1
|
Rodriguez-Baili MC, Palma-Cobo M, Prucca CG, Yáñez-Mó M, Gil GA. Intercellular communication between extracellular vesicles from conditioned macrophages and breast cancer cells drives endocrine therapy resistance. Front Cell Dev Biol 2025; 13:1548724. [PMID: 40567500 PMCID: PMC12188363 DOI: 10.3389/fcell.2025.1548724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/20/2025] [Indexed: 06/28/2025] Open
Abstract
Introduction Breast cancer is a leading cause of cancer-related mortality among women, with nearly 70% of cases being estrogen receptor-positive (ER+). While endocrine therapies, such as tamoxifen, have significantly improved patient outcomes, resistance-whether intrinsic or acquired-remains a major clinical challenge that limits treatment efficacy. Emerging evidence suggests that endocrine resistance is often driven by the presence and expansion of cancer stem cells (CSCs), which contribute to recurrence, metastasis, and therapeutic failure. The tumor microenvironment (TME), including immune cells like macrophages, soluble factors, and extracellular vesicles (EVs), plays a crucial role in promoting tumor progression and therapy resistance. EVs are small lipid bilayer-bound particles that facilitate intercellular communication by transferring bioactive cargo capable of reprogramming recipient cells. Methods To investigate the role of macrophage-derived EVs in endocrine resistance, we isolated EVs from TNF-α-conditioned macrophages (TNF EVs) and treated MCF-7 ER+ breast cancer cells with these vesicles. We assessed changes in proliferation, migration, epithelial-mesenchymal transition (EMT), CSC-like properties, and tamoxifen resistance. Additionally, we evaluated whether tumor-derived EVs modulate macrophage polarization by analyzing the expression of PD-1 and other immunomodulatory markers. Results TNF EV-treated MCF-7 cells showed significantly increased proliferation, enhanced migratory behavior, and morphological changes associated with EMT. Importantly, treated cells developed a stem-like phenotype, characterized by a larger CD44High/CD24Low subpopulation and improved spheroid-forming ability. These features correlated with sustained proliferation even in the presence of tamoxifen, supporting the development of endocrine resistance. Furthermore, EVs derived from tumor cells triggered macrophage polarization toward a tumor-associated macrophage (TAM) profile, with increased PD-1 expression, indicating a role in immune suppression and tumor immune evasion. Discussion These findings emphasize the dual role of TNF-α-conditioned macrophage-derived EVs in driving both endocrine resistance and immune modulation in ER+ breast cancer. By promoting stemness, EMT, and tamoxifen resistance, as well as inducing immunosuppressive macrophage polarization, these EVs emerge as key contributors to tumor progression. Our study highlights the therapeutic potential of targeting EV-mediated communication to overcome endocrine resistance and enhance clinical outcomes for ER+ breast cancer patients. This work establishes a critical framework for future studies aimed at harnessing EVs as therapeutic targets or biomarkers in breast cancer management.
Collapse
Affiliation(s)
- María C. Rodriguez-Baili
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba-CIQUIBIC, Córdoba, Argentina
| | - Miguel Palma-Cobo
- Centro de Biología Molecular Severo Ochoa (CBMSO), Instituto de Investigación Sanitaria La Princesa (IIS-IP), Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, Madrid, Spain
| | - César G. Prucca
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba-CIQUIBIC, Córdoba, Argentina
| | - María Yáñez-Mó
- Centro de Biología Molecular Severo Ochoa (CBMSO), Instituto de Investigación Sanitaria La Princesa (IIS-IP), Instituto Universitario de Biología Molecular (IUBM), Universidad Autónoma de Madrid, Madrid, Spain
| | - German A. Gil
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, CONICET, Universidad Nacional de Córdoba-CIQUIBIC, Córdoba, Argentina
| |
Collapse
|
2
|
Tayanloo-Beik A, Eslami A, Sarvari M, Jalaeikhoo H, Rajaeinejad M, Nikandish M, Faridfar A, Rezaei-Tavirani M, Mafi AR, Larijani B, Arjmand B. Extracellular vesicles and cancer stem cells: a deadly duo in tumor progression. Oncol Rev 2024; 18:1411736. [PMID: 39091989 PMCID: PMC11291337 DOI: 10.3389/or.2024.1411736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
The global incidence of cancer is increasing, with estimates suggesting that there will be 26 million new cases and 17 million deaths per year by 2030. Cancer stem cells (CSCs) and extracellular vesicles (EVs) are key to the resistance and advancement of cancer. They play a crucial role in tumor dynamics and resistance to therapy. CSCs, initially discovered in acute myeloid leukemia, are well-known for their involvement in tumor initiation, progression, and relapse, mostly because of their distinct characteristics, such as resistance to drugs and the ability to self-renew. EVs, which include exosomes, microvesicles, and apoptotic bodies, play a vital role in facilitating communication between cells within the tumor microenvironment (TME). They have a significant impact on cellular behaviors and contribute to genetic and epigenetic changes. This paper analyzes the mutually beneficial association between CSCs and EVs, emphasizing their role in promoting tumor spread and developing resistance mechanisms. This review aims to investigate the interaction between these entities in order to discover new approaches for attacking the complex machinery of cancer cells. It highlights the significance of CSCs and EVs as crucial targets in the advancement of novel cancer treatments, which helps stimulate additional research, promote progress in ideas for cancer treatment, and provide renewed optimism in the effort to reduce the burden of cancer.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Eslami
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, Aja University of medical sciences, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Ali Faridfar
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kim MW, Lee H, Lee S, Moon S, Kim Y, Kim JY, Kim SI, Kim JY. Drug-resistant profiles of extracellular vesicles predict therapeutic response in TNBC patients receiving neoadjuvant chemotherapy. BMC Cancer 2024; 24:185. [PMID: 38326737 PMCID: PMC10851537 DOI: 10.1186/s12885-024-11822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Predicting tumor responses to neoadjuvant chemotherapy (NAC) is critical for evaluating prognosis and designing treatment strategies for patients with breast cancer; however, there are no reliable biomarkers that can effectively assess tumor responses. Therefore, we aimed to evaluate the clinical feasibility of using extracellular vesicles (EVs) to predict tumor response after NAC. METHODS Drug-resistant triple-negative breast cancer (TNBC) cell lines were successfully established, which developed specific morphologies and rapidly growing features. To detect resistance to chemotherapeutic drugs, EVs were isolated from cultured cells and plasma samples collected post-NAC from 36 patients with breast cancer. RESULTS Among the differentially expressed gene profiles between parental and drug-resistant cell lines, drug efflux transporters such as MDR1, MRP1, and BCRP were highly expressed in resistant cell lines. Drug efflux transporters have been identified not only in cell lines but also in EVs released from parental cells using immunoaffinity-based EV isolation. The expression of drug resistance markers in EVs was relatively high in patients with residual disease compared to those with a pathological complete response. CONCLUSIONS The optimal combination of drug-resistant EV markers was significantly efficient in predicting resistance to NAC with 81.82% sensitivity and 92.86% specificity.
Collapse
Affiliation(s)
- Min Woo Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Hyojung Lee
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Suji Lee
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Sol Moon
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Young Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Joon Ye Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea
| | - Seung Il Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| | - Jee Ye Kim
- Department of Surgery, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, 03722, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Fayyazpour P, Fayyazpour A, Abbasi K, Vaez-Gharamaleki Y, Zangbar MSS, Raeisi M, Mehdizadeh A. The role of exosomes in cancer biology by shedding light on their lipid contents. Pathol Res Pract 2023; 250:154813. [PMID: 37769395 DOI: 10.1016/j.prp.2023.154813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/08/2023] [Indexed: 09/30/2023]
Abstract
Exosomes are extracellular bilayer membrane nanovesicles released by cells after the fusion of multivesicular bodies (MVBs) with the plasma membrane. One of the interesting features of exosomes is their ability to carry and transfer various molecules, including lipids, proteins, nucleic acids, and therapeutic cargoes among cells. As intercellular signaling organelles, exosomes participate in various signaling processes such as tumor growth, metastasis, angiogenesis, epithelial-to-mesenchymal transition (EMT), and cell physiology such as cell-to-cell communication. Moreover, these particles are considered good vehicles to shuttle vaccines and drugs for therapeutic applications regarding cancers and tumor cells. These bioactive vesicles are also rich in various lipid molecules such as cholesterol, sphingomyelin (SM), glycosphingolipids, and phosphatidylserine (PS). These lipids play an important role in the formation, release, and function of the exosomes and interestingly, some lipids are used as biomarkers in cancer diagnosis. This review aimed to focus on exosomes lipid content and their role in cancer biology.
