1
|
Bekasova O. Properties and potential applications of bioconjugates of R-phycoerythrin with Ag° or CdS nanoparticle synthesized in its tunnel cavity: A review. Int J Biol Macromol 2024; 255:128181. [PMID: 37977463 DOI: 10.1016/j.ijbiomac.2023.128181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Green synthesis is a promising method for the preparation of nanoparticles (NPs) due to its simplicity, low cost, low toxicity, and environmental friendliness. Biosynthesized NPs exhibit multifunctional activity, good biocompatibility, and higher anticancer and antibacterial activity compared to chemically synthesized NPs. R-phycoerythrin, a photosynthetic light-harvesting pigment of protein nature (M.w. 290 kDa), is an attractive platform for the synthesis of small sizes NPs due to its structural features, non-toxicity, water solubility. Photosensitive bioconjugates of R-phycoerythrin with NPs were prepared by synthesizing Ag° and CdS NPs in tunnel cavities of R-phycoerythrin (3.5 × 6.0 nm) isolated from the red seaweed Callithamnion rubosum. The review is devoted to the physical processes and chemical reactions that occur in the native protein macromolecule of a complex structure during the synthesis of a NP in its cavity. The influence of Ago and CdS NPs on the electronic processes caused by the absorption of photons, leading to reversible and irreversible changes in R-phycoerythrin has been analyzed. Properties of R-phycoerythrin bioconjugates Ag° and CdS with NPs combined with the literature data suggest potential applications of Ag°⋅PE and CdS⋅PE bioconjugates for cancer diagnosis, treatment, and monitoring as well as for realizing theranostic strategy in the future. The use of these bioconjugates in anticancer therapy may have synergistic effects since both R-phycoerythrin and NPs induce cancer cell death.
Collapse
Affiliation(s)
- Olga Bekasova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninskiy pr. 33, Moscow 119071, Russian Federation.
| |
Collapse
|
2
|
Phycocyanin purified from Westiellopsis sp. induces caspase 3 mediated apoptosis in breast cancer cell line MDA-231. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Chen H, Qi H, Xiong P. Phycobiliproteins-A Family of Algae-Derived Biliproteins: Productions, Characterization and Pharmaceutical Potentials. Mar Drugs 2022; 20:md20070450. [PMID: 35877743 PMCID: PMC9318637 DOI: 10.3390/md20070450] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Phycobiliproteins (PBPs) are colored and water-soluble biliproteins found in cyanobacteria, rhodophytes, cryptomonads and cyanelles. They are divided into three main types: allophycocyanin, phycocyanin and phycoerythrin, according to their spectral properties. There are two methods for PBPs preparation. One is the extraction and purification of native PBPs from Cyanobacteria, Cryptophyta and Rhodophyta, and the other way is the production of recombinant PBPs by heterologous hosts. Apart from their function as light-harvesting antenna in photosynthesis, PBPs can be used as food colorants, nutraceuticals and fluorescent probes in immunofluorescence analysis. An increasing number of reports have revealed their pharmaceutical potentials such as antioxidant, anti-tumor, anti-inflammatory and antidiabetic effects. The advances in PBP biogenesis make it feasible to construct novel PBPs with various activities and produce recombinant PBPs by heterologous hosts at low cost. In this review, we present a critical overview on the productions, characterization and pharmaceutical potentials of PBPs, and discuss the key issues and future perspectives on the exploration of these valuable proteins.
