1
|
Ankathatti Narayanaswamy I, Kattepur AK, Raju K, Perumal V, Ramalingam R, Raavi V. Shugoshin 1 expression in various cancers: a potential target for therapy. Clin Transl Oncol 2025; 27:1953-1966. [PMID: 39476301 DOI: 10.1007/s12094-024-03749-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/25/2024] [Indexed: 04/27/2025]
Abstract
Shugoshin 1 (SGO1) is one of the Shugoshin (guardian spirit) family proteins, which is reported to be majorly involved in the protection of centromeres and proper segregation of chromosomes during cell division. Recent studies found that the altered expression of SGO1 is associated with various cancers and genetic disorders, and suggested as a target for therapy. In the present study, we have reviewed the available literature on SGO1 gene and protein expression in various cancer-cell lines, animal models and cancer patients, and targeting SGO1 with siRNA/shRNA. A significant increase in the expression of SGO1 mRNA and protein levels were observed in prostate, renal, lung, breast, neuroblastoma, leukemia, hepatocellular, and colon cancer-cell lines and the levels were associated with increased cellular proliferation, invasion, and metastasis. The altered SGO1 levels were observed in SGO1 knockout/haploinsufficient mice compared to wild type and the levels were associated with increased chromosome instability and tumorigenesis. Consistent with cell lines, higher SGO1 expression was also observed in tumor tissues of cancer patients compared to adjacent normal tissue and the levels were positively correlated with tumor stage, grade, size, and hormonal status. Higher SGO1 expression was related to resistance to chemotherapeutic agents and the knockdown of SGO1 increased sensitivity to those agents. Furthermore, targeting SGO1 with siRNA/shRNA reduced the expression of SGO1 and proliferation, and induced apoptosis of cancer cells. Overall, the SGO1 expression levels were significantly higher in various cancers, and targeting SGO1 with siRNA and shRNA reduced the levels of SGO1, proliferation and metastasis of cancers.
Collapse
Affiliation(s)
- Indumathi Ankathatti Narayanaswamy
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, 563 103, India
| | - Abhay Kumaraswamy Kattepur
- Department of Surgical Oncology, R L Jalappa Institute of Oncology, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, 563 103, India
| | - Kalyani Raju
- Department of Pathology, Sri Devaraj Urs Medical College, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, 563 103, Karnataka, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Ravi Ramalingam
- Department of Medicine, Cardiology Division, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7882, San Antonio, TX, 78229, USA
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Kolar, Karnataka, 563 103, India.
| |
Collapse
|
2
|
Bhatnagar T, Haider M, Khan MY, Ashraf MZ. WGCNA and integrative network analysis identify CHRNA5 and CTLA4 as potential therapeutic targets against angiosarcoma. Cancer Treat Res Commun 2025; 42:100862. [PMID: 39832463 DOI: 10.1016/j.ctarc.2024.100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/27/2024] [Accepted: 12/31/2024] [Indexed: 01/22/2025]
Abstract
Angiosarcomas are a type of soft-tissue sarcoma characterized by aggressive malignant tumors originating from endothelial cells of blood vessels or lymphatic vessels. Limited studies have been done to explore the molecular pathophysiology of the disease, with rather limited studies involving transcriptomic analyzes. This study was undertaken to identify the shared molecular signatures and gene modules associated with angiosarcomas of various origin. Transcriptomic data analysis of publicly available data was done followed by WGCNA to identify shared signature gene modules. The Maximal Clique Centrality algorithm was applied to gene modules, and unclustered network analysis was conducted on differentially expressed genes to identify true hub genes. The expression of candidate genes in various cancer types was analyzed using GEPIA. WGCNA analysis identified five significant modules, with the most enriched module being associated with angiogenesis and cell junction regulators. The intersection of true hub genes from MCC analysis of WGCNA modules and high-degree nodes from an unclustered network revealed eight consistently overexpressed genes in all angiosarcoma samples.Among the eight enriched genes, CHRNA5 and CTLA4, are exclusively overexpressed in angiosarcoma and not in other cancers of the same tissue origin, with significant drug-protein interactions suggesting their potential as therapeutic targets.
Collapse
Affiliation(s)
- Trishla Bhatnagar
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India 110025
| | - Madiha Haider
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India 110025
| | - Mohd Yasir Khan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India 110025
| | | |
Collapse
|
3
|
Li Z, Shu X, Liu X, Li Q, Hu Y, Jia B, Song M. Cellular and Molecular Mechanisms of Chemoresistance for Gastric Cancer. Int J Gen Med 2024; 17:3779-3788. [PMID: 39224691 PMCID: PMC11368108 DOI: 10.2147/ijgm.s473749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors in the digestive tract, and chemotherapy plays an irreplaceable role in the comprehensive treatment of GC. However, chemoresistance makes it difficult for patients with GC to benefit steadily from chemotherapy in the long term, which ultimately leads to tumor recurrence, metastasis, and patient death. Elucidating the detailed mechanism of chemoresistance in GC and identifying specific therapeutic targets will help to solve the difficult problem of chemoresistance and improve the prognosis of patients with GC. This review summarizes and clarifies the cellular and molecular mechanisms underlying chemoresistance for GC.