Collapse
Affiliation(s)
- Parisa Fayyazpour
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Fayyazpour
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khadijeh Abbasi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yosra Vaez-Gharamaleki
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Oveili E, Vafaei S, Bazavar H, Eslami Y, Mamaghanizadeh E, Yasamineh S, Gholizadeh O. The potential use of mesenchymal stem cells-derived exosomes as microRNAs delivery systems in different diseases. Cell Commun Signal 2023; 21:20. [PMID: 36690996 PMCID: PMC9869323 DOI: 10.1186/s12964-022-01017-9] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/14/2022] [Indexed: 01/24/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs that regulate gene expression by targeting mRNA. Moreover, it has been shown that miRNAs expression are changed in various diseases, such as cancers, autoimmune disease, infectious diseases, and neurodegenerative Diseases. The suppression of miRNA function can be easily attained by utilizing of anti-miRNAs. In contrast, an enhancement in miRNA function can be achieved through the utilization of modified miRNA mimetics. The discovery of appropriate miRNA carriers in the body has become an interesting subject for investigators. Exosomes (EXOs) therapeutic efficiency and safety for transferring different cellular biological components to the recipient cell have attracted significant attention for their capability as miRNA carriers. Mesenchymal stem cells (MSCs) are recognized to generate a wide range of EXOs (MSC-EXOs), showing that MSCs may be effective for EXO generation in a clinically appropriate measure as compared to other cell origins. MSC-EXOs have been widely investigated because of their immune attributes, tumor-homing attributes, and flexible characteristics. In this article, we summarized the features of miRNAs and MSC-EXOs, including production, purification, and miRNA loading methods of MSC-EXOs, and the modification of MSC-EXOs for targeted miRNA delivery in various diseases. Video abstract.
Collapse
Affiliation(s)
- Elham Oveili
- Department of Pharmaceutical Science, Azad Islamic University of Medical Sciences, Tehran, Iran
| | - Somayeh Vafaei
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Bazavar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ehsan Mamaghanizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saman Yasamineh
- Department of Biotechnology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Omid Gholizadeh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Bacteriology and Virology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Abreu CM, Costa-Silva B, Reis RL, Kundu SC, Caballero D. Microfluidic platforms for extracellular vesicle isolation, analysis and therapy in cancer. LAB ON A CHIP 2022; 22:1093-1125. [PMID: 35253032 DOI: 10.1039/d2lc00006g] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are small lipidic particles packed with proteins, DNA, messenger RNA and microRNAs of their cell of origin that act as critical players in cell-cell communication. These vesicles have been identified as pivotal mediators in cancer progression and the formation of metastatic niches. Hence, their isolation and analysis from circulating biofluids is envisioned as the next big thing in the field of liquid biopsies for early non-invasive diagnosis and patient follow-up. Despite the promise, current benchtop isolation strategies are not compatible with point-of-care testing in a clinical setting. Microfluidic platforms are disruptive technologies capable of recovering, analyzing, and quantifying EVs within clinical samples with limited volume, in a high-throughput manner with elevated sensitivity and multiplexing capabilities. Moreover, they can also be employed for the controlled production of synthetic EVs and effective drug loading to produce EV-based therapies. In this review, we explore the use of microfluidic platforms for the isolation, characterization, and quantification of EVs in cancer, and compare these platforms with the conventional methodologies. We also highlight the state-of-the-art in microfluidic approaches for EV-based cancer therapeutics. Finally, we analyze the currently active or recently completed clinical trials involving EVs for cancer diagnosis, treatment or therapy monitoring and examine the future of EV-based point-of-care testing platforms in the clinic and EV-based therapy production by the industry.
Collapse
Affiliation(s)
- Catarina M Abreu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, Av. Brasília, 1400-038, Lisbon, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - David Caballero
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque da Ciência e Tecnologia, Barco, 4805-017, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
7
|
Bondhopadhyay B, Sisodiya S, Alzahrani FA, Bakhrebah MA, Chikara A, Kasherwal V, Khan A, Rani J, Dar SA, Akhter N, Tanwar P, Agrawal U, Hussain S. Exosomes: A Forthcoming Era of Breast Cancer Therapeutics. Cancers (Basel) 2021; 13:4672. [PMID: 34572899 PMCID: PMC8464658 DOI: 10.3390/cancers13184672] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/20/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the recent advancements in therapeutics and personalized medicine, breast cancer remains one of the most lethal cancers among women. The prognostic and diagnostic aids mainly include assessment of tumor tissues with conventional methods towards better therapeutic strategies. However, current era of gene-based research may influence the treatment outcome particularly as an adjunct to diagnostics by exploring the role of non-invasive liquid biopsies or circulating markers. The characterization of tumor milieu for physiological fluids has been central to identifying the role of exosomes or small extracellular vesicles (sEVs). These exosomes provide necessary communication between tumor cells in the tumor microenvironment (TME). The manipulation of exosomes in TME may provide promising diagnostic/therapeutic strategies, particularly in triple-negative breast cancer patients. This review has described and highlighted the role of exosomes in breast carcinogenesis and how they could be used or targeted by recent immunotherapeutics to achieve promising intervention strategies.
Collapse
Affiliation(s)
- Banashree Bondhopadhyay
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
| | - Sandeep Sisodiya
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 411004, India
| | - Faisal Abdulrahman Alzahrani
- Department of Biochemistry, Faculty of Science, Embryonic Stem Cells Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Muhammed A. Bakhrebah
- Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Atul Chikara
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune 411004, India
| | - Vishakha Kasherwal
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, India
| | - Asiya Khan
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida 201313, India;
- Laboratory Oncology Unit, Dr. Bheem Rao Ambedkar Institute Rotary Cancer Hospital (Dr. BRA-IRCH), All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110023, India;
| | - Jyoti Rani
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia;
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65411, Saudi Arabia;
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr. Bheem Rao Ambedkar Institute Rotary Cancer Hospital (Dr. BRA-IRCH), All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110023, India;
| | - Usha Agrawal
- ICMR-National Institute of Pathology, New Delhi 110029, India;
| | - Showket Hussain
- ICMR-National Institute of Cancer Prevention and Research, Noida 201301, India; (B.B.); (S.S.); (A.C.); (V.K.); (J.R.)
| |
Collapse
|
8
|
Persson E, Gregersson P, Gustafsson A, Fitzpatrick P, Rhost S, Ståhlberg A, Landberg G. Patient-derived scaffolds influence secretion profiles in cancer cells mirroring clinical features and breast cancer subtypes. Cell Commun Signal 2021; 19:66. [PMID: 34090457 PMCID: PMC8178857 DOI: 10.1186/s12964-021-00746-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer is a common malignancy with varying clinical behaviors and for the more aggressive subtypes, novel and more efficient therapeutic approaches are needed. Qualities of the tumor microenvironment as well as cancer cell secretion have independently been associated with malignant clinical behaviors and a better understanding of the interplay between these two features could potentially reveal novel targetable key events linked to cancer progression. METHODS A newly developed human derived in vivo-like growth system, consisting of decellularized patient-derived scaffolds (PDSs) recellularized with standardized breast cancer cell lines (MCF7 and MDA-MB-231), were used to analyze how 63 individual patient specific microenvironments influenced secretion determined by proximity extension assays including 184 proteins and how these relate to clinical outcome. RESULTS The secretome from cancer cells in PDS cultures varied distinctly from cells grown as standard monolayers and besides a general increase in secretion from PDS cultures, several secreted proteins were only detectable in PDSs. Monolayer cells treated with conditioned media from PDS cultures, further showed increased mammosphere formation demonstrating a cancer stem cell activating function of the PDS culture induced secretion. The detailed secretomic profiles from MCF7s growing on 57 individual PDSs differed markedly but unsupervised clustering generated three separate groups having similar secretion profiles that significantly correlated to different clinical behaviors. The secretomic profile that associated with cancer relapse and high grade breast cancer showed induced secretion of the proteins IL-6, CCL2 and PAI-1, all linked to cancer stem cell activation, metastasis and priming of the pre-metastatic niche. Cancer promoting pathways such as "Suppress tumor immunity" and "Vascular and tissue remodeling" was also linked to this more malignant secretion cluster. CONCLUSION PDSs repopulated with cancer cells can be used to assess how cancer secretion is effected by specific and varying microenvironments. More malignant secretion patterns induced by specific patient based cancer microenvironments could further be identified pinpointing novel therapeutic opportunities targeting micro environmentally induced cancer progression via secretion of potent cytokines. Video abstract.