Collapse
Affiliation(s)
- Huaxin Chen
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
- Correspondence:
| | - Hongtao Qi
- School of Life Sciences, Qingdao University, Qingdao 266000, China;
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China;
| |
Collapse
|
4
|
Jahdi Abdollahi S, Parvin P, Mayahi S, Seyedi S, Mohsenian P, Ramezani F. Hybrid laser activated phycocyanin/capecitabine treatment of cancerous MCF7 cells. BIOMEDICAL OPTICS EXPRESS 2022; 13:3939-3953. [PMID: 35991918 PMCID: PMC9352291 DOI: 10.1364/boe.459737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Laser-induced fluorescence is recently used as an efficient technique in cancer diagnosis and non-invasive treatment. Here, the synergic therapeutical efficacies of the Capecitabine (CAP) chemodrug, photosensitive Phycocyanin (PC) and graphene oxide (GO) under laser irradiation were investigated. The therapeutical efficacies of diverse concentrations of CAP (0.001-10 mg/ml) and PC (0.5-10 mg/ml) alone and with laser irradiation on human breast adenocarcinoma (MCF-7) cells were examined. The interactional effects of 100 mW SHG Nd:YAG laser at 532nm and GaAs laser at 808 nm ranging power of 150 mW- 2.2W were considered. The contribution of graphene oxide (GO) in biocompatible concentrations of 2.5-20 ng/ml and thermal characteristics of laser exposure at 808 nm on GO + fluorophores have been studied. The effects of the bare and laser-excited CAP + PC on cell mortality have been obtained. Despite the laser irradiation could not hold up the cell proliferation in the absence of drug interaction considerably; however, the viability of the treated cells (by a combination of fluorophores) under laser exposure at 808 nm was significantly reduced. The laser at 532 nm excited the fluorescent PC in (CAP + PC) to trigger the photodynamic processes via oxygen generation. Through the in-vitro experiments of laser-induced fluorescence (LIF) spectroscopy of PC + CAP, the PC/CAP concentrations of the maximum fluorescence signal and spectral shifts have been characterized. The synergic effects of the laser exposures and (CAP + PC) treatment at different concentrations were confirmed. It has been shown here that the laser activation of (CAP + PC) can induce the mortality of the malignant cells by reducing the chemotherapeutic dose of CAP to avoid its non-desirable side effects and by approaching the minimally invasive treatment. Elevation of the laser intensity/exposure time could contribute to the therapeutic efficacy. Survival of the treated cells with a combination of GO and fluorophores could be reduced under laser exposure at 808 nm compared to the same combination therapy in the absence of GO. This survey could benefit the forthcoming clinical protocols based on laser spectroscopy for in-situ imaging/diagnosis/treatment of adenocarcinoma utilizing PC + CAP + GO.
Collapse
Affiliation(s)
- Sahar Jahdi Abdollahi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875- 4413, Tehran, Iran
| | - Parviz Parvin
- Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875- 4413, Tehran, Iran
- Equal corresponding
| | - Sara Mayahi
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Solaleh Seyedi
- Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875- 4413, Tehran, Iran
| | - Parnian Mohsenian
- Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875- 4413, Tehran, Iran
| | - Fatemeh Ramezani
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Equal corresponding
| |
Collapse
|
5
|
Mutalipassi M, Riccio G, Mazzella V, Galasso C, Somma E, Chiarore A, de Pascale D, Zupo V. Symbioses of Cyanobacteria in Marine Environments: Ecological Insights and Biotechnological Perspectives. Mar Drugs 2021; 19:227. [PMID: 33923826 PMCID: PMC8074062 DOI: 10.3390/md19040227] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 01/07/2023] Open
Abstract
Cyanobacteria are a diversified phylum of nitrogen-fixing, photo-oxygenic bacteria able to colonize a wide array of environments. In addition to their fundamental role as diazotrophs, they produce a plethora of bioactive molecules, often as secondary metabolites, exhibiting various biological and ecological functions to be further investigated. Among all the identified species, cyanobacteria are capable to embrace symbiotic relationships in marine environments with organisms such as protozoans, macroalgae, seagrasses, and sponges, up to ascidians and other invertebrates. These symbioses have been demonstrated to dramatically change the cyanobacteria physiology, inducing the production of usually unexpressed bioactive molecules. Indeed, metabolic changes in cyanobacteria engaged in a symbiotic relationship are triggered by an exchange of infochemicals and activate silenced pathways. Drug discovery studies demonstrated that those molecules have interesting biotechnological perspectives. In this review, we explore the cyanobacterial symbioses in marine environments, considering them not only as diazotrophs but taking into consideration exchanges of infochemicals as well and emphasizing both the chemical ecology of relationship and the candidate biotechnological value for pharmaceutical and nutraceutical applications.