Collapse
Affiliation(s)
- Zonglin Li
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xingming Shu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Xin Liu
- Department of General Surgery (Gastrointestinal Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| | - Qiuyun Li
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Yifu Hu
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Bingbing Jia
- Grade 2023, Clinical Medicine College, Southwest Medical University, Luzhou, People’s Republic of China
| | - Min Song
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
4
|
Yang Z, Jiang Y, Wang L, Yu B, Cai H, Fan J, Zhang M. Prognosis and biological function of SGOL1 in clear cell renal cell carcinoma: a multiomics analysis. BMC Med Genomics 2024; 17:60. [PMID: 38383432 PMCID: PMC10882763 DOI: 10.1186/s12920-024-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Shugoshin-1 (SGOL1) is a mammalian ortholog of Shugoshin in yeast and is essential for precise chromosome segregation during mitosis and meiosis. Aberrant SGOL1 expression was reported to be closely correlated with the malignant progression of various tumors. However, the expression pattern and biological function of SGOL1 in clear cell renal cell carcinoma (ccRCC) are unclear. METHODS The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases provide mRNA expression data and outcome information for ccRCC patients. Immunohistochemistry (IHC) of ccRCC tissue chips verified SGOL1 protein expression in ccRCC patients. Data processing and visualization were performed with the UALCAN, TISIDB, TIMER, GSCA, LinkedOmics, and starBase databases. Gene Ontology (GO) annotation and gene set enrichment analysis (GSEA) were used to identify SGOL1-related biological functions and signaling pathways. Immune infiltration analysis was performed using the TISIDB database, ssGSEA algorithm, and TCGA-KIRC cohort. The biological role of SGOL1 in ccRCC was investigated using a series of in vitro cytological assays, including the MTT assay, EdU staining assay, flow cytometry analysis, Transwell assay, and wound healing assay. RESULTS SGOL1 was highly expressed in ccRCC and linked to adverse clinicopathological parameters and unfavorable prognosis. Multivariate logistic regression and nomogram calibration suggested that SGOL1 might serve as an independent and reliable prognostic predictor of ccRCC. Functional enrichment analysis indicated that SGOL1 may be involved in the cell cycle, the p53 pathway, DNA replication, and T-cell activation. Furthermore, tumor microenvironment (TME) analysis suggested that SGOL1 was positively associated with Treg infiltration and immune checkpoint upregulation. In addition, we identified a potential SNHG17/PVT1/ZMIZ1-AS1-miR-23b-3p-SGOL1 axis correlated with ccRCC carcinogenesis and progression. Finally, we demonstrated that SGOL1 promoted ccRCC cell proliferation, migratory capacity, and invasion in vitro. CONCLUSIONS SGOL1 potentially functions as an oncogene in ccRCC progression and might contribute to the immunosuppressive TME by increasing Treg infiltration and checkpoint expression, suggesting that targeting SGOL1 could be a novel therapeutic strategy for the treatment of ccRCC patients.
Collapse
Affiliation(s)
- Zezhong Yang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Yunzhong Jiang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Lu Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Binghe Yu
- Department of Ophthalmology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Hui Cai
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University. Address: No, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Jinhai Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Address: No.277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| | - Mengzhao Zhang
- Department of Vascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University. Address: No, 277 Yanta West Road, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
5
|
Hu Q, Liu Q, Zhao Y, Zhang L, Li L. SGOL2 is a novel prognostic marker and fosters disease progression via a MAD2-mediated pathway in hepatocellular carcinoma. Biomark Res 2022; 10:82. [PMCID: PMC9664666 DOI: 10.1186/s40364-022-00422-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background Shugoshin-like protein 2 (SGOL2) is a centromeric protein that ensures the correct and orderly process of mitosis by protecting and maintaining centripetal adhesions during meiosis and mitosis. Here, we examined the potential role of SGOL2 in cancers, especially in hepatocellular carcinoma (HCC). Methods One hundred ninety-nine normal adjacent tissues and 202 HCC samples were collected in this study. Human HCC cells (SK-HEP-1 and HEP-3B) were employed in the present study. Immunohistochemistry, immunofluorescence, western blot, Co-Immunoprecipitation technique, and bioinformatic analysis were utilized to assess the role of SGOL2 in HCC development process. Results Overexpression of SGOL2 predicted an unfavorable prognosis in HCC by The Cancer Genome Atlas database (TCGA), which were further validated in our two independent cohorts. Next, 47 differentially expressed genes positively related to both SGOL2 and MAD2 were identified to be associated with the cell cycle. Subsequently, we demonstrated that SGOL2 downregulation suppressed the malignant activities of HCC in vitro and in vivo. Further investigation showed that SGOL2 promoted tumor proliferation by regulating MAD2-induced cell-cycle dysregulation, which could be reversed by the MAD2 inhibitor M2I-1. Consistently, MAD2 upregulation reversed the knockdown effects of SGOL2-shRNA in HCC. Moreover, we demonstrated that SGOL2 regulated MAD2 expression level by forming a SGOL2-MAD2 complex, which led to cell cycle dysreuglation of HCC cells. Conclusion SGOL2 acts as an oncogene in HCC cells by regulating MAD2 and then dysregulating the cell cycle, providing a potential therapeutic target in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00422-z.