Collapse
Affiliation(s)
- Emma Persson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Pernilla Gregersson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Anna Gustafsson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Paul Fitzpatrick
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Sara Rhost
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden.,Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hostpital, Region Västra Götaland, 41390, Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden.
| |
Collapse
|
9
|
Chorley BN, Atabakhsh E, Doran G, Gautier JC, Ellinger-Ziegelbauer H, Jackson D, Sharapova T, Yuen PST, Church RJ, Couttet P, Froetschl R, McDuffie J, Martinez V, Pande P, Peel L, Rafferty C, Simutis FJ, Harrill AH. Methodological considerations for measuring biofluid-based microRNA biomarkers. Crit Rev Toxicol 2021; 51:264-282. [PMID: 34038674 DOI: 10.1080/10408444.2021.1907530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA that regulate the expression of messenger RNA and are implicated in almost all cellular processes. Importantly, miRNAs can be released extracellularly and are stable in these matrices where they may serve as indicators of organ or cell-specific toxicity, disease, and biological status. There has thus been great enthusiasm for developing miRNAs as biomarkers of adverse outcomes for scientific, regulatory, and clinical purposes. Despite advances in measurement capabilities for miRNAs, miRNAs are still not routinely employed as noninvasive biomarkers. This is in part due to the lack of standard approaches for sample preparation and miRNA measurement and uncertainty in their biological interpretation. Members of the microRNA Biomarkers Workgroup within the Health and Environmental Sciences Institute's (HESI) Committee on Emerging Systems Toxicology for the Assessment of Risk (eSTAR) are a consortium of private- and public-sector scientists dedicated to developing miRNAs as applied biomarkers. Here, we explore major impediments to routine acceptance and use of miRNA biomarkers and case examples of successes and deficiencies in development. Finally, we provide insight on miRNA measurement, collection, and analysis tools to provide solid footing for addressing knowledge gaps toward routine biomarker use.
Collapse
Affiliation(s)
- Brian N Chorley
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | | | | | - David Jackson
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | | | - Peter S T Yuen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rachel J Church
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, DC, USA
| | | | | | - Alison H Harrill
- National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
10
|
Shi SS, Zhang HP, Yang CQ, Li LN, Shen Y, Zhang YQ. Exosomal miR-155-5p promotes proliferation and migration of gastric cancer cells by inhibiting TP53INP1 expression. Pathol Res Pract 2020; 216:152986. [PMID: 32527448 DOI: 10.1016/j.prp.2020.152986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Exosomal microRNA (miRNA) secreted by tumor cells plays an important biological role in tumorigenesis and development. We aimed to explore the effects of exosomal miR-155-5p in gastric cancer (GC) and understand its mechanism of action in GC progression. We isolated exosomes from the human gastric mucosal epithelial cell line GES-1 and gastric cancer cell line AGS, and then identified them according to their surface markers by flow cytometry. Later, we detected the miR-155-5p expression levels in tissues and isolated exosomes using RT-qPCR. Bioinformatics analysis showed that miR-155-5p directly binds to the 3' untranslated region (3'-UTR) of tumor protein p53-induced nuclear protein 1 (TP53INP1) mRNA. We also investigated whether the miR-155-5p-rich exosomes caused changes in cell cycle, proliferation, and migration in AGS cells. In this study, we found that the levels of miR-155-5p were significantly increased in GC tissues and AGS cells, and that the TP53INP1 protein level was downregulated in GC tissues using IHC and IFC. TP53INP1 was found to be directly regulated by miR-155-5p following a dual luciferase-based reporter assay. After co-culturing with the isolated miR-155-5p-rich exosomes, the proliferation and migration capabilities of AGS cells were enhanced. Thus, our results reveal that exosomal miR-155-5p acts as an oncogene by targeting TP53INP1 mRNA in human gastric cancer.
Collapse
Affiliation(s)
- Shuai-Shuai Shi
- Department of Internal Medicine, Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, China
| | - Hui-Peng Zhang
- Department of General Surgery, Heji Hospital of Changzhi Medical College, Changzhi, Shanxi 046011, China
| | - Chang-Qing Yang
- Department of Gastroenterology, Heping Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Li-Na Li
- Department of Pathology, Heping Hospital of Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Yu Shen
- First Clinical Department of Changzhi Medical College, Changzhi, Shanxi 046000, China
| | - Yi-Qiang Zhang
- Department of Biochemistry, Changzhi Medical College, Changzhi, Shanxi 046000, China.
| |
Collapse
|
11
|
Kirave P, Gondaliya P, Kulkarni B, Rawal R, Garg R, Jain A, Kalia K. Exosome mediated miR-155 delivery confers cisplatin chemoresistance in oral cancer cells via epithelial-mesenchymal transition. Oncotarget 2020; 11:1157-1171. [PMID: 32284792 PMCID: PMC7138164 DOI: 10.18632/oncotarget.27531] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/03/2020] [Indexed: 01/07/2023] Open
Abstract
Cisplatin is used as chemotherapeutic drug for oral squamous cell carcinoma (OSCC). However, OSCC cells develop resistance following long-term cisplatin exposure. Resistance against cisplatin chemo-therapy is accredited to the process of epithelial-to-mesenchymal transition, which in-turn has been linked to tumor-recurrence. miRNA deregulation, a common event in cancer, plays contributory role in chemo-resistance. Exosomes acts as the natural cargo for miRNA and facilitates inter-cell communication in the tumor micro-environment. Hence, exosomal-mediated miRNA transference may play essential role in drug resistance and serve as a target for cancer-therapy. miR-155 upregulation in OSCC has been described, however, its relevance in the observed chemo-resistance is unclear and also, if exosomes have any role in miR-155 regulation remain elusive. In the present study, we document for the first time the critical role of exosomes in mediating increments in miR-155 expression in OSCC cells that have acquired cisplatin resistance (cisRes cells). Importantly, exosomal transfer from cisRes to the cisplatin sensitive (cisSens) cells was found to confer significant miR-155 induction in the recipient cisSens cells. Restoration of miR-155 expression in cisSens cells following miR-155 mimics treatment led to epithelial to mesenchymal transition, enhancements in their migratory potential as well as acquisition of resistant phenotype. Notably, similar augmentations in the migratory and chemo-resistant traits were seen upon delivery of exosomes from cisRes to the recipient cisSens cells. Overall, our findings establish the significance of exosomal-mediated miR-155 shuttling in the cisplatin-chemoresistance, commonly observed in OSCC cells, thereby providing rationale for targeting miR-155 signalling for oral cancer therapy.
Collapse
Affiliation(s)
- Prathibha Kirave
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
- These authors contributed equally to this work and are first authors
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
- These authors contributed equally to this work and are first authors
| | - Bhagyashri Kulkarni
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
- These authors contributed equally to this work and are first authors
| | - Rakesh Rawal
- Department of Life Science, Gujarat University, Ahmedabad, Gujarat, India
| | - Rachana Garg
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Alok Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| |
Collapse
|
12
|
Najminejad H, Kalantar SM, Abdollahpour‐Alitappeh M, Karimi MH, Seifalian AM, Gholipourmalekabadi M, Sheikhha MH. Emerging roles of exosomal miRNAs in breast cancer drug resistance. IUBMB Life 2019; 71:1672-1684. [DOI: 10.1002/iub.2116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Hamid Najminejad
- Department of Medical GeneticsShahid Sadoughi University of Medical Sciences Yazd Iran
| | - Seyed Mehdi Kalantar
- Research and Clinical Center for InfertilityShahid Sadoughi University of Medical Sciences Yazd Iran
| | | | | | - Alexander M. Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (Ltd)The London BioScience Innovation Centre London UK
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research CentreIran University of Medical Sciences Tehran Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in MedicineIran University of Medical Sciences Tehran Iran
| | - Mohammad Hasan Sheikhha
- Research and Clinical Center for InfertilityShahid Sadoughi University of Medical Sciences Yazd Iran
| |
Collapse
|
13
|
Chen WX, Xu LY, Cheng L, Qian Q, He X, Peng WT, Zhu YL. Bioinformatics analysis of dysregulated microRNAs in exosomes from docetaxel-resistant and parental human breast cancer cells. Cancer Manag Res 2019; 11:5425-5435. [PMID: 31354350 PMCID: PMC6579872 DOI: 10.2147/cmar.s201335] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Resistance to docetaxel is a major obstacle to effective treatment of breast cancer. Exosomal microRNAs (miRNAs) have recently been introduced in cell-to-cell transmission of chemoresistance between heterogeneous populations of tumor cells with diverse drug sensitivity. However, a systematic evaluation of the exosomal miRNA signature remains largely unclear. Method: miRNA expression profiles in exosomes from docetaxel-resistant (D/exo) and parental sensitive breast cancer cells (S/exo) were assessed using microarray. Bioinformatics analysis was performed to predict target genes of the dysregulated miRNAs and to uncover their potential roles in chemoresistance formation. Signaling pathways, gene ontology terms, transcription factors, protein-protein interactions, and hub genes were also constructed. Results: The selected exosomal miRNAs could modulate target genes responsible for MAPK, TGF-beta, Wnt, mTOR, and PI3K/Akt signaling pathways. Function enrichment analysis revealed the involvement of target genes in transcription regulation, protein phosphorylation, kinase activity, and protein binding. Enriched transcription factors including SP1, SP4, and EGR1 were obtained and a protein-protein interaction network was established. The hub genes for up-expressed and down-expressed exosomal miRNAs such as CCND1 and PTEN were identified. Conclusion: This bioinformatics study provides a comprehensive view of the function of dysregulated exosomal miRNAs, and may help us to understand exosome-mediated resistance transmission and overcome docetaxel resistance in future breast cancer therapy.