Collapse
Affiliation(s)
- Mirko Mutalipassi
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Gennaro Riccio
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Valerio Mazzella
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Christian Galasso
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Emanuele Somma
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri, 34127 Trieste, Italy;
- Department of Marine Biotechnology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077 Naples, Italy;
| | - Antonia Chiarore
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy;
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy; (G.R.); (C.G.); (D.d.P.)
| | - Valerio Zupo
- Department of Marine Biotechnology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077 Naples, Italy;
| |
Collapse
|
6
|
Seyedi S, Parvin P, Jafargholi A, Jelvani S, Shahabi M, Shahbazi M, Mohammadimatin P, Moafi A. Fluorescence properties of Phycocyanin and Phycocyanin-human serum albumin complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118468. [PMID: 32470806 DOI: 10.1016/j.saa.2020.118468] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
In this work, the fluorescence properties of Phycocyanin (PC) and the corresponding quenching effects are investigated in attendance of human serum albumin (HSA). At first, PC is excited at 532 nm using CW SHG Nd:YAG laser, then the emission wavelength, Stokes shift, quantum yield, extinction constant and self-quenching coefficient are obtained based on the modified Beer-Lambert equation. It is shown that a notable red shift appears in terms of PC concentration. According to the fluorescence spectra, the addition of HSA in PC solution leads to a significant reduction in the fluorescence signal via quenching events, however a lucid blue shift takes place in the same time. Stern-Volmer formalism is used to determine the quenching constant (KS), the number of binding sites (n) between PC and HSA as well as the association constant Ka for the purpose of facile transportation to the target in the context of drug delivery. Eventually, temperature dependent coefficients and corresponding spectral shifts are investigated over a wide range of temperatures at a couple of distinct PC concentrations to attest the dominant static quenching takes place. The rate of conjugate formations elevates at low temperatures leading to a certain blue shift. Furthermore, large KS is measured in the course of signal reduction, particularly at low PC populations. In fact, PC conjugation to HSA is essential interaction to enhance chemo drug transportation. Here, at the body temperature, the quenching coefficient decreases to facilitate the drug release. Moreover, the spectral shift of fluorescence emission can be useful for simultaneous monitoring and drug delivery treatment.
Collapse
Affiliation(s)
- S Seyedi
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - P Parvin
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran.
| | - A Jafargholi
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - S Jelvani
- Photonics and Quantum Technologies Research School, Nuclear Science and Technology Research Institute, P.O. Box 1439951113, Tehran, Iran
| | - M Shahabi
- High Institute for Research and Education in Transfusion Medicine, P.O. Box 14665-1157, Tehran, Iran
| | - M Shahbazi
- Gorgan University of Agricultural Sciences & Natural Resources, P.O. Box 4913815739, Gorgan, Iran
| | - P Mohammadimatin
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - A Moafi
- Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
7
|
Bannu SM, Lomada D, Gulla S, Chandrasekhar T, Reddanna P, Reddy MC. Potential Therapeutic Applications of C-Phycocyanin. Curr Drug Metab 2020; 20:967-976. [PMID: 31775595 DOI: 10.2174/1389200220666191127110857] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/10/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cancer and other disorders such as inflammation, autoimmune diseases and diabetes are the major health problems observed all over the world. Therefore, identifying a therapeutic target molecule for the treatment of these diseases is urgently needed to benefit public health. C-Phycocyanin (C-PC) is an important light yielding pigment intermittently systematized in the cyanobacterial species along with other algal species. It has numerous applications in the field of biotechnology and drug industry and also possesses antioxidant, anticancer, antiinflammatory, enhanced immune function, including liver and kidney protection properties. The molecular mechanism of action of C-PC for its anticancer activity could be the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. OBJECTIVES The current review summarizes an update on therapeutic applications of C-PC, its mechanism of action and mainly focuses on the recent development in the field of C-PC as a drug that exhibits beneficial effects against various human diseases including cancer and inflammation. CONCLUSION The data from various studies suggest the therapeutic applications of C-PC such as anti-cancer activity, anti-inflammation, anti-angiogenic activity and healing capacity of certain autoimmune disorders. Mechanism of action of C-PC for its anticancer activity is the blockage of cell cycle progression, inducing apoptosis and autophagy in cancer cells. The future perspective of C-PC is to identify and define the molecular mechanism of its anti-cancer, anti-inflammatory and antioxidant activities, which would shed light on our knowledge on therapeutic applications of C-PC and may contribute significant benefits to global public health.
