1
|
Nathanson SD, Dieterich LC, Zhang XHF, Chitale DA, Pusztai L, Reynaud E, Wu YH, Ríos-Hoyo A. Associations amongst genes, molecules, cells, and organs in breast cancer metastasis. Clin Exp Metastasis 2024; 41:417-437. [PMID: 37688650 DOI: 10.1007/s10585-023-10230-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
This paper is a cross fertilization of ideas about the importance of molecular aspects of breast cancer metastasis by basic scientists, a pathologist, and clinical oncologists at the Henry Ford Health symposium. We address four major topics: (i) the complex roles of lymphatic endothelial cells and the molecules that stimulate them to enhance lymph node and systemic metastasis and influence the anti-tumor immunity that might inhibit metastasis; (ii) the interaction of molecules and cells when breast cancer spreads to bone, and how bone metastases may themselves spread to internal viscera; (iii) how molecular expression and morphologic subtypes of breast cancer assist clinicians in determining which patients to treat with more or less aggressive therapies; (iv) how the outcomes of patients with oligometastases in breast cancer are different from those with multiple metastases and how that could justify the aggressive treatment of these patients with the hope of cure.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Health, 2799 W. Grand Blvd, Detroit, MI, 48202, USA.
- Cancer Center, Henry Ford Health, Detroit, MI, USA.
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emma Reynaud
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
2
|
Milovanović J, Vujasinović T, Todorović-Raković N, Greenman J, Hranisavljević J, Radulovic M. Vascular endothelial growth factor (VEGF) -A, -C and VE-cadherin as potential biomarkers in early breast cancer patients. Pathol Res Pract 2023; 252:154923. [PMID: 37948997 DOI: 10.1016/j.prp.2023.154923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/04/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Vascular endothelial growth factor (VEGF) -A and -C act as multifunctional molecules and growth factors, while VE-cadherin (cadherin 5, CDH5) is the endothelial junction protein. AIM To assess the relationship between intratumoral VEGF -A, -C and CDH5 levels and clinical outcome, in primary, early-stage, breast cancer patients. PATIENTS AND METHODS The study included 69 node-negative (N0) breast cancer patients, all of whom had not received any prior hormonal or chemotherapeutic systemic therapy that would affect the course of disease. The median follow-up period was 144 months. Intratumoral mRNA levels of VEGF -A, -C and CDH5 were determined by RT-qPCR. Prognostic performance was evaluated by Cox proportional hazards regression, Kaplan-Meier analysis, as well as by the multivariable approach based on the least absolute shrinkage and selection operator (LASSO) logit regression. Classification of patients into the low and high subgroups was performed using the outcome-oriented cut-off point categorization approach. RESULTS Of the measured mRNAs, only CDH5 mRNA (t = -2.17; p = 0.04) and VEGF-C mRNA (t = -2.41; p = 0.03) showed significant differences between values in patient subgroups with distant metastasis and those without recurrences, respectively. These t-test results were in agreement with the Cox regression by which CDH5 mRNA reached the most pronounced hazard ratio (HR=2.07; p = 0.05), followed by VEGF-C mRNA (HR=1.59; p = 0.005). HR values above 1.0 indicate that high levels of either CDH5 or VEGF-C mRNAs associated with a higher risk of poor clinical outcome. Distant recurrence incidence was 26% for the CDH5high and 3% for the CDH5low subgroup (Kaplan-Meier analysis). Distant recurrence incidence was 23% for the VEGF-Chigh and 0% for VEGF-Clow subgroup. The independent prognostic value of VEGF-C mRNA was confirmed by LASSO regression. CONCLUSION Intratumoral VEGF-A levels did not associate with disease outcome in primary, early-stage, breast cancer patients, whilst raised levels of either CDH5 or VEGF-C prognosticated a high risk of distant metastasis.