Collapse
Affiliation(s)
- Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China.,Department of Post-doctoral Working Station, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Ling-Yun Xu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Lin Cheng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Qi Qian
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Xiao He
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Wen-Ting Peng
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| | - Yu-Lan Zhu
- Department of Breast Surgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou 213000, People's Republic of China
| |
Collapse
|
14
|
Jiang X, Hou D, Wei Z, Zheng S, Zhang Y, Li J. Extracellular and intracellular microRNAs in pancreatic cancer: from early diagnosis to reducing chemoresistance. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41544-019-0014-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
15
|
Schwarzenbach H, Gahan PB. MicroRNA Shuttle from Cell-To-Cell by Exosomes and Its Impact in Cancer. Noncoding RNA 2019; 5:E28. [PMID: 30901915 PMCID: PMC6468647 DOI: 10.3390/ncrna5010028] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023] Open
Abstract
The identification of exosomes, their link to multivesicular bodies and their potential role as a messenger vehicle between cancer and healthy cells opens up a new approach to the study of intercellular signaling. Furthermore, the fact that their main cargo is likely to be microRNAs (miRNAs) provides the possibility of the transfer of such molecules to control activities in the recipient cells. This review concerns a brief overview of the biogenesis of both exosomes and miRNAs together with the movement of such structures between cells. The possible roles of miRNAs in the development and progression of breast, ovarian and prostate cancers are discussed.
Collapse
Affiliation(s)
- Heidi Schwarzenbach
- Department of Tumor Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
| | - Peter B Gahan
- Fondazione "Enrico Puccinelli" Onlus, 06126 Perugia, Italy.
| |
Collapse
|
16
|
Qiao F, Pan P, Yan J, Sun J, Zong Y, Wu Z, Lu X, Chen N, Mi R, Ma Y, Ji Y. Role of tumor‑derived extracellular vesicles in cancer progression and their clinical applications (Review). Int J Oncol 2019; 54:1525-1533. [PMID: 30864674 DOI: 10.3892/ijo.2019.4745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/15/2019] [Indexed: 11/06/2022] Open
Abstract
Extracellular vesicles (EVs), including micro‑vesicles and exosomes, are heterogeneous small membranous vesicles shed from the surface of myriad cells and are crucial in mediating intercellular communication. The vertical trafficking of cargo to the plasma membrane and subsequent redistribution of surface lipids may contribute to EV formation. Tumor‑derived extracellular vesicles (TD‑EVs) can carry complex, bioactive cargo, such as nucleic acids and proteins, during tumor metastasis. Paracrine information gets relayed by TD‑EVs to adjacent tumor cells and this allows a crosstalk between malignant cells. These structures may even move to a distant metastatic lesion and modulate the tumor microenvironment to form a premetastatic niche. Thus, TD‑EVs might be potential biomarkers for tumor development and metastasis. Additionally, EVs are promising candidates for use as cell‑free vaccines or as vehicles for the delivery of specific tumor therapeutic molecules. Genetically modified microvesicles and engineered exosomes have shed light on a novel strategy for tumor‑targeted gene therapy. This review focuses on the role of EVs in tumor development and metastasis and their possible applications in the advanced diagnosis and therapy of cancer and personalized medicine.
Collapse
Affiliation(s)
- Fuhao Qiao
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital of Xintai, Xintai, Shandong 271200, P.R. China
| | - Peng Pan
- School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jiaping Yan
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital of Xintai, Xintai, Shandong 271200, P.R. China
| | - Jing Sun
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital of Xintai, Xintai, Shandong 271200, P.R. China
| | - Yan Zong
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital of Xintai, Xintai, Shandong 271200, P.R. China
| | - Zhiyong Wu
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital of Xintai, Xintai, Shandong 271200, P.R. China
| | - Xiaoqin Lu
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital of Xintai, Xintai, Shandong 271200, P.R. China
| | - Na Chen
- Department of Clinical Laboratory, Traditional Chinese Medicine Hospital of Xintai, Xintai, Shandong 271200, P.R. China
| | - Rui Mi
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yongbin Ma
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
| | - Yuan Ji
- School of Medicine, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
17
|
Haque MM, Desai KV. Pathways to Endocrine Therapy Resistance in Breast Cancer. Front Endocrinol (Lausanne) 2019; 10:573. [PMID: 31496995 PMCID: PMC6712962 DOI: 10.3389/fendo.2019.00573] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/06/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancers with positive expression of Estrogen Receptor (ER+) are treated with anti-hormone/endocrine therapy which targets the activity of the receptor, the half-life of the receptor or the availability of estrogen. This has significantly decreased mortality in women with ER+ breast cancer, however, about 25-30% of treated women run the risk or recurrence due to either intrinsic or acquired resistance to endocrine therapies. While ER itself is a predictor of response to such therapies, there exists a need to find more biomarkers and novel targets to treat resistant tumors. In this review, we summarize the known mechanisms and describe the ability of genomics in unraveling rare mutations and gene rearrangements that may impact the development of resistance and therefore treatment of ER+ breast cancer in the near future.
Collapse
|
18
|
Meng Y, Sun J, Wang X, Hu T, Ma Y, Kong C, Piao H, Yu T, Zhang G. Exosomes: A Promising Avenue for the Diagnosis of Breast Cancer. Technol Cancer Res Treat 2019; 18:1533033818821421. [PMID: 30760122 PMCID: PMC6373987 DOI: 10.1177/1533033818821421] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 09/01/2018] [Accepted: 11/16/2018] [Indexed: 12/11/2022] Open
Abstract
Currently, despite the advances in individualized treatment, breast cancer still remains the deadliest form of cancer in women. Diagnostic, prognostic, and therapy-predictive methods are mainly based on the evaluation of tumor tissue samples and are aimed to improve the overall therapeutic level. Therefore, the exploration of a series of circulating biomarkers, which serve as the information source of tumors and could be obtained by peripheral blood samples, represents a high field of interest. Apart from classical biomarkers, exosomes, which are nanovesicles, are emerging as an accessible and efficient source of cell information. The purpose of this review is to summarize the peculiarities of the presently available breast cancer exosomal biomarkers; the review also provides the prediction of a multitude of potential target genes of exosomal microRNAs using 4 databases.
Collapse
Affiliation(s)
- Yiming Meng
- Central laboratory, Cancer Hospital of China Medical University, Shenyang, China
| | - Jing Sun
- Central laboratory, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaonan Wang
- Department of Immunology, China Medical University, Shenyang, China
| | - Tingting Hu
- Department of Blood Bank, Cancer Hospital of China Medical University, Shenyang, China
| | - Yushu Ma
- Central laboratory, Cancer Hospital of China Medical University, Shenyang, China
| | - Cuicui Kong
- Central laboratory, Cancer Hospital of China Medical University, Shenyang, China
| | - Haozhe Piao
- Department of Medical Image, Cancer Hospital of China Medical University, Shenyang, China
| | - Tao Yu
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, China
| | - Guirong Zhang
- Central laboratory, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Di C, Zhang Q, Wang Y, Wang F, Chen Y, Gan L, Zhou R, Sun C, Li H, Zhang X, Yang H, Zhang H. Exosomes as drug carriers for clinical application. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S564-S570. [PMID: 30431368 DOI: 10.1080/21691401.2018.1501381] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Exosomes are nanoscale vesicles shed from all cell types and play a major role in communication and transportation of materials between cells due to their ability to transfer proteins and nucleic acids from one cell to another. Analogous in size and function to synthetic nanoparticles, exosomes offer many advantages, rendering them the most promising candidates for targeted drug or gene delivery vehicles. Exosomes can also induce chemoresistance or radioresistance of tumor cells. Studies about the related mechanisms help overcome cancer therapy resistance to some extent. In this review, we focus on the application of exosomes as nanocarriers and the current status of the application of exosomes to cancer therapy.
Collapse
Affiliation(s)
- Cuixia Di
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China
| | - Qianjing Zhang
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China.,c College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Yupei Wang
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China.,c College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Fang Wang
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China.,c College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Yuhong Chen
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China.,c College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Lu Gan
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China.,c College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Rong Zhou
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China
| | - Chao Sun
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China
| | - Hongyan Li
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China
| | - Xuetian Zhang
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China.,c College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| | - Hongying Yang
- d School of Radiation Medicine and Protection, Medical College of Soochow , Soochow , China
| | - Hong Zhang
- a Department of Radiation Medicine , Institute of Modern Physics, Chinese Academy of Sciences , Lanzhou , China.,b Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences , Lanzhou , China.,c College of Life Sciences , University of Chinese Academy of Sciences , Beijing , China
| |
Collapse
|
20
|
Analysis of miRNA signature differentially expressed in exosomes from adriamycin-resistant and parental human breast cancer cells. Biosci Rep 2018; 38:BSR20181090. [PMID: 30201690 PMCID: PMC6240718 DOI: 10.1042/bsr20181090] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/21/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
A major cause of failure in chemotherapy is drug resistance of cancer cells. Exosomes have been introduced to spread chemoresistance through delivering miRNAs. However, a systematic evaluation of the exosomal miRNA expression profiles responsible for chemoresistance is still lacking. In the present study, miRNA signature differentially expressed in exosomes derived from adriamycin-resistant (A/exo) and parental breast cancer cells (S/exo) were analyzed by microarray and the results were confirmed by PCR. A total of 309 miRNAs were increased and 66 miRNAs were decreased significantly in A/exo compared with S/exo. Specifically, 52 novel miRNAs with increased expression levels >16.0-fold in A/exo were identified. After prediction of target genes for 13 of 52 selected novel miRNAs, pathway analysis, gene ontology (GO) terms, and protein–protein interactions (PPIs) were constructed. The results implied that these selected exosomal miRNAs inhibited target genes involved in transcriptional misregulation in cancer, MAPK, and Wnt signaling pathways. Functional enrichment analysis demonstrated that the target genes were mainly responsible for protein phosphorylation, transcription regulation, molecular binding, and kinase activity. In summary, the current bioinformatics study of exosomal miRNAs may offer a new understanding into mechanisms of chemoresistance, which is helpful to find potential exosomal miRNAs to overcome drug insensitivity in future breast cancer treatment.