Collapse
Affiliation(s)
- Qingqing Hu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Qiuhong Liu
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Yalei Zhao
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Lingjian Zhang
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Lanjuan Li
- grid.13402.340000 0004 1759 700XState Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| |
Collapse
|
6
|
Fei X, Liu S, Liu P, Wang X, Zhu C, Hou J, Cai J, Pan Y. Identification and validation of a potential key gene SGOL1 for poor prognosis in hepatocellular carcinoma based on a bioinformatics approach. Front Oncol 2022; 12:1043161. [PMID: 36439418 PMCID: PMC9683735 DOI: 10.3389/fonc.2022.1043161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/21/2022] [Indexed: 08/15/2023] Open
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is one of the most prevalent types of cancer worldwide. Shugoshin 1 (SGOL1) plays a crucial role in cell mitosis and its aberrant expression level in human tumors has shown to promote chromosomal instability (CIN) and accelerate tumor growth. SGOL1 expression level in HCC cells and tissues, whether it has an influence on HCC patients' prognosis, and its mechanism of action have not yet been studied. METHODS We carried out the bioinformatics analysis of SGOL1 expression level and survival analysis in 8 different malignancies, including HCC. In addition, we analyzed SGOL1 expression level in HCC tissues, as well as HCC patients' clinical features, enrichment analysis of SGOL1 function and mechanism of action in HCC and tumor immune cells. The effects of SGOL1 expression level and cell viability on HCC were confirmed by in vitro cytological assays. RESULTS It was found that SGOL1 mRNA expression level was significantly higher in several tumor tissues, including HCC, than in corresponding normal tissues, and the elevated SGOL1 expression level was strongly associated with HCC patients' poor prognosis. It was also revealed that SGOL1 expression level in HCC tissue was positively correlated with disease stage, tumor grade, and tumor size, and the results of multivariate logistic regression analysis showed that SGOL1 was one of the independent influential factors of the prognosis of HCC. Enrichment analysis revealed that SGOL1 expression level in HCC tissue was mainly associated with tumor proliferation, cell cycle, and other factors. The results of the immune infiltration analysis indicated that SGOL1 expression level was associated with immune cell infiltration and immune checkpoints in HCC. In vitro experiments demonstrated the high SGOL1 expression level in HCC tissues and cells, and silencing of SGOL1 resulted in altered cell cycle markers and decreased proliferation, invasion, and migration of HCC cells. CONCLUSION The findings revealed that SGOL1 is highly expressed in HCC tissues, it is a biomarker of a poor prognosis, which may be related to immune cell infiltration in HCC, and may enhance the proliferation, invasion, and migration of HCC cells. The results may provide new insights into targeted treatment of HCC and improve HCC patients' prognosis.
Collapse
Affiliation(s)
- Xiaobin Fei
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Songbai Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Peng Liu
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xing Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Changhao Zhu
- Department of Hepatobiliary Surgery, Guizhou Cancer Hospital, Guiyang, China
| | - Junyi Hou
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Junzhe Cai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yaozhen Pan
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
7
|
Guo S, Zhang L, Li N. ANO1: More Than Just Calcium-Activated Chloride Channel in Cancer. Front Oncol 2022; 12:922838. [PMID: 35734591 PMCID: PMC9207239 DOI: 10.3389/fonc.2022.922838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022] Open
Abstract
ANO1, a calcium-activated chloride channel (CACC), is also known as transmembrane protein 16A (TMEM16A). It plays a vital role in the occurrence, development, metastasis, proliferation, and apoptosis of various malignant tumors. This article reviews the mechanism of ANO1 involved in the replication, proliferation, invasion and apoptosis of various malignant tumors. Various molecules and Stimuli control the expression of ANO1, and the regulatory mechanism of ANO1 is different in tumor cells. To explore the mechanism of ANO1 overexpression and activation of tumor cells by studying the different effects of ANO1. Current studies have shown that ANO1 expression is controlled by 11q13 gene amplification and may also exert cell-specific effects through its interconnected protein network, phosphorylation of different kinases, and signaling pathways. At the same time, ANO1 also resists tumor apoptosis and promotes tumor immune escape. ANO1 can be used as a promising biomarker for detecting certain malignant tumors. Further studies on the channels and the mechanism of protein activity of ANO1 are needed. Finally, the latest inhibitors of ANO1 are summarized, which provides the research direction for the tumor-promoting mechanism of ANO1.