Collapse
Affiliation(s)
- Jelena Milovanović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia.
| | - Tijana Vujasinović
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Nataša Todorović-Raković
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| | - John Greenman
- Centre for Biomedicine, University of Hull, Hull, UK
| | - Jelena Hranisavljević
- Department for Radiobiology and Molecular Genetics, Institute of Nuclear Sciences Vinča - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Radulovic
- Department of Experimental Oncology, Institute of Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
3
|
Abstract
The lymphatic system, composed of initial and collecting lymphatic vessels as well as lymph nodes that are present in almost every tissue of the human body, acts as an essential transport system for fluids, biomolecules and cells between peripheral tissues and the central circulation. Consequently, it is required for normal body physiology but is also involved in the pathogenesis of various diseases, most notably cancer. The important role of tumor-associated lymphatic vessels and lymphangiogenesis in the formation of lymph node metastasis has been elucidated during the last two decades, whereas the underlying mechanisms and the relation between lymphatic and peripheral organ dissemination of cancer cells are incompletely understood. Lymphatic vessels are also important for tumor-host communication, relaying molecular information from a primary or metastatic tumor to regional lymph nodes and the circulatory system. Beyond antigen transport, lymphatic endothelial cells, particularly those residing in lymph node sinuses, have recently been recognized as direct regulators of tumor immunity and immunotherapy responsiveness, presenting tumor antigens and expressing several immune-modulatory signals including PD-L1. In this review, we summarize recent discoveries in this rapidly evolving field and highlight strategies and challenges of therapeutic targeting of lymphatic vessels or specific lymphatic functions in cancer patients.
Collapse
Affiliation(s)
- Lothar C Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.,Department of Biosciences, University of Milan, Milan, Italy
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Florentin J, O'Neil SP, Ohayon LL, Uddin A, Vasamsetti SB, Arunkumar A, Ghosh S, Boatz JC, Sui J, Kliment CR, Chan SY, Dutta P. VEGF Receptor 1 Promotes Hypoxia-Induced Hematopoietic Progenitor Proliferation and Differentiation. Front Immunol 2022; 13:882484. [PMID: 35634304 PMCID: PMC9133347 DOI: 10.3389/fimmu.2022.882484] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Although it is well known that hypoxia incites unleashed cellular inflammation, the mechanisms of exaggerated cellular inflammation in hypoxic conditions are not known. We observed augmented proliferation of hematopoietic stem and progenitor cells (HSPC), precursors of inflammatory leukocytes, in mice under hypoxia. Consistently, a transcriptomic analysis of human HSPC exposed to hypoxic conditions revealed elevated expression of genes involved in progenitor proliferation and differentiation. Additionally, bone marrow cells in mice expressed high amount of vascular endothelial growth factor (VEGF), and HSPC elevated VEGF receptor 1 (VEGFr1) and its target genes in hypoxic conditions. In line with this, VEGFr1 blockade in vivo and in vitro decreased HSPC proliferation and attenuated inflammation. In silico and ChIP experiments demonstrated that HIF-1α binds to the promoter region of VEGFR1. Correspondingly, HIF1a silencing decreased VEGFr1 expression in HSPC and diminished their proliferation. These results indicate that VEGF signaling in HSPC is an important mediator of their proliferation and differentiation in hypoxia-induced inflammation and represents a potential therapeutic target to prevent aberrant inflammation in hypoxia-associated diseases.
Collapse
Affiliation(s)
- Jonathan Florentin
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Scott P O'Neil
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lee L Ohayon
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Afaz Uddin
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Sathish Babu Vasamsetti
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Anagha Arunkumar
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Samit Ghosh
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jennifer C Boatz
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Justin Sui
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Corrine R Kliment
- Department of Medicine, Division of Pulmonary and Critical Care, University of Pittsburgh, Pittsburgh, PA, United States
| | - Stephen Y Chan
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Partha Dutta
- Division of Cardiology, Department of Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
5
|