Collapse
|
21
|
d Rhamnose β-hederin reverses chemoresistance of breast cancer cells by regulating exosome-mediated resistance transmission. Biosci Rep 2018; 38:BSR20180110. [PMID: 30061173 PMCID: PMC6165836 DOI: 10.1042/bsr20180110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/02/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022] Open
Abstract
d Rhamnose β-hederin (DRβ-H), an active component extracted from the traditional Chinese medicinal plant Clematis ganpiniana, has been reported to be effective against breast cancer. Recent studies have also indicated that the isolated exosomes (D/exo) from docetaxel-resistant breast cancer cells MCF-7 (MCF-7/Doc) were associated with resistance transmission by delivering genetic cargo. However, the relevance of D/exo during DRβ-H exposure remains largely unclear. In the present work, exosomes were characterized by morphology and size distribution. We reinforced the significant role of D/exo in spreading chemoresistance from MCF-7/Doc to recipient sensitive cells after absorption and internalization. DRβ-H could reduce the formation and release of D/exo. Next, we demonstrated that DRβ-H was able to reverse docetaxel resistance and that D/exo was responsible for DRβ-H-mediated resistance reversal. We also found that DRβ-H could decrease the expressions of several most abundant miRNAs (miR-16, miR-23a, miR-24, miR-26a, and miR-27a) transported by D/exo. Target gene prediction and pathway analysis showed the involvement of these selected miRNAs in pathways related to treatment failure. Our results suggested that DRβ-H could reduce D/exo secretion from MCF-7/Doc cells and induce the reduction in resistance transmission via D/exo.
Collapse
|
22
|
Chen WX, Cheng L, Pan M, Qian Q, Zhu YL, Xu LY, Ding Q. D Rhamnose β-Hederin against human breast cancer by reducing tumor-derived exosomes. Oncol Lett 2018; 16:5172-5178. [PMID: 30250584 PMCID: PMC6144302 DOI: 10.3892/ol.2018.9254] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 07/05/2018] [Indexed: 12/17/2022] Open
Abstract
D Rhamnose β-hederin (DRβ-H), a novel oleanane-type triterpenoid saponin isolated from the traditional Chinese medicinal plant Clematis ganpiniana, has been demonstrated to be effective against various types of tumor. However, the exact role of DRβ-H on breast cancer remains largely unresolved. In the present study, it was observed that DRβ-H exhibited anti-proliferative and pro-apoptotic activity in human breast cancer cells (MCF-7/S). DRβ-H was able to inhibit exosome secretion, and the level of exosomes was positively associated with cell growth after absorption and internalization by target breast cancer cells. By analyzing the miRNA profiles of exosomes and MCF-7/S, it was identified that several miRNAs were detected exclusively in exosomes. Knockdown of the top five exosomal miRNAs and an MCF-7/S proliferation assay indicated that exosomal miR-130a and miR-425 may enhance MCF-7/S cell viability. Target gene prediction and pathway analysis revealed the involvement of miR-130a and miR-425 in pathways associated with malignant cell proliferation. These results demonstrated that DRβ-H inhibited MCF-7/S cell growth through reducing exosome release.
Collapse
Affiliation(s)
- Wei-Xian Chen
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China.,Department of Post-doctoral Working Station, Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Lin Cheng
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Meng Pan
- Department of Pediatrics, The Affiliated Changzhou No. 1 People's Hospital with Suzhou University, Changzhou, Jiangsu 213000, P.R. China
| | - Qi Qian
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Yu-Lan Zhu
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Ling-Yun Xu
- Department of Breast Surgery, The Affiliated Changzhou No. 2 People's Hospital with Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Qiang Ding
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
23
|
Tan C, Hu W, He Y, Zhang Y, Zhang G, Xu Y, Tang J. Cytokine-mediated therapeutic resistance in breast cancer. Cytokine 2018; 108:151-159. [PMID: 29609137 DOI: 10.1016/j.cyto.2018.03.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Therapeutic resistance leading to tumor relapse is a major challenge in breast cancer (BCa) treatment. Numerous factors involved in multiple mechanisms promote the development of tumor chemo/radio-resistance. Cytokines/chemokines are important inflammatory factors and highly related to tumorigenesis, metastasis and tumors responses to treatment. A large number of studies have demonstrated that the network of cytokines activates multiple cell signaling pathways to promote tumor cell survival, proliferation, invasion, and migration. Particularly in BCa, cytokines-enhanced the epithelial-mesenchymal transition (EMT) process plays a pivotal role in the progression of metastatic phenotypes and resistance to the traditional chemo/radio-therapy. Virtually, therapeutic resistance is not entirely determined by tumor cell intrinsic characteristics but also dependent upon synchronized effects by numerous of local microenvironmental factors. Emerging evidence highlighted that exosomes secreted from various types of cells promote intercellular communication by transferring bioactive molecules including miRNAs and cytokines, suggesting that exosomes are essential for sustentation of tumor progression and therapeutic resistance within the tumor microenvironment. In this review, we discuss the mechanisms by which cytokines promote therapeutic resistance of BCa and suggest a potential approach for improving BCa therapeutics by inhibition of exosome function.
Collapse
Affiliation(s)
- Chunli Tan
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Weizi Hu
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China; Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Yunjie He
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | - Yanyan Zhang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China
| | - Guangqin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, 639 Longmian Road, Nanjing 211198, PR China
| | - Yong Xu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, 42 Baiziting, Nanjing 210009, PR China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, 101 Longmian Road, Nanjing 211166, PR China.
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China.
| |
Collapse
|
24
|
Hu W, Tan C, He Y, Zhang G, Xu Y, Tang J. Functional miRNAs in breast cancer drug resistance. Onco Targets Ther 2018; 11:1529-1541. [PMID: 29593419 PMCID: PMC5865556 DOI: 10.2147/ott.s152462] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Owing to improved early surveillance and advanced therapy strategies, the current death rate due to breast cancer has decreased; nevertheless, drug resistance and relapse remain obstacles on the path to successful systematic treatment. Multiple mechanisms responsible for drug resistance have been elucidated, and miRNAs seem to play a major part in almost every aspect of cancer progression, including tumorigenesis, metastasis, and drug resistance. In recent years, exosomes have emerged as novel modes of intercellular signaling vehicles, initiating cell–cell communication through their fusion with target cell membranes, delivering functional molecules including miRNAs and proteins. This review particularly focuses on enumerating functional miRNAs involved in breast cancer drug resistance as well as their targets and related mechanisms. Subsequently, we discuss the prospects and challenges of miRNA function in drug resistance and highlight valuable approaches for the investigation of the role of exosomal miRNAs in breast cancer progression and drug resistance.