Collapse
Affiliation(s)
- Saisai Guo
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Linna Zhang
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Na Li
- Department of Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Mei J, Liu G, Li R, Xiao P, Yang D, Bai H, Hao Y. LncRNA SNHG6 knockdown inhibits cisplatin resistance and progression of gastric cancer through miR-1297/BCL-2 axis. Biosci Rep 2021; 41:BSR20211885. [PMID: 34821362 PMCID: PMC8661508 DOI: 10.1042/bsr20211885] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Cisplatin (DDP) resistance is a huge obstacle to gastric cancer (GC) treatment. Long non-coding RNAs (lncRNAs) have been manifested to exert pivotal functions in GC development. Herein, we aimed to explore the functional impact of lncRNA small nucleolar RNA host gene 6 (SNHG6) on DDP resistance and progression of GC. Quantitative real-time PCR (qRT-PCR) assay or Western blotting was performed to detect the expression of SNHG6, microRNA(miR)-1297, and epithelial-mesenchymal transition (EMT)-related factors and B-Cell Lymphoma 2 (Bcl-2) in DDP-resistant GC cells. Half inhibition concentration (IC50) to DDP, clonogenicity, apoptosis and invasion were examined via CCK-8 assay, colony formation assay, flow cytometry and Transwell assay, respectively. Target association between miR-1297 and SNHG6 or BCL-2 was demonstrated via dual-luciferase reporter assay or RIP assay. Xenograft models in nude mice were formed to investigate role of SNHG6 in vivo. We found that SNHG6 and BCL-2 were up-regulated, while miR-1297 expression was declined in GC tissues and DDP-resistant cells. Moreover, depletion of SNHG6 or gain of miR-1297 could repress DDP resistance, proliferation and metastasis of DDP-resistant cells, which was weakened by miR-1297 inhibition or BCL-2 overexpression. Besides, SNHG6 positively regulated BCL-2 expression by sponging miR-1297. Furthermore, SNHG6 knockdown repressed GC tumor growth in vivo. In a word, lncRNA SNHG6 knockdown had inhibitory effects on DDP resistance and progression of GC by sponging miR-1297, highlighting its potential in GC treatment.
Collapse
Affiliation(s)
- Jiazhuan Mei
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Guiju Liu
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Ruijun Li
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Peng Xiao
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Dan Yang
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Hua Bai
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| | - Yibin Hao
- Department of Oncology, People’s Hospital of Zhengzhou Affiliated to Southern Medical University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Park YR, Lee ST, Kim SL, Zhu SM, Lee MR, Kim SH, Kim IH, Lee SO, Seo SY, Kim SW. Down-regulation of miR-9 promotes epithelial mesenchymal transition via regulating anoctamin-1 (ANO1) in CRC cells. Cancer Genet 2019; 231-232:22-31. [PMID: 30803553 DOI: 10.1016/j.cancergen.2018.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/21/2018] [Accepted: 12/23/2018] [Indexed: 12/19/2022]
Abstract
MicroRNA-9 (miR-9) has been reported to play a suppressive or promoting role according to cancer type. In this study, we investigated the effects of anoctamin-1 (ANO1) and miR-9 on colorectal cancer (CRC) cell proliferation, migration, and invasion and determined the underlying molecular mechanisms. Thirty-two paired CRC tissues and adjacent normal tissues were analyzed for ANO1 expression using quantitative real-time PCR (qRT-PCR). HCT116 cells were transiently transfected with miR-9 mimic, miR-9 inhibitor, or si-ANO1. Cell proliferation was determined by MTT, and flow cytometric analysis, while cell migration and invasion were assayed by trans-well migration and invasion assay in HCT116 cells. ANO1 was validated as a target of miR-9 using luciferase reporter assay and bioinformatics algorithms. We found that ANO1 expression was up-regulated in CRC tissues compared with adjacent normal tissues. ANO1 expression was associated with advanced tumor stage and lymph node metastasis, and there was an inverse relationship between miR-9 and ANO1 mRNA expression in CRC specimens, but no significant difference was found between miR-9 and ANO1 expression. ANO1 is a direct target of miR-9, and overexpression of miR-9 suppressed both mRNA and protein expression of ANO1 and inhibited cell proliferation, migration, and invasion of HCT116 cells. We also showed that overexpression of miR-9 suppressed expression of p-AKT, cyclin D1, and p-ERK in HCT116 cells. We conclude that miR-9 inhibits CRC cell proliferation, migration, and invasion by directly targeting ANO1, and miR-9/ANO1 could be a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Young Ran Park
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Soo Teik Lee
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Se Lim Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Shi Mao Zhu
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Min Ro Lee
- Department of Surgery, Chonbuk National University Hospital, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seong Hun Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - In Hee Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seung Ok Lee