Montemagno C, Luciano F, Pagès G. Opposing Roles of Vascular Endothelial Growth Factor C in Metastatic Dissemination and Resistance to Radio/Chemotherapy: Discussion of Mechanisms and Therapeutic Strategies. Methods Mol Biol 2022; 2475:1-23. [PMID: 35451746 DOI: 10.1007/978-1-0716-2217-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Many cancers can be cured by combining surgery with healthy margins, radiation therapy and chemotherapies. However, when the pathology becomes metastatic, cancers can be incurable. The best situation involves "chronicization" of the pathology even for several years. However, most of the time, patients die within a few months. To disseminate throughout the body, cancer cells must enter the vascular network and seed in another organ. However, during the initiation of cancer processes, the tumor is avascular. Later, the production of angiogenic factors causes tumor neovascularization and subsequent growth and spread, and the presence of blood and/or lymphatic vessels is associated with high grade tumors. Moreover, during tumor development, cancer cells enter lymphatic vessels and disseminate via the lymphatic network. Hence, blood and lymphatic vessels are considered as main routes of metastatic dissemination and cancer aggressiveness. Therefore, anti-angiogenic drugs entered in the therapeutic arsenal from 2004. Despite undeniable effects however, they are far from curative and only prolong survival by a few months.Recently, the concepts of angio/lymphangiogenesis were revisited by analyzing the role of blood and lymphatic vessels at the initiation steps of tumor development. During this period, cancer cells enter lymphatic vessels and activate immune cells within lymph nodes to initiate an antitumor immune response. Moreover, the presence of blood vessels at the proximity of the initial nodule allows immune cells to reach the tumor and eliminate cancer cells. Therefore, blood and lymphatic networks have a beneficial role during a defined time window. Considering only their detrimental effects is a concern. Hence, administration of anti-angio/lymphangiogenic therapies should be revisited to avoid the destruction of networks involved in antitumor immune response. This review mainly focuses on one of the main drivers of lymphangiogenesis, the VEGFC and its beneficial and pejorative roles according to the grade of aggressive tumors.
Collapse
Affiliation(s)
- Christopher Montemagno
- LIA ROPSE, Laboratoire International Associé, Centre Scientifique de Monaco, Université Côte d'Azur, Nice, France
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France
- Département de Biologie Médicale, Centre Scientifique de Monaco, Monaco, Monaco
| | - Frédéric Luciano
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France
- Centre Antoine Lacassagne, Nice, France
| | - Gilles Pagès
- LIA ROPSE, Laboratoire International Associé, Centre Scientifique de Monaco, Université Côte d'Azur, Nice, France.
- Institute for Research on Cancer and Aging of Nice (IRCAN), Centre Antoine Lacassagne, University Côte d'Azur, CNRS UMR 7284, INSERM U1081, Nice, France.
- Centre Antoine Lacassagne, Nice, France.
| |
Collapse
|
6
|
Hartiala P, Suominen S, Suominen E, Kaartinen I, Kiiski J, Viitanen T, Alitalo K, Saarikko AM. Phase 1 LymfactinⓇ Study: Short-term Safety of Combined Adenoviral VEGF-C and Lymph Node Transfer Treatment for Upper Extremity Lymphedema. J Plast Reconstr Aesthet Surg 2020; 73:1612-1621. [DOI: 10.1016/j.bjps.2020.05.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 04/01/2020] [Accepted: 05/09/2020] [Indexed: 11/24/2022]
|
7
|
Zhang Z, Luo G, Tang H, Cheng C, Wang P. Prognostic Significance of High VEGF-C Expression for Patients with Breast Cancer: An Update Meta Analysis. PLoS One 2016; 11:e0165725. [PMID: 27812168 PMCID: PMC5094766 DOI: 10.1371/journal.pone.0165725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The prognostic significance of vascular endothelial growth factor C (VEGF-C) expression in breast cancer (BC) patients remains controversial. Therefore, this meta-analysis was performed to determine the prognostic significance of VEGF-C expression in BC patients. MATERIALS AND METHODS Several electronic databases were searched from January 1991 to August 2016. The pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were calculated to evaluate the prognostic significance of VEGF-C expression for disease free survival (DFS) and overall survival (OS). RESULTS The present meta analysis totally included 21 eligible studies and 2828 patients with BC. The combined HRs were 1.87(95% CI 1.25-2.79, P = 0.001) for DFS and 1.96(95% CI 1.15-3.31, P = 0.001) for OS. The pooled HRs of non-Asian subgroup were 2.04(95%CI 1.36-3.05, P = 0.001) for DFS and 2.61(95%CI 1.51-4.52, P = 0.001) for OS, which were significantly higher than that of Asian subgroup. The funnel plot for publication bias was symmetrical. The further Egger's test and Begg's test did not detect significant publication bias (all P>0.05). CONCLUSIONS The present meta analysis strongly supported the prognostic role of VEGF-C expression for DFS and OS in BC patients, especially for patients in non-Asian countries. Furthermore, stratification by VEGF-C expression may help to optimize the treatments and the integrated managements for BC patients.