Collapse
Affiliation(s)
- Weizi Hu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University.,Nanjing Medical University Affiliated Cancer Hospital
| | - Chunli Tan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University.,Nanjing Medical University Affiliated Cancer Hospital
| | - Yunjie He
- The First Clinical School of Nanjing Medical University
| | - Guangqin Zhang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University
| | - Yong Xu
- Nanjing Medical University Affiliated Cancer Hospital.,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University
| |
Collapse
|
25
|
Santos JC, Lima NDS, Sarian LO, Matheu A, Ribeiro ML, Derchain SFM. Exosome-mediated breast cancer chemoresistance via miR-155 transfer. Sci Rep 2018; 8:829. [PMID: 29339789 PMCID: PMC5770414 DOI: 10.1038/s41598-018-19339-5] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/27/2017] [Indexed: 12/16/2022] Open
Abstract
Breast cancer remains the most prevalent cause of cancer mortality in woman worldwide due to the metastatic process and therapy resistance. Resistance against cancer therapy is partially attributed to cancer stem cells (CSCs). These cells arise from epithelial cells undergoing epithelial-to-mesenchymal transition (EMT) and might be responsible for tumor recurrence. In this study, we reported the relevance of miR-155 upregulation in chemoresistant cells associated with EMT. Notably, we found miR-155 induction in exosomes isolated from CSCs and resistant cells, followed by resistant cells’ exosome transfer to the recipient sensitive cells. Functionally, miR-155 mimic assay showed an enrichment in miR-155 from exosome concomitant with miR-155 exosome transfer to breast cancer cells. In parallel to these effects, we also observed EMT change in miR-155 transfected cells. The chemoresistance phenotype transfer to sensitive cells and the migration capability was analyzed by MTT and scratch assays and our results suggest that exosomes may intermediate resistance and migration capacity to sensitive cells partly through exosome transfer of miR-155. Taken together, our findings establish the significance of exosome-mediate miR-155 chemoresistance in breast cancer cells, with implications for targeting miR-155 signaling as a possible therapeutic strategy.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Women's Health Hospital "Prof Dr José Aristodemo Pinotti" (CAISM), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Natália da Silva Lima
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University, São Francisco University, Bragança Paulista, SP, Brazil
| | - Luis Otavio Sarian
- Women's Health Hospital "Prof Dr José Aristodemo Pinotti" (CAISM), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Marcelo Lima Ribeiro
- Clinical Pharmacology and Gastroenterology Unit, São Francisco University, São Francisco University, Bragança Paulista, SP, Brazil.
| | | |
Collapse
|
26
|
Zhong S, Chen X, Wang D, Zhang X, Shen H, Yang S, Lv M, Tang J, Zhao J. MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes. Oncotarget 2017; 7:19601-9. [PMID: 26910922 PMCID: PMC4991404 DOI: 10.18632/oncotarget.7481] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
Exosomes have been shown to transmit drug resistance through delivering miRNAs. We aimed to explore their roles in breast cancer. Three resistant sublines were established by exposing parental MDA-MB-231 cell line to docetaxel, epirubicin and vinorelbine, respectively. Preneoadjuvant chemotherapy biopsies and paired surgically-resected specimens embedded in paraffin from 23 breast cancer patients were collected. MiRNA expression profiles of the cell lines and their exosomes were evaluated using microarray. The result showed that most miRNAs in exosomes had a lower expression level than that in cells, however, some miRNAs expressed higher in exosomes than in cells, suggesting a number of miRNAs is concentrated in exosomes. Among the dysregulated miRNAs, 22 miRNAs were consistently up-regulated in exosomes and their cells of origin. We further found that 12 of the 22 miRNAs were significantly up-regulated after preneoadjuvant chemotherapy. Further study of the role of these 12 miRNAs in acquisition of drug resistance is needed to clarify their contribution to chemoresistance.
Collapse
Affiliation(s)
- Shanliang Zhong
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Xiu Chen
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Dandan Wang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Xiaohui Zhang
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Hongyu Shen
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Sujin Yang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Mengmeng Lv
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Jinhai Tang
- Department of General Surgery, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| | - Jianhua Zhao
- Center of Clinical Laboratory Science, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing 210009, China
| |
Collapse
|
27
|
Muluhngwi P, Klinge CM. Identification of miRNAs as biomarkers for acquired endocrine resistance in breast cancer. Mol Cell Endocrinol 2017; 456:76-86. [PMID: 28163101 DOI: 10.1016/j.mce.2017.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/01/2017] [Accepted: 02/01/2017] [Indexed: 02/07/2023]
Abstract
Therapies targeting estrogen receptor α (ERα) including tamoxifen, a selective estrogen receptor modulator (SERM) and aromatase inhibitors (AI), e.g., letrozole, have proven successful in reducing the death rate for breast cancer patients whose initial tumors express ERα. However, about 40% of patients develop acquired resistance to these endocrine treatments. There is a critical need to develop sensitive circulating biomarkers that accurately identify signaling pathways altered in breast cancer patients resistant to endocrine therapies. Serum miRNAs have the potential to serve as biomarkers of the progression of endocrine-resistant breast cancer due to their cancer-specific expression and stability. Exosomal transfer of miRNAs has been implicated in metastasis and endocrine-resistance. This review focuses on miRNAs in breast tumors and in serum, including exosomes, from breast cancer patients that are associated with resistance to tamoxifen since it is best-studied.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA.
| |
Collapse
|
28
|
Mirzaei H, Sahebkar A, Jaafari MR, Goodarzi M, Mirzaei HR. Diagnostic and Therapeutic Potential of Exosomes in Cancer: The Beginning of a New Tale? J Cell Physiol 2017; 232:3251-3260. [PMID: 27966794 DOI: 10.1002/jcp.25739] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022]
Abstract
Exosomes have emerged as one of the main players in intercellular communication. These small nano-sized particles have many roles in various physiological pathways in normal and abnormal cells. Exosomes can carry various cargos such as proteins, mRNAs, and miRNAs to recipient cells. Uptake of exosomes and their cargo can induce and/or inhibit different cellular and molecular pathways that lead to the alteration of cell behavior. Multiple lines of evidence have indicated that exosomes released from cancer cells can effect development of cancer in different stages. These particles and their cargo could regulate different processes such as tumor growth, metastasis, drug resistance, angiogenesis, and immune system functioning. It has been observed that exosomes can be used as potential diagnostic biomarkers in various cancer types. Moreover, some studies have used these particles as biological vehicles for delivery of various drugs such as doxorubicin, siRNAs, and miRNAs. Here, we summarized the findings on the role of exosomes in different pathological processes involved in cancer. Moreover, application of these particles as diagnostic and therapeutic biomarkers in different types of cancers is discussed. J. Cell. Physiol. 232: 3251-3260, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Goodarzi
- Faculty of Bioscience Engineering, Department of Biosystems, Katholieke Universiteit Leuven-KU Leuven, Heverlee, Belgium
| | - Hamid Reza Mirzaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Bach DH, Hong JY, Park HJ, Lee SK. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int J Cancer 2017; 141:220-230. [PMID: 28240776 DOI: 10.1002/ijc.30669] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/08/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022]
Abstract
Chemotherapy, one of the principal approaches for cancer patients, plays a crucial role in controlling tumor progression. Clinically, tumors reveal a satisfactory response following the first exposure to the chemotherapeutic drugs in treatment. However, most tumors sooner or later become resistant to even chemically unrelated anticancer agents after repeated treatment. The reduced drug accumulation in tumor cells is considered one of the significant mechanisms by decreasing drug permeability and/or increasing active efflux (pumping out) of the drugs across the cell membrane. The mechanisms of treatment failure of chemotherapeutic drugs have been investigated, including drug efflux, which is mediated by extracellular vesicles (EVs). Exosomes, a subset of EVs with a size range of 40-150 nm and a lipid bilayer membrane, can be released by all cell types. They mediate specific cell-to-cell interactions and activate signaling pathways in cells they either fuse with or interact with, including cancer cells. Exosomal RNAs are heterogeneous in size but enriched in small RNAs, such as miRNAs. In the primary tumor microenvironment, cancer-secreted exosomes and miRNAs can be internalized by other cell types. MiRNAs loaded in these exosomes might be transferred to recipient niche cells to exert genome-wide regulation of gene expression. How exosomal miRNAs contribute to the development of drug resistance in the context of the tumor microenvironment has not been fully described. In this review, we will highlight recent studies regarding EV-mediated microRNA delivery in formatting drug resistance. We also suggest the use of EVs as an advancing method in antiresistance treatment.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Hong
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Hyen Joo Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
30
|
Xu W, Yang Z, Lu N. From pathogenesis to clinical application: insights into exosomes as transfer vectors in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:156. [PMID: 27686593 PMCID: PMC5043625 DOI: 10.1186/s13046-016-0429-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
Exosomes are nanoscale extracellular membrane vesicles that are created by the fusion of an intracellular multivesicular body with the cell membrane. They are widely distributed in serum, urine, saliva and other biological fluids. As important transfer vectors for intercellular communication and genetic material, exosomes can stimulate target cells directly via receptor-mediated interactions or via the transfer of various bioactive molecules, such as cell membrane receptors, proteins, mRNAs and microRNAs, thus exerting their biological functions. This review focuses on the biological characteristics of exosomes, as well as their role and underlying mechanisms of action in the evolution of tumor formation, metastasis, drug resistance and other malignant behaviors. Additionally, this review emphasizes the potential applications of exosomes in the treatment of tumors. Further research may provide new ideas and methods to establish effective, exosome-based strategies for the early diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 YongWaizheng Street, Nanchang, Jiangxi, 330006, China
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 YongWaizheng Street, Nanchang, Jiangxi, 330006, China.