Collapse
Affiliation(s)
- Saira M Bannu
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Dakshayani Lomada
- Department of Genetics and Genomics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Surendra Gulla
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| | - Thummala Chandrasekhar
- Department of Environmental Science, Yogi Vemana University, Kadapa, Andhra Pradesh 516005, India
| | - Pallu Reddanna
- Department of Animal Sciences, University of Hyderabad, Hyderabad, Telangana 500 046, India
| | - Madhava C Reddy
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh 516 005, India
| |
Collapse
|
8
|
Pagels F, Guedes AC, Amaro HM, Kijjoa A, Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnol Adv 2019; 37:422-443. [DOI: 10.1016/j.biotechadv.2019.02.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 12/13/2022]
|
9
|
Ercolano G, De Cicco P, Ianaro A. New Drugs from the Sea: Pro-Apoptotic Activity of Sponges and Algae Derived Compounds. Mar Drugs 2019; 17:E31. [PMID: 30621025 PMCID: PMC6356258 DOI: 10.3390/md17010031] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022] Open
Abstract
Natural compounds derived from marine organisms exhibit a wide variety of biological activities. Over the last decades, a great interest has been focused on the anti-tumour role of sponges and algae that constitute the major source of these bioactive metabolites. A substantial number of chemically different structures from different species have demonstrated inhibition of tumour growth and progression by inducing apoptosis in several types of human cancer. The molecular mechanisms by which marine natural products activate apoptosis mainly include (1) a dysregulation of the mitochondrial pathway; (2) the activation of caspases; and/or (3) increase of death signals through transmembrane death receptors. This great variety of mechanisms of action may help to overcome the multitude of resistances exhibited by different tumour specimens. Therefore, products from marine organisms and their synthetic derivates might represent promising sources for new anticancer drugs, both as single agents or as co-adjuvants with other chemotherapeutics. This review will focus on some selected bioactive molecules from sponges and algae with pro-apoptotic potential in tumour cells.
Collapse
Affiliation(s)
- Giuseppe Ercolano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Paola De Cicco
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| | - Angela Ianaro
- Department of Pharmacy, School of Medicine, University of Naples Federico II, 80131 Naples, Italy.