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Seung Young Seo
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Chonbuk National University Hospital, Chonbuk National University Medical School, 20 Geonji-ro, Deokjin-gu, Jeonju, Jeonbuk 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
10
|
AP-2α reverses vincristine-induced multidrug resistance of SGC7901 gastric cancer cells by inhibiting the Notch pathway. Apoptosis 2018; 22:933-941. [PMID: 28439677 DOI: 10.1007/s10495-017-1379-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multidrug resistance (MDR) remains a major clinical obstacle in the treatment of gastric cancer (GC) since it causes tumor recurrence and metastasis. The transcription factor activator protein-2α (AP-2α) has been implicated in drug-resistance in breast cancer; however, its effects on MDR of gastric cancer are far from understood. In this study, we aimed to explore the effects of AP-2α on the MDR in gastric cancer cells selected by vincristine (VCR). Decreased AP-2α levels were markedly detected by RT-PCR and Western blot in gastric cancer cell lines (BGC-823, SGC-7901, AGS, MKN-45) compared with that in the gastric epithelial cell line (GES-1). Furthermore, we found that the expression of AP-2α in SGC7901/VCR or SGC7901/adriamycin (ADR) cells was lower than in SGC7901 cells. Thus, a vector overexpressing AP-2α was constructed and used to perform AP-2α gain-of-function studies in SGC7901/VCR cells. The decreased IC50 values of the anti-cancer drugs in sensitive and resistant cells after transfect with pcDNA3.1/AP-2α were determined in SGC7901/VCR cells by MTT assay. Moreover, flow cytometry analysis indicated that overexpressed AP-2α induced cell cycle arrest in the G0/G1 phase and promoted cell apoptosis of VCR-selected SGC7901/VCR cells. RT-PCR and Western blot demonstrated that overexpressed AP-2α can significantly induce the down-regulation of Notch1, Hes-1, P-gp and MRP1 in SGC7901/VCR cells. Similar effects can be observed when Numb (Notch inhibitor) was introduced. In addition, the intracellular ADR accumulation was markedly detected in AP-2α overexpressed or Numb cells. In conclusion, our results indicate that AP-2α can reverse the MDR of gastric cancer cells, which may be realized by inhibiting the Notch signaling pathway.
Collapse
|
11
|
Fu ZY. Role of ATP-binding cassette transporters, apoptosis, and long non-coding RNAs in gastric cancer multidrug resistance. Shijie Huaren Xiaohua Zazhi 2017; 25:2838-2850. [DOI: 10.11569/wcjd.v25.i32.2838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer multidrug resistance refers to the cross resistance of cancer cells to a variety of anticancer drugs, which can be primary or secondary. Several mechanisms attribute to cancer multidrug resistance. In this paper, the recent progress in the understanding of the mechanisms of multi-drug resistance of gastric cancer cells with regard to the role of adenosine triphosphate binding cassette transporters, apoptosis, and long non-coding RNAs is reviewed.
Collapse
Affiliation(s)
- Zhao-Ying Fu
- Institute of Molecular Biology and Immunology, Medical School of Yan'an University, Yan'an 716000, Shaanxi Province, China
| |
Collapse
|
12
|
Shi X, Zhao W, Yang Y, Wu S, Lv B. Salidroside could enhance the cytotoxic effect of L‑OHP on colorectal cancer cells. Mol Med Rep 2017; 17:51-58. [PMID: 29115408 PMCID: PMC5780144 DOI: 10.3892/mmr.2017.7846] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/22/2017] [Indexed: 01/27/2023] Open
Abstract
Evidence has suggested that salidroside inhibits the proliferation and invasion of renal clear cell, lung, breast, and colon cancer. However, effect of salidroside on colorectal cancer (CRC) cells against oxaliplatin (L-OHP) resistance remains unclear. In the present study, the CRC HT-29 cell line and L-OHP resistance HT-29/L-OHP cell line were used to evaluate the effect, and mechanism of salidroside on L-OHP resistance. The results demonstrated that the activity of HT-29 cells was lower compared with that of HT-29/L-OHP cells following L-OHP intervention, and was accompanied with varied expression levels of drug resistant proteins. The combination of salidroside and L-OHP weakened cell activity significantly compared single utilization. Compared with the control group, salidroside intervention resulted in a higher percentage of HT-29/L-OHP cells in the G0/G1 stage, and reduced percentage in the G2/M stage, but no significant variation in the S stage. The HT-29/L-OHP cells exhibited increased apoptosis rates and caspase-3 activity, but decreased metastatic, and invasive abilities following salidroside intervention. Quantitative polymerase chain reaction and western blot analysis detected variations in the expression levels of associated genes in HT-29/L-OHP cells following salidroside intervention. In all, the results of the present study revealed that salidroside is able to decrease the activity and invasive capacity of HT-29/L-OHP cells, and treatment with salidroside is associated with increased apoptosis of cancer cells through the regulation of certain genes.