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, 17 YongWaizheng Street, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
31
|
Bang OY, Chung JW, Lee MJ, Kim SJ, Cho YH, Kim GM, Chung CS, Lee KH, Ahn MJ, Moon GJ. Cancer Cell-Derived Extracellular Vesicles Are Associated with Coagulopathy Causing Ischemic Stroke via Tissue Factor-Independent Way: The OASIS-CANCER Study. PLoS One 2016; 11:e0159170. [PMID: 27427978 PMCID: PMC4948859 DOI: 10.1371/journal.pone.0159170] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 06/28/2016] [Indexed: 12/18/2022] Open
Abstract
Background Cancer and stroke, which are known to be associated with one another, are the most common causes of death in the elderly. However, the pathomechanisms that lead to stroke in cancer patients are not well known. Circulating extracellular vesicles (EVs) play a role in cancer-associated thrombosis and tumor progression. Therefore, we hypothesized that cancer cell-derived EVs cause cancer-related coagulopathy resulting in ischemic stroke. Methods Serum levels of D-dimer and EVs expressing markers for cancer cells (epithelial cell adhesion molecule [CD326]), tissue factor (TF [CD142]), endothelial cells (CD31+CD42b-), and platelets (CD62P) were measured using flow cytometry in (a) 155 patients with ischemic stroke and active cancer (116 − cancer-related, 39 − conventional stroke mechanisms), (b) 25 patients with ischemic stroke without cancer, (c) 32 cancer patients without stroke, and (d) 101 healthy subjects. Results The levels of cancer cell-derived EVs correlated with the levels of D-dimer and TF+ EVs. The levels of cancer cell-derived EVs (CD326+ and CD326+CD142+) were higher in cancer-related stroke than in other groups (P<0.05 in all the cases). Path analysis showed that cancer cell-derived EVs are related to stroke via coagulopathy as measured by D-dimer levels. Poor correlation was observed between TF+ EV and D-dimer, and path analysis demonstrated that cancer cell-derived EVs may cause cancer-related coagulopathy independent of the levels of TF+ EVs. Conclusions Our findings suggest that cancer cell-derived EVs mediate coagulopathy resulting in ischemic stroke via TF-independent mechanisms.
Collapse
Affiliation(s)
- Oh Young Bang
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea
- * E-mail:
| | - Jong-Won Chung
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea
| | - Mi Ji Lee
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Suk Jae Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yeon Hee Cho
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea
- Clinical Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Gyeong-Moon Kim
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Chin-Sang Chung
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kwang Ho Lee
- Departments of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Myung-Ju Ahn
- Departments of Hemato-oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyeong Joon Moon
- Translational and Stem Cell Research Laboratory on Stroke, Samsung Medical Center, Seoul, Republic of Korea
- Clinical Research Center, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| |
Collapse
|
32
|
Jahagirdar D, Purohit S, Jain A, Sharma NK. Export of microRNAs: A Bridge between Breast Carcinoma and Their Neighboring Cells. Front Oncol 2016; 6:147. [PMID: 27379209 PMCID: PMC4913210 DOI: 10.3389/fonc.2016.00147] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
Breast cancer is a leading type of cancer among women in India as well as worldwide. According to the WHO 2015 report, it has been anticipated that there would be a twofold rise in the death due to breast cancer among women. The heterogeneous property of breast carcinoma has been suggested to be linked with dedicated set of communication and signaling pathway with their surroundings, which culminate into progression and development of the cancer. Among the plethora of communication tools in the hand of breast carcinoma cells is the recently appreciated exocytosis of the tightly packed short non-coding RNA molecules, predominantly the microRNAs (miRNAs). Recent studies suggest that miRNAs may work as courier messengers to participate in endocrine and paracrine signaling to facilitate information transfer between breast carcinoma and their neighboring cells. Evidence suggests that breast tumor cells communicate via packaged miRNAs in the tumor-released microvesicles, which enrich the tumor microenvironment. There is a strong view that dissecting out the mechanistic and regulatory aspects of miRNA export and role may uncover many prospects for overcoming the signaling defects and thereby controlling aberrant cell division. The detection of circulating miRNAs associated with breast carcinoma can also be used as biomarkers for early diagnosis. This review article is an attempt to provide updated knowledge on implications of short RNAs and their transport in the breast cancer pathophysiology.
Collapse
Affiliation(s)
- Devashree Jahagirdar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Shruti Purohit
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Aayushi Jain
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
33
|
Exosomal transfer of miR-30a between cardiomyocytes regulates autophagy after hypoxia. J Mol Med (Berl) 2016; 94:711-24. [PMID: 26857375 DOI: 10.1007/s00109-016-1387-2] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/02/2015] [Accepted: 01/11/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Recent studies have indicated a protective role of physiological autophagy in ischemic heart disease. However, the underlying mechanisms of autophagy regulation after ischemia are poorly understood. Exosomes are nano-sized vesicles released from cells that play critical roles in mediating cell-to-cell communication through the transfer of microRNAs. In this study, we observed that miR-30a was highly enriched in exosomes from the serum of acute myocardial infarction (AMI) patients in vivo and culture medium of cardiomyocytes after hypoxic stimulation in vitro. We also found that hypoxia inducible factor (HIF)-1α regulates miR-30a, which efficiently transferred via exosomes between cardiomyocytes after hypoxia. Inhibition of miR-30a or release of exosomes increased the expression of the core autophagy regulators beclin-1, Atg12, and LC3II/LC3I, which contributed to maintaining the autophagic response in cardiomyocytes after hypoxia. Taken together, the present study showed that exosomes from hypoxic cardiomyocytes regulate autophagy by transferring miR-30a in a paracrine manner, which revealed a new pathway of autophagy regulation that might comprise a promising strategy to treat ischemic heart disease. KEY MESSAGES miR-30a is highly enriched in exosomes from the serum of AMI patients. Hypoxia induces miR-30a upregulation and enrichment into exosomes. MiR-30a is efficiently transferred via exosomes between hypoxic cardiomyocytes. Inhibition of exosome release contributes to maintaining of autophagy after hypoxia. Inhibition of miR-30a augments autophagy after hypoxia.
Collapse
|
34
|
Extracellular vesicles in breast cancer drug resistance and their clinical application. Tumour Biol 2016; 37:2849-61. [PMID: 26797784 DOI: 10.1007/s13277-015-4683-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/16/2015] [Indexed: 02/06/2023] Open
Abstract
Drug resistance currently represents a daunting challenge in the treatment of breast cancer patients. With an increased understanding of the underlying mechanisms of drug resistance, the role of extracellular vesicles (EVs) in the development of chemo-insensitivity attracts extensive attention. EVs are membrane-limited, cell type-dependent vesicles that are secreted by normal or malignant cells. EVs comprise various types of contents, including genetic cargoes, proteins, and specific lipids. The characteristics of the contents determine their specific functions in not only physiological but also pathological conditions. It has been demonstrated that miRNAs and proteins in EVs are strongly correlated with breast cancer drug resistance. Additionally, they may exert an influence on de novo and acquired resistance bioprocesses. With the advances in extraction and detection technologies, EVs have also been employed to precisely diagnose and predict the outcome of therapy in breast cancer. On the other hand, they can also be exploited as efficient delivery system in future anticancer applications. In this paper, we summarized relative mechanisms concerning the relationship between EVs and breast cancer drug resistance, and then, we provide up-to-date research advances in the clinical application of EVs.
Collapse
|
35
|
Mao L, Li J, Chen WX, Cai YQ, Yu DD, Zhong SL, Zhao JH, Zhou JW, Tang JH. Exosomes decrease sensitivity of breast cancer cells to adriamycin by delivering microRNAs. Tumour Biol 2015; 37:5247-56. [DOI: 10.1007/s13277-015-4402-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/05/2015] [Indexed: 12/20/2022] Open
|
36
|
Abstract
Therapies targeting estrogen receptor alpha (ERα), including selective ER modulators such as tamoxifen, selective ER downregulators such as fulvestrant (ICI 182 780), and aromatase inhibitors such as letrozole, are successfully used in treating breast cancer patients whose initial tumor expresses ERα. Unfortunately, the effectiveness of endocrine therapies is limited by acquired resistance. The role of microRNAs (miRNAs) in the progression of endocrine-resistant breast cancer is of keen interest in developing biomarkers and therapies to counter metastatic disease. This review focuses on miRNAs implicated as disruptors of antiestrogen therapies, their bona fide gene targets and associated pathways promoting endocrine resistance.
Collapse
Affiliation(s)
- Penn Muluhngwi
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular GeneticsCenter for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| |
Collapse
|
37
|
Schwarzenbach H. The clinical relevance of circulating, exosomal miRNAs as biomarkers for cancer. Expert Rev Mol Diagn 2015. [DOI: 10.1586/14737159.2015.1069183] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
38
|
MicroRNA expression profiles in muscle-invasive bladder cancer: identification of a four-microRNA signature associated with patient survival. Tumour Biol 2015; 36:8159-66. [PMID: 25990459 DOI: 10.1007/s13277-015-3559-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/12/2015] [Indexed: 12/21/2022] Open
Abstract
Bladder cancer ranks the second most common genitourinary tract cancer, and muscle-invasive bladder cancer (MIBC) accounts for approximately 25 % of all bladder cancer cases with high mortality. In the current study, with a total of 202 treatment-naïve primary MIBC patients identified from The Cancer Genome Atlas dataset, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in MIBC, with the aim to investigate the relationship of miRNA expression with the progression and prognosis of MIBC, and generate a miRNA signature of prognostic capabilities. In the progression-related miRNA profiles, a total of 47, 16, 3, and 84 miRNAs were selected for pathologic T, N, M, and histologic grade, respectively. Of the eight most important progression-related miRNAs, four (let-7c, mir-125b-1, mir-193a, and mir-99a) were significantly associated with survival of patients with MIBC. Finally, a four-miRNA signature was generated and proven as a promising prognostic parameter. In summary, this study identified the specific miRNAs associated with the progression and aggressiveness of MIBC and a four-miRNA signature as a promising prognostic parameter of MIBC.