| |
Collapse
|
10
|
Noreña-Caro D, Benton MG. Cyanobacteria as photoautotrophic biofactories of high-value chemicals. J CO2 UTIL 2018. [DOI: 10.1016/j.jcou.2018.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Furmaniak MA, Misztak AE, Franczuk MD, Wilmotte A, Waleron M, Waleron KF. Edible Cyanobacterial Genus Arthrospira: Actual State of the Art in Cultivation Methods, Genetics, and Application in Medicine. Front Microbiol 2017; 8:2541. [PMID: 29326676 PMCID: PMC5741684 DOI: 10.3389/fmicb.2017.02541] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/06/2017] [Indexed: 11/13/2022] Open
Abstract
The cyanobacterial genus Arthrospira appears very conserved and has been divided into five main genetic clusters on the basis of molecular taxonomy markers. Genetic studies of seven Arthrospira strains, including genome sequencing, have enabled a better understanding of those photosynthetic prokaryotes. Even though genetic manipulations have not yet been performed with success, many genomic and proteomic features such as stress adaptation, nitrogen fixation, or biofuel production have been characterized. Many of above-mentioned studies aimed to optimize the cultivation conditions. Factors like the light intensity and quality, the nitrogen source, or different modes of growth (auto-, hetero-, or mixotrophic) have been studied in detail. The scaling-up of the biomass production using photobioreactors, either closed or open, was also investigated to increase the production of useful compounds. The richness of nutrients contained in the genus Arthrospira can be used for promising applications in the biomedical domain. Ingredients such as the calcium spirulan, immulina, C-phycocyanin, and γ-linolenic acid (GLA) show a strong biological activity. Recently, its use in the fight against cancer cells was documented in many publications. The health-promoting action of "Spirulina" has been demonstrated in the case of cardiovascular diseases and age-related conditions. Some compounds also have potent immunomodulatory properties, promoting the growth of beneficial gut microflora, acting as antimicrobial and antiviral. Products derived from Arthrospira were shown to successfully replace biomaterial scaffolds in regenerative medicine. Supplementation with the cyanobacterium also improves the health of livestock and quality of the products of animal origin. They were also used in cosmetic preparations.
Collapse
Affiliation(s)
- Magda A Furmaniak
- Chair and Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka E Misztak
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna D Franczuk
- Chair and Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Annick Wilmotte
- InBios-Centre for Protein Engineering, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Małgorzata Waleron
- Department of Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Krzysztof F Waleron
- Chair and Department of Pharmaceutical Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| |
Collapse
|
12
|
Jiang L, Wang Y, Yin Q, Liu G, Liu H, Huang Y, Li B. Phycocyanin: A Potential Drug for Cancer Treatment. J Cancer 2017; 8:3416-3429. [PMID: 29151925 PMCID: PMC5687155 DOI: 10.7150/jca.21058] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
Phycocyanin isolated from marine organisms has the characteristics of high efficiency and low toxicity, and it can be used as a functional food. It has been reported that phycocyanin has anti-oxidative function, anti-inflammatory activity, anti-cancer function, immune enhancement function, liver and kidney protection pharmacological effects. Thus, phycocyanin has an important development and utilization as a potential drug, and phycocyanin has become a new hot spot in the field of drug research. So far, there are more and more studies have shown that phycocyanin has the anti-cancer effect, which can block the proliferation of cancer cells and kill cancer cells. Phycocyanin exerts anti-cancer activity by blocking tumor cell cell cycle, inducing tumor cell apoptosis and autophagy, thereby phycocyanin can serve as a promising anti-cancer agent. This review discusses the therapeutic use of phycocyanin and focuses on the latest advances of phycocyanin as a promising anti-cancer drug.