Collapse
Affiliation(s)
- Xiaoming Shi
- Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Wei Zhao
- Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Yongbin Yang
- Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Shengchun Wu
- Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Bonan Lv
- Department of General Surgery, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
13
|
Zhao Q, Tan BB, Li Y, Fan LQ, Yang PG, Tian Y. Enhancement of Drug Sensitivity by Knockdown of HIF-1α in Gastric Carcinoma Cells. Oncol Res 2016; 23:129-36. [PMID: 26931435 PMCID: PMC7838699 DOI: 10.3727/096504015x14500513118029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this study, the effects of hypoxia-inducible factor-1α (HIF-1α) on gastric carcinoma (GC) drug resistance through apoptosis-related genes are investigated. First, HIF-1α-specific siRNA was synthetized and transfected into drug-resistant GC cell line OCUM-2MD3/L-OHP. Then MTT assay was applied to test the inhibition rate of GC cells by 5-fluorouracil (5-FU) and oxaliplatin (L-OHP). After that, flow cytometry (FCM) was applied to measure apoptosis rate. qPCR and Western blot assay were employed to detect HIF-1α and apoptosis-related genes. Results showed that HIF-1α in OCUM-2MD3/L-OHP cells was higher than that in OCUM-2MD3 and gastric epithelial cells. After HIF-1α-siRNA transfection, inhibition rates of 5-FU and L-OHP to tumor cells increased significantly. FCM results showed that apoptosis rate of OCUM-2MD3/L-OHP cells increased significantly. After HIF-1α-siRNA transfection, survivin and Bcl-2 decreased, whereas Bax, caspase 3, and caspase 8 increased significantly. Results from this study seem to confirm that HIF-1α getting involved in GC drug resistance is possibly due to its regulation of some apoptosis-related genes. HIF-1α may be a potential target to reverse drug resistance of GC.
Collapse
Affiliation(s)
- Qun Zhao
- Department of General Surgery, the Fourth Affiliated Hospital, Hebei Medical University, Shijiazhuang, China
| | | | | | | | | | | |
Collapse
|
14
|
Zhan M, Zhao X, Wang H, Chen W, Xu S, Wang W, Shen H, Huang S, Wang J. miR-145 sensitizes gallbladder cancer to cisplatin by regulating multidrug resistance associated protein 1. Tumour Biol 2016; 37:10553-10562. [PMID: 26852750 DOI: 10.1007/s13277-016-4957-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/02/2016] [Indexed: 02/05/2023] Open
Abstract
Gallbladder cancer (GBC) is the most common malignancy in biliary tract with poor prognosis. Due to its high chemoresistance, systemic chemotherapies have had limited success in treating GBC patients. MicroRNAs (miRNAs) are emerging novel regulators of chemoresistance, which modulate the expression of drug resistance-related genes. In this study, we investigated the association between miR-145 expression and cisplatin sensitivity by both in vivo and in vitro analysis. Quantitative PCR (q-PCR) analysis indicated an increased miR-145 expression in GBC tissues. In addition, studies on GBC cell lines suggested an increased cisplatin efficacy with miR-145 overexpression, whereas decreasing miR-145 expression reduced cisplatin sensitivity. Further, we found that miR-145 accelerated MRP1 mRNA degradation by directly targeting its 3'-UTR and therefore caused increased cisplatin toxicity in GBC cells. Moreover, lower miR-145 and higher MRP1 expression levels predicted poor prognosis in GBC patients who received chemotherapy. Collectively, our findings established a rationale for using miR-145 expression as a biomarker to identify cisplatin-resistant GBC patients and propose that treatment strategies increasing the expression of miR-145 could be a new therapeutic approach for GBC patients.
Collapse
MESH Headings
- 3' Untranslated Regions
- ATP Binding Cassette Transporter, Subfamily B/biosynthesis
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Animals
- Antineoplastic Agents, Alkylating/pharmacology
- Antineoplastic Agents, Alkylating/therapeutic use
- Apoptosis
- Biomarkers, Tumor
- Cell Division
- Cell Movement
- Cisplatin/pharmacology
- Cisplatin/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Gallbladder Neoplasms/drug therapy
- Gallbladder Neoplasms/genetics
- Gallbladder Neoplasms/mortality
- Gene Expression Regulation, Neoplastic
- Genes, Reporter
- Humans
- Kaplan-Meier Estimate
- Mice
- Mice, Nude
- MicroRNAs/genetics
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Prognosis
- RNA/genetics
- RNA, Neoplasm/genetics
- Transfection
Collapse
Affiliation(s)
- Ming Zhan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Xiaonan Zhao
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Hui Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Wei Chen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Sunwang Xu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Wei Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Hui Shen
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Shuai Huang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China
| | - Jian Wang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai, 200127, China.