Collapse
|
39
|
Sevinc ED, Egeli U, Cecener G, Tezcan G, Tunca B, Gokgoz S, Tasdelen I, Tolunay S, Evrensel T. Association of miR-1266 with Recurrence/Metastasis Potential in Estrogen Receptor Positive Breast Cancer Patients. Asian Pac J Cancer Prev 2015; 16:291-7. [DOI: 10.7314/apjcp.2015.16.1.291] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
40
|
Ciliary ectosomes: transmissions from the cell's antenna. Trends Cell Biol 2015; 25:276-85. [PMID: 25618328 DOI: 10.1016/j.tcb.2014.12.008] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 12/21/2022]
Abstract
The cilium is the site of function for a variety of membrane receptors, enzymes and signal transduction modules crucial for a spectrum of cellular processes. Through targeted transport and selective gating mechanisms, the cell localizes specific proteins to the cilium that equip it for the role of sensory antenna. This capacity of the cilium to serve as a specialized compartment where specific proteins can be readily concentrated for sensory reception also makes it an ideal organelle to employ for the regulated emission of specific biological material and information. In this review we present and discuss an emerging body of evidence centered on ciliary ectosomes - bioactive vesicles released from the surface of the cilium.
Collapse
|
41
|
Jung JH, Lee MY, Choi DY, Lee JW, You S, Lee KY, Kim J, Kim KP. Phospholipids of tumor extracellular vesicles stratify gefitinib-resistant nonsmall cell lung cancer cells from gefitinib-sensitive cells. Proteomics 2015; 15:824-35. [PMID: 25404199 DOI: 10.1002/pmic.201400243] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 10/06/2014] [Accepted: 11/13/2014] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) such as gefitinib are one of gold standard treatment options for nonsmall-cell lung cancer (NSCLC) patients, which eventually fail due to the acquired resistance and relapse because of the development of secondary activating mutations such as T790M in EGFR. Predicting chemo-responsiveness of cancer patients provides a major challenge in chemotherapy. The goal of the present study is to determine whether phospholipid signatures of tumor extracellular vesicles (EV) are associated with gefitinib-resistance of NSCLC. A sophisticated MS-based shotgun lipidomic assays were performed for in-depth analysis of the lipidomes of gefitinib-resistant (PC9R) and responsive (PC9) NSCLC cells and their shed EV from these cell lines (PC9EV or PC9REV). Lipid MALDI-MS analysis showed that EV phospholipid composition was significantly distinct in PC9R, compared to PC9 cells. Following statistical analyses has identified 35 (20 positive and 15 negative ion mode) differentially regulated lipids, which are significantly over- or underexpressed in PC9R EV, compared to PC9 EV (p value < 0.01, fold change > 1.5). Our phospholipid signatures suggest that EV associates with drug sensitivity, which is worthy of additional investigation to assess chemoresistance in patients with NSCLC treated with anti-EGFR TKIs.
Collapse
Affiliation(s)
- Jae Hun Jung
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhao L, Liu W, Xiao J, Cao B. The role of exosomes and “exosomal shuttle microRNA” in tumorigenesis and drug resistance. Cancer Lett 2015; 356:339-46. [DOI: 10.1016/j.canlet.2014.10.027] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023]
|
43
|
Sato-Kuwabara Y, Melo SA, Soares FA, Calin GA. The fusion of two worlds: non-coding RNAs and extracellular vesicles--diagnostic and therapeutic implications (Review). Int J Oncol 2014; 46:17-27. [PMID: 25338714 PMCID: PMC4238728 DOI: 10.3892/ijo.2014.2712] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 08/01/2014] [Indexed: 02/06/2023] Open
Abstract
The role of the extracellular non-coding RNAs, particularly microRNAs present in tumor-derived extravesicles, has been intensively exploited in human cancer as a promising tool for diagnostic and prognostic purposes. Current knowledge on exosomes shows an important role not only as vehicles in the intercellular communication, but the transfer of their content can specifically modulate the surrounding microenvironment, leading to tumor development and progression and affecting therapy response. Based on this, much effort has focused on understanding the mechanisms behind the biology of exosomes and their closely interaction with non-coding RNAs as an efficient tool in tumor diagnostic and therapy. Here we summarize the current knowledge on extracellular and exosomes-enclosed non-coding RNAs, and their importance as potential biomarkers and mediators of intercellular communication in tumor biology.
Collapse
Affiliation(s)
- Yukie Sato-Kuwabara
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Sonia A Melo
- Department of Cancer Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Fernando A Soares
- International Research Center, AC Camargo Cancer Center, São Paulo, SP, Brazil
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
44
|
Chen WX, Cai YQ, Lv MM, Chen L, Zhong SL, Ma TF, Zhao JH, Tang JH. Exosomes from docetaxel-resistant breast cancer cells alter chemosensitivity by delivering microRNAs. Tumour Biol 2014; 35:9649-59. [PMID: 24969560 DOI: 10.1007/s13277-014-2242-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/16/2014] [Indexed: 12/11/2022] Open
Abstract
Breast cancer (BCa) remains chemo-unresponsive by inevitable progression of resistance to first-line treatment with docetaxel (doc). Emerging studies indicate that exosomes act as mediators of intercellular communication between heterogeneous populations of tumor cells, engendering a transmitted drug resistance for cancer development. Such modulatory effects have been related to the constant shuttle of biologically active molecules including microRNAs (miRNAs). Here, we aimed to investigate the relevance of exosome-mediated miRNA delivery in resistance transmission of BCa subpopulations. Using microarray and polymerase chain reaction, we found that exosomes from doc-resistant BCa cells (D/exo) loaded cellular miRNAs. Following D/exo transfer to the fluorescent sensitive cells (GFP-S), some miRNAs were significantly increased in recipient GFP-S. Target gene prediction and pathway analysis revealed the involvement of the top 20 most abundant miRNAs of D/exo in pathways implicated in therapy failure. Coculture assays showed that miRNA-containing D/exo increased the overall resistance of GFP-S to doc exposure. Moreover, D/exo was able to alter gene expression in GFP-S. Our results open up an intriguing possibility that drug-resistant BCa cells may spread chemoresistance to sensitive ones by releasing exosomes and that the effects could be partly attributed to the intercellular transfer of specific miRNAs.
Collapse
Affiliation(s)
- Wei-Xian Chen
- The Fourth Clinical School, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Exosomes from drug-resistant breast cancer cells transmit chemoresistance by a horizontal transfer of microRNAs. PLoS One 2014; 9:e95240. [PMID: 24740415 PMCID: PMC3989268 DOI: 10.1371/journal.pone.0095240] [Citation(s) in RCA: 314] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/24/2014] [Indexed: 12/21/2022] Open
Abstract
Adriamycin and docetaxel are two agents commonly used in treatment of breast cancer, but their efficacy is often limited by the emergence of chemoresistance. Recent studies indicate that exosomes act as vehicles for exchange of genetic cargo between heterogeneous populations of tumor cells, engendering a transmitted drug resistance for cancer development and progression. However, the specific contribution of breast cancer-derived exosomes is poorly understood. Here we reinforced other's report that human breast cancer cell line MCF-7/S could acquire increased survival potential from its resistant variants MCF-7/Adr and MCF-7/Doc. Additionally, exosomes of the latter, A/exo and D/exo, significantly modulated the cell cycle distribution and drug-induced apoptosis with respect to S/exo. Exosomes pre-treated with RNase were unable to regulate cell cycle and apoptosis resistance, suggesting an RNA-dependent manner. Microarray and polymerase chain reaction for the miRNA expression profiles of A/exo, D/exo, and S/exo demonstrated that they loaded selective miRNA patterns. Following A/exo and D/exo transfer to recipient MCF-7/S, the same miRNAs were significantly increased in acquired cells. Target gene prediction and pathway analysis showed the involvement of miR-100, miR-222, and miR-30a in pathways implicated in cancer pathogenesis, membrane vesiculation and therapy failure. Furthermore, D/exo co-culture assays and miRNA mimics transfection experiments indicated that miR-222-rich D/exo could alter target gene expression in MCF-7/S. Our results suggest that drug-resistant breast cancer cells may spread resistance capacity to sensitive ones by releasing exosomes and that such effects could be partly attributed to the intercellular transfer of specific miRNAs.
Collapse
|