Collapse
Affiliation(s)
- Zhiqiao Zhang
- Department of Infectious Disease, The First People’s Hospital of Shunde, Shunde, Guangdong, China
| | - Guanying Luo
- Department of Internal Medicine, The Chencun Affiliated Hospital of First People’s Hospital of Shunde, Shunde, Guangdong, China
| | - Hongfeng Tang
- Department of Science and Education, The First People’s Hospital of Shunde, Shunde, Guangdong, China
| | - Canchang Cheng
- Department of Internal Medicine, The Chencun Affiliated Hospital of First People’s Hospital of Shunde, Shunde, Guangdong, China
| | - Peng Wang
- Department of Infectious Disease, The First People’s Hospital of Shunde, Shunde, Guangdong, China
- * E-mail:
| |
Collapse
|
8
|
Chen Z, Xu S, Xu W, Huang J, Zhang GU, Lei L, Shao X, Wang X. Expression of cluster of differentiation 34 and vascular endothelial growth factor in breast cancer, and their prognostic significance. Oncol Lett 2015; 10:723-729. [PMID: 26622560 DOI: 10.3892/ol.2015.3348] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 03/06/2015] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the immunohistochemical expression of cluster of differentiation (CD) 34 and vascular endothelial growth factor (VEGF) in breast cancer tissue, and their prognostic significance. High CD34 expression levels (microvessel density, >15/HPF) were identified in 27.3% (12/44) of cases, exhibiting no significant correlation with the clinicopathological characteristics of the patients. However, Kaplan-Meier analysis demonstrated that the survival time of patients with high CD34 expression was significantly shorter than that of patients with low CD34 expression (50.0 vs. 90.6%; P=0.003). Samples with high VEGF expression levels (++ or +++) accounted for 63.6% (28/44) of the total number of cases. High VEGF expression was significantly prevalent in patients aged ≥50 years compared with patients aged <50 years (≤78.6 vs. 37.5%; P=0.006). Furthermore, all patients with vascular invasion exhibited high VEGF expression levels; thus, patients with vascular invasion presented with significantly higher VEGF expression rates compared with patients with no vascular invasion (100.0 vs. 55.6%; P=0.018). However, Kaplan-Meier analysis demonstrated that high VEGF expression was not correlated with the overall survival of the patients (P=0.366). By contrast, Cox multivariate analysis identified that clinical stage, triple-negative subtype and age were independent prognostic factors for patients with breast cancer (P=0.005, P=0.006 and P=0.032, respectively), and that CD34 expression was a potential independent prognostic factor (P=0.055). Therefore, the present study determined that for patients with breast cancer, a high level of CD34 expression may be a potential indicator of a poor prognosis.
Collapse
Affiliation(s)
- Zhanhong Chen
- Key Laboratory of Technology Research on the Diagnosis and Treatment of Thoracic Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Shenhua Xu
- Key Laboratory of Technology Research on the Diagnosis and Treatment of Thoracic Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Weizhen Xu
- Key Laboratory of Technology Research on the Diagnosis and Treatment of Thoracic Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Jian Huang
- Key Laboratory of Technology Research on the Diagnosis and Treatment of Thoracic Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - G U Zhang
- Key Laboratory of Technology Research on the Diagnosis and Treatment of Thoracic Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Lei Lei
- Key Laboratory of Technology Research on the Diagnosis and Treatment of Thoracic Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiying Shao
- Key Laboratory of Technology Research on the Diagnosis and Treatment of Thoracic Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Xiaojia Wang
- Key Laboratory of Technology Research on the Diagnosis and Treatment of Thoracic Cancer, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
9
|
Guo H, Wu F, Wang Y, Yan C, Su W. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53. Biochem Biophys Res Commun 2014; 450:1370-6. [PMID: 25003318 DOI: 10.1016/j.bbrc.2014.06.134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.
Collapse
Affiliation(s)
- Hongsheng Guo
- Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong, China
| | - Fenping Wu
- The 7th People's Hospital of Chengdu, Chengdu 610041, Sichuan, China
| | - Yan Wang
- The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong, China
| | - Chong Yan
- School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong, China
| | - Wenmei Su
- Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong, China.
| |
Collapse
|