| |
Collapse
|
15
|
Yang H, Yao J, Yin J, Wei X. Decreased LRIG1 in Human Ovarian Cancer Cell SKOV3 Upregulates MRP-1 and Contributes to the Chemoresistance of VP16. Cancer Biother Radiopharm 2016; 31:125-32. [PMID: 27183435 DOI: 10.1089/cbr.2015.1970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Hua Yang
- Department of Gynaecology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jun Yao
- Department of Gynaecology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jiangpin Yin
- Department of Gynaecology, The Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Xuan Wei
- Department of Gynaecology, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
16
|
Han S, Lv X, Wang Y, Gong H, Zhang C, Tong A, Zhang B, Yao H. Effect and mechanism of peroxisome proliferator-activated receptor-γ on the drug resistance of the U-87 MG/CDDP human malignant glioma cell line. Mol Med Rep 2015; 12:2239-46. [PMID: 25891367 DOI: 10.3892/mmr.2015.3625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 02/24/2015] [Indexed: 11/05/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPAR-γ) is important in tumor differentiation, proliferation and apoptosis. However, the effect and mechanism of PPAR-γ on the promotion of cisplatin sensitivity in glioma cells remain to be elucidated. The present study established cisplatin-resistant U-87 MG/CDDP cell lines and U-87 MG/CDDP cell lines overexpressing PPAR-γ. With upregulated expression of PPAR-γ, the sensitivity of cancer cells to cisplatin was increased. Flow cytometry revealed that the intracellular content of rhodamine-123 was increased, expression of P-glycoprotein was downregulated, cell cycle was arrested in G0/G1 phase, apoptosis and oxidative stress was increased, levels of intracellular thymidylate synthase, glutathione and transforming growth factor-β1 were decreased, expression levels of multidrug resistance related gene (MDR), multidrug resistance-associated protein and glutothionine S-transferase-π were downregulated, expression levels of cell proliferation and apoptosis associated genes, including survivin and B-cell lymphoma-2, were downregulated, p53, p21 and caspase-3/8 were significantly upregulated, phosphorylation of extracellular signal-regulated kinase and small mothers against decapentaplegic 2 were downregulated, and the transcriptional activities of Twist and nuclear factor (erythroid-derived 2)-like 2 were significantly reduced. The results suggested that upregulation of PPAR-γ in the U-87 MG/DDP cells increased cisplatin sensitivity, and the underlying mechanisms included the regulation of MDR and apoptosis associated genes, which increased the intracellular accumulation of the drug, inhibited cell proliferation and promoted cell apoptosis.
Collapse
Affiliation(s)
- Shaorong Han
- Department of Radiation Oncology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Xiaoyan Lv
- Department of Radiation Oncology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Yanming Wang
- Department of Radiation Oncology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Hai Gong
- Department of Radiation Oncology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Cong Zhang
- Department of Radiation Oncology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Anna Tong
- Department of Radiation Oncology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Baoyi Zhang
- Department of Radiation Oncology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| | - Hui Yao
- Department of Radiation Oncology, Jinan Military General Hospital, Jinan, Shandong 250031, P.R. China
| |
Collapse
|
17
|
Tan B, Li Y, Zhao Q, Fan L, Liu Y, Wang D, Zhao X. Inhibition of Vav3 could reverse the drug resistance of gastric cancer cells by downregulating JNK signaling pathway. Cancer Gene Ther 2014; 21:526-31. [PMID: 25430880 DOI: 10.1038/cgt.2014.59] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 01/21/2023]
Abstract
This study aims to investigate the effect and mechanism of Vav3 on the multidrug resistance of gastric cancer. Fluorescence quantitative RT-PCR and western blot assay were used to detect Vav3 and drug resistance genes in gastric cancer tissues as well as gastric cell lines such as SGC7901, SGC7901/adriamycin (ADR) and GES-1. Besides, Vav3-specific small interfering RNA (Vav3-siRNA) was applied to inhibit Vav3 in SGC7901/ADR, and SRB assay was used to determine chemosensitivity. After that, drug resistance genes and proteins in MAPK and PI3K/AKT signaling pathway were detected after Vav3-siRNA transfection. The results showed that overexpressed Vav3 was found in gastric cancer tissues and SGC7901 and SGC7901/ADR cells. Activity of SGC7901/ADR cells transfected with Vav3-siRNA combined with 5-fluorouracil/oxaliplatin was much lower than that of control groups, and MDR1/P-gp, GST-π and Bcl-2, Bax genes were significantly downregulated in Vav3-siRNA transfection group. AKT, ERK and p38 total protein and their phosphorylation levels showed no significant change in Vav3-siRNA-transfected SGC7901/ADR cells, whereas the ratio of C-Jun phosphorylation levels to total C-Jun protein was significantly downregulated. The results suggested that Vav3 may play a role in drug resistance of gastric cancer by inhibiting drug resistance genes MDR1/P-gp, GST-π and Bcl-2 through regulating the JNK signaling pathway.
