635388 DOI: 10.1042/cs20180906] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022]
Abstract
Ectodomain shedding of extracellular and membrane proteins is of fundamental importance for cell-cell communication in neoplasias. A Disintegrin And Metalloproteinase (ADAM) proteases constitute a family of multifunctional, membrane-bound proteins with traditional sheddase functions. Their protumorigenic potential has been attributed to both, essential (ADAM10 and ADAM17) and 'dispensable' ADAM proteases (ADAM8, 9, 12, 15, and 19). Of specific interest in this review is the ADAM proteinase ADAM8 that has been identified as a significant player in aggressive malignancies including breast, pancreatic, and brain cancer. High expression levels of ADAM8 are associated with invasiveness and predict a poor patient outcome, indicating a prognostic and diagnostic potential of ADAM8. Current knowledge of substrates and interaction partners gave rise to the hypothesis that ADAM8 dysregulation affects diverse processes in tumor biology, attributable to different functional cores of the multidomain enzyme. Proteolytic degradation of extracellular matrix (ECM) components, cleavage of cell surface proteins, and subsequent release of soluble ectodomains promote cancer progression via induction of angiogenesis and metastasis. Moreover, there is increasing evidence for significance of a non-proteolytic function of ADAM8. With the disintegrin (DIS) domain ADAM8 binds integrins such as β1 integrin, thereby activating integrin signaling pathways. The cytoplasmic domain is critical for that activation and involves focal adhesion kinase (FAK), extracellular regulated kinase (ERK1/2), and protein kinase B (AKT/PKB) signaling, further contributing to cancer progression and mediating chemoresistance against first-line therapies. This review highlights the remarkable effects of ADAM8 in tumor biology, concluding that pharmacological inhibition of ADAM8 represents a promising therapeutic approach not only for monotherapy, but also for combinatorial therapies.
Collapse
|
7
|
Frantzi M, Metzger J, Banks RE, Husi H, Klein J, Dakna M, Mullen W, Cartledge JJ, Schanstra JP, Brand K, Kuczyk MA, Mischak H, Vlahou A, Theodorescu D, Merseburger AS. Discovery and validation of urinary biomarkers for detection of renal cell carcinoma. J Proteomics 2013; 98:44-58. [PMID: 24374379 DOI: 10.1016/j.jprot.2013.12.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/27/2013] [Accepted: 12/14/2013] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Renal cell carcinoma (RCC) is often accompanied by non-specific symptoms. The increase of incidentally discovered small renal masses also presents a diagnostic dilemma. This study investigates whether RCC-specific peptides with diagnostic potential can be detected in urine and whether a combination of such peptides could form a urinary screening tool. MATERIALS AND METHODS For the discovery of RCC-specific biomarkers, we have employed CE-MS to analyze urine samples from patients with RCC (N=40) compared to non-diseased controls (N=68). RESULTS AND DISCUSSION 86 peptides were found to be specifically associated to RCC, of which sequence could be obtained for 40. A classifier based on these peptides was evaluated in an independent set of 76 samples, resulting in 80% sensitivity and 87% specificity. The specificity of the marker panel was further validated in a historical dataset of 1077 samples including age-matched controls (N=218), patients with related cancer types and renal diseases (N=859). In silico protease prediction based on the cleavage sites of differentially excreted peptides, suggested modified activity of certain proteases including cathepsins, ADAMTS and kallikreins some of which were previously found to be associated to RCC. CONCLUSIONS RCC can be detected with high accuracy based on specific urinary peptides. BIOLOGICAL SIGNIFICANCE Clear cell renal cell carcinoma (RCC) has the highest incidence among the renal malignancies, often presenting non-specific or no symptoms at all. Moreover, with no diagnostic marker being available so far, almost 30% of the patients are diagnosed with metastatic disease and 30-40% of the patients initially diagnosed with localized tumor relapse. These facts introduce the clinical need of early diagnosis. This study is focused on the investigation of a marker model based on urinary peptides, as a tool for the detection of RCC in selected patients at risk. Upon evaluation of the marker model in an independent blinded set of 76 samples, 80% sensitivity and 87% specificity were reported. An additional dataset of 1077 samples was subsequently employed for further evaluation of the specificity of the classifier.
Collapse
Affiliation(s)
- Maria Frantzi
- Mosaiques diagnostics GmbH, Hannover, Germany; Biomedical Research Foundation, Academy of Athens, Biotechnology Division, Athens, Greece.
| | | | - Rosamonde E Banks
- St James's University Hospital, Cancer Research UK Clinical Centre, Clinical and Biomedical Proteomics Group, Leeds, United Kingdom
| | - Holger Husi
- University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | - Julie Klein
- Mosaiques diagnostics GmbH, Hannover, Germany
| | | | - William Mullen
- University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | | | - Joost P Schanstra
- Inserm, U858/I2MR, Department of Renal and Cardiac Remodeling, Team #5, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France; Université Toulouse III Paul Sabatier, Institut de Médecine Moléculaire de Rangueil, Toulouse F-31000, France
| | - Korbinian Brand
- Hannover Medical School, Institute of Clinical Chemistry, Hannover, Germany
| | - Markus A Kuczyk
- Hannover Medical School, Department of Urology and Urological Oncology, Hannover, Germany
| | - Harald Mischak
- Mosaiques diagnostics GmbH, Hannover, Germany; University of Glasgow, Institute of Cardiovascular and Medical Sciences, Glasgow, United Kingdom
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Biotechnology Division, Athens, Greece
| | - Dan Theodorescu
- University of Colorado, Department of Surgery and Pharmacology, Aurora, CO, USA; University of Colorado Comprehensive Cancer Center, Aurora, CO, USA
| | - Axel S Merseburger
- Hannover Medical School, Department of Urology and Urological Oncology, Hannover, Germany
| |
Collapse
|
8
|
Powell DR, Blasky AJ, Britt SG, Artinger KB. Riding the crest of the wave: parallels between the neural crest and cancer in epithelial-to-mesenchymal transition and migration. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:511-22. [PMID: 23576382 PMCID: PMC3739939 DOI: 10.1002/wsbm.1224] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neural crest (NC) is first induced as an epithelial population of cells at the neural plate border requiring complex signaling between bone morphogenetic protein, Wnt, and fibroblast growth factors to differentiate the neural and NC fate from the epidermis. Remarkably, following induction, these cells undergo an epithelial-to-mesenchymal transition (EMT), delaminate from the neural tube, and migrate through various tissue types and microenvironments before reaching their final destination where they undergo terminal differentiation. This process is mirrored in cancer metastasis, where a primary tumor will undergo an EMT before migrating and invading other cell populations to create a secondary tumor site. In recent years, as our understanding of NC EMT and migration has deepened, important new insights into tumorigenesis and metastasis have also been achieved. These discoveries have been driven by the observation that many cancers misregulate developmental genes to reacquire proliferative and migratory states. In this review, we examine how the NC provides an excellent model for studying EMT and migration. These data are discussed from the perspective of the gene regulatory networks that control both NC and cancer cell EMT and migration. Deciphering these processes in a comparative manner will expand our knowledge of the underlying etiology and pathogenesis of cancer and promote the development of novel targeted therapeutic strategies for cancer patients. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Davalyn R Powell
- Graduate Program in Cell Biology, Stem Cells and Development, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | |
Collapse
|