Collapse
Affiliation(s)
- Liangqian Jiang
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yujuan Wang
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Qifeng Yin
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Huihui Liu
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Yajing Huang
- Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Bing Li
- Department of Genetics and Cell Biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| |
Collapse
|
13
|
Wang Y, Jiang L, Yin Q, Liu H, Liu G, Zhu G, Li B. The Targeted Antitumor Effects of C- PC/CMC-CD59sp Nanoparticles on HeLa Cells in Vitro and in Vivo. J Cancer 2017; 8:3001-3013. [PMID: 28928892 PMCID: PMC5604452 DOI: 10.7150/jca.21059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/30/2017] [Indexed: 01/13/2023] Open
Abstract
The novel C-PC/CMC-CD59sp-NPs were made by carbocymethyl chitosan (CMC) loading C-phycocyanin (C-PC) with the lead of CD59 specific ligand peptide (CD59sp) for targeting, and the characteristics and targeted anti-tumor mechanism were explored in order to realize the targeted therapy of C-PC on the growth of HeLa cells both in vitro and vivo. The targeting nanoparticles were synthesized by ionic-gelation method, and the optimal condition was selected out by orthogonal analysis. The properties of nanoparticles were observed by laser particle analyzer and dynamic light scattering (DLS) and Fourier Transform Infrared Spectrometer (FTIR). The effects of nanoparticles on the proliferation of HeLa cells in vitro were assessed by MTT assay. The mice model with tumor was constructed by subcutaneous injection of HeLa cells into the left axilla of NU/NU mice. The weight of tumor and the spleen were tested. The expression quantities of cleaved caspase-3, Bcl-2 were determined by western blot and immunofluorescent staining. Results showed the morphology of the finally prepared nanoparticles was well distributed with a diameter distribution of 200±11.3 nm and zeta potential of -19.5±4.12mV. Under the guidance of CD59sp, the targeting nanoparticles could targetedly and efficiently arrive at the surface of HeLa cells, and had obvious inhibitory effect on HeLa cells proliferation both in vitro and vivo. Moreover, the nanoparticles could induce cell apoptosis by up-regulation of cleaved caspase-3 proteins expression, but down-regulation of Bcl-2 and cyclinD1 proteins. Our study provided a new idea for the research and development of marine drugs, and supplied a theoretical support for the target therapy of anticancer drug.
Collapse
Affiliation(s)
- Yujuan Wang
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Liangqian Jiang
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Qifeng Yin
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Huihui Liu
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Guoxiang Liu
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| | - Guoteng Zhu
- Affiliated Hospital of Qingdao University, Qingdao, China, 266000
| | - Bing Li
- Department of genetics and cell biology, Basic medical college, 308 Ningxia Road, Qingdao University, Qingdao, China, 266071
| |
Collapse
|
14
|
Yang P, Li B, Yin QF, Wang YJ. Carboxymethyl chitosan nanoparticles coupled with CD59-specific ligand peptide for targeted delivery of C-phycocyanin to HeLa cells. Tumour Biol 2017; 39:1010428317692267. [PMID: 28347253 DOI: 10.1177/1010428317692267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The combination of nanotechnology and medicine will be the next generation of vehicles for targeted drug delivery. Carboxymethyl chitosan loaded with the anticancer drug C-phycocyanin and the CD59-specific ligand peptide for cancer cell targeting were used to create C-phycocyanin/carboxymethyl chitosan-CD59-specific ligand peptide nanoparticles using the ionic-gelation method. Optimal synthesis conditions, selected by response surface methodology, comprised the ratio carboxymethyl chitosan:C-phycocyanin = 3:1, and carboxymethyl chitosan and CaCl2 concentrations of 2.0 and 1.0 mg/mL, respectively. The resulting nanoparticles were spherical, with diameters of approximately 200 nm; the entrapment efficient was about 65%; and the drug loading was about 20%. The release of C-phycocyanin from C-phycocyanin/carboxymethyl chitosan nanoparticles was pH sensitive and had a sustainable effect in vitro. Guided by the CD59-specific ligand peptide, the nanoparticles efficiently targeted the surface of HeLa cells and had an obvious inhibitory effect on HeLa cell proliferation as determined by methyl thiazolyl tetrazolium assays. The nanoparticles were hemocompatible and induced apoptosis by upregulation of cleaved caspase-3 and cleaved polyADP-ribose polymerase proteins, and downregulation of Bcl-2 proteins. Our study provides a novel approach to the research and development of marine drugs, and support for targeted therapy using anticancer drugs.
Collapse
Affiliation(s)
- Peng Yang
- Department of Biology, Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Bing Li
- Department of Biology, Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Qi-Feng Yin
- Department of Biology, Medical College of Qingdao University, Qingdao, People's Republic of China
| | - Yu-Juan Wang
- Department of Biology, Medical College of Qingdao University, Qingdao, People's Republic of China
| |
Collapse
|