Collapse
Affiliation(s)
- B Tan
- Department of General Surgery, the Fourth Affiliated Hospital, Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - Y Li
- Department of General Surgery, the Fourth Affiliated Hospital, Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - Q Zhao
- Department of General Surgery, the Fourth Affiliated Hospital, Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - L Fan
- Department of General Surgery, the Fourth Affiliated Hospital, Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - Y Liu
- Department of General Surgery, the Fourth Affiliated Hospital, Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - D Wang
- Department of General Surgery, the Fourth Affiliated Hospital, Hebei Medical University Shijiazhuang, Shijiazhuang, China
| | - X Zhao
- Department of General Surgery, the Fourth Affiliated Hospital, Hebei Medical University Shijiazhuang, Shijiazhuang, China
| |
Collapse
|
18
|
Lee MY, Marina M, King JL, Saavedra HI. Differential expression of centrosome regulators in Her2+ breast cancer cells versus non-tumorigenic MCF10A cells. Cell Div 2014; 9:3. [PMID: 25278993 PMCID: PMC4181616 DOI: 10.1186/1747-1028-9-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/08/2014] [Indexed: 12/26/2022] Open
Abstract
Centrosome amplification (CA) amongst particular breast cancer subtypes (Her2+ subtype) is associated with genomic instability and aggressive tumor phenotypes. However, changes in signaling pathways associated with centrosome biology have not been fully explored in subtype specific models. Novel centrosome regulatory genes that are selectively altered in Her2+ breast cancer cells are of interest in discerning why CA is more prevalent in this subtype. To determine centrosome/cell cycle genes that are altered in Her2+ cells that display CA (HCC1954) versus non-tumorigenic cells (MCF10A), we carried out a gene microarray. Expression differences were validated by real-time PCR and Western blotting. After the microarray validation, we pursued a panel of upregulated and downregulated genes based on novelty/relevance to centrosome duplication. Functional experiments measuring CA and BrdU incorporation were completed after genetic manipulation of targets (TTK, SGOL1, MDM2 and SFRP1). Amongst genes that were downregulated in HCC1954 cells, knockdown of MDM2 and SFRP1 in MCF10A cells did not consistently induce CA or impaired BrdU incorporation. Conversely, amongst upregulated genes in HCC1954 cells, knockdown of SGOL1 and TTK decreased CA in breast cancer cells, while BrdU incorporation was only altered by SGOL1 knockdown. We also explored the Kaplan Meier Plot resource and noted that MDM2 and SFRP1 are positively associated with relapse free survival in all breast cancer subtypes, while TTK is negatively correlated with overall survival of Luminal A patients. Based on this functional screen, we conclude that SGOL1 and TTK are important modulators of centrosome function in a breast cancer specific model.
Collapse
Affiliation(s)
- Mi-Young Lee
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, C3084, 1365C Clifton Road NE, Atlanta, GA 30322, USA
| | - Mihaela Marina
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, C3084, 1365C Clifton Road NE, Atlanta, GA 30322, USA
| | - Jamie L King
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, C3084, 1365C Clifton Road NE, Atlanta, GA 30322, USA.,Cancer Biology Graduate Program, Emory University School of Medicine, 1365C Clifton Road NE, Atlanta, GA 30322, USA
| | - Harold I Saavedra
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, C3084, 1365C Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
19
|
Dong L, Li J, Lou XP, Miao JH, Lu P, Chang ZW, Han ZF. Comparison of short-term efficacy and safety of TIROX and DCF regimens for advanced gastric cancer. J Int Med Res 2014; 42:737-43. [PMID: 24717407 PMCID: PMC8280548 DOI: 10.1177/0300060513510657] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/06/2013] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To compare the short-term efficacy and safety profile of the S-1 + irinotecan + oxaliplatin (TIROX) and docetaxel + cisplatin + flurouracil (DCF) anticancer regimens in patients with advanced gastric cancer. METHODS Patients with recurrent or metastatic gastric cancer diagnosed by pathology were randomly divided into two groups to receive six cycles of either the TIROX regimen (21-day cycle) or the DCF regimen (21-day cycle). After six chemotherapy cycles, the short-term efficacy was evaluated according to the Response Evaluation Criteria in Solid Tumors guidelines and adverse reactions were recorded according to National Cancer Institute Common Toxicity Criteria 2.0 standards. RESULTS A total of 60 patients were enrolled in the study. The response rate (complete response + partial response) was significantly higher in the TIROX group (18/30 patients; 60.0%) compared with the DCF group (10/30 patients; 33.3%). The rates of grade III-IV leucopenia and neurotoxicity were significantly higher in the TIROX group than the DCF group. CONCLUSION The TIROX regimen was effective for the treatment of advanced gastric cancer, but it was associated with leucopenia and neurotoxicity.
Collapse
Affiliation(s)
- Lei Dong
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jing Li
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiao-Ping Lou
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jin-Hong Miao
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Pei Lu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhi-Wei Chang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhao-Feng Han
- Department of Burns, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|