1
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
2
|
Circulating cytokines present in multiple myeloma patients inhibit the osteoblastic differentiation of adipose stem cells. Leukemia 2022; 36:540-548. [PMID: 34556797 DOI: 10.1038/s41375-021-01428-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Myeloma is characterized by bone lesions, which are related to both an increased osteoclast activity and a defect in the differentiation of medullary mesenchymal stem cells (MSCs) into osteoblasts. Outside the medullary environment, adipocyte-derived MSCs (ASCs) could represent a source of functional osteoblasts. However, we recently found a defect in the osteoblastic differentiation of ASCs from myeloma patients (MM-ASCs). We examined the effects of plasma from myeloma patients at diagnosis (MM-plasmas) and in complete remission (CR-plasmas) and from healthy donors on the osteoblastic differentiation of healthy donor-derived ASCs (HD-ASCs). Osteoblastogenesis in HD-ASCs was suppressed by MM-plasmas. Seven cytokines (ANG1, ENA-78, EGF, PDGF-AA/AB/BB, and TARC) were increased in MM-plasmas and separately inhibited the osteoblastic differentiation of HD-ASCs. Comparison of MM-ASCs and HD-ASCs by RNA sequencing showed that two master genes characterizing adipocyte differentiation, CD36 and PPARγ, were upregulated in MM-ASCs as compared to HD-ASCs. Finally, we demonstrated a significant increase in CD36 and PPARγ expression in HD-ASCs in the presence of MM-plasmas or the seven cytokines individually, similarly as in MM-ASCs. We conclude that specific cytokines in MM-plasmas, besides the well-known DKK1, inhibit the osteoblastic differentiation of MM- and HD-ASCs with a skewing towards adipocyte differentiation.
Collapse
|
3
|
A Comprehensive Biological and Clinical Perspective Can Drive a Patient-Tailored Approach to Multiple Myeloma: Bridging the Gaps between the Plasma Cell and the Neoplastic Niche. JOURNAL OF ONCOLOGY 2020; 2020:6820241. [PMID: 32508920 PMCID: PMC7251466 DOI: 10.1155/2020/6820241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
There is a broad spectrum of diseases labeled as multiple myeloma (MM). This is due not only to the composite prognostic risk factors leading to different clinical outcomes and responses to treatments but also to the composite tumor microenvironment that is involved in a vicious cycle with the MM plasma cells. New therapeutic strategies have improved MM patients' chances of survival. Nevertheless, certain patients' subgroups have a particularly unfavorable prognosis. Biological stratification can be subdivided into patient, disease, or therapy-related factors. Alternatively, the biological signature of aggressive disease and dismal therapeutic response can promote a dynamic, comprehensive strategic approach, better tailoring the clinical management of high-risk profiles and refractoriness to therapy and taking into account the role played by the MM milieu. By means of an extensive literature search, we have reviewed the state-of-the-art pathophysiological insights obtained from translational investigations of the MM-bone marrow microenvironment. A good knowledge of the MM niche pathophysiological dissection is crucial to tailor personalized approaches in a bench-bedside fashion. The discussion in this review pinpoints two main aspects that appear fundamental in order to gain novel and definitive results from the biology of MM. A systematic knowledge of the plasma cell disorder, along with greater efforts to face the unmet needs present in MM evolution, promises to open a new therapeutic window looking out onto the plethora of scientific evidence about the myeloma and the bystander cells.
Collapse
|
4
|
Ribatti D, Tamma R, Vacca A. Mast Cells and Angiogenesis in Human Plasma Cell Malignancies. Int J Mol Sci 2019; 20:ijms20030481. [PMID: 30678047 PMCID: PMC6386864 DOI: 10.3390/ijms20030481] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Bone marrow angiogenesis plays an important role in the pathogenesis and progression of hematological malignancies. It is well known that tumor microenvironment promotes tumor angiogenesis, proliferation, invasion, and metastasis, and also mediates mechanisms of therapeutic resistance. An increased number of mast cells has been demonstrated in angiogenesis associated with hematological tumors. In this review we focused on the role of mast cells in angiogenesis in human plasma cell malignancies. In this context, mast cells might act as a new target for the adjuvant treatment of these tumors through the selective inhibition of angiogenesis, tissue remodeling and tumor-promoting molecules, permitting the secretion of cytotoxic cytokines and preventing mast cell-mediated immune suppression.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy.
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, 70124 Bari, Italy.
| | - Angelo Vacca
- Department of Biomedical Sciences, and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, 70124 Bari, Italy.
| |
Collapse
|
5
|
Kang Y, Zhu Z, Zheng Y, Wan W, Manole CG, Zhang Q. Skin telocytes versus fibroblasts: two distinct dermal cell populations. J Cell Mol Med 2015; 19:2530-9. [PMID: 26414534 PMCID: PMC4627559 DOI: 10.1111/jcmm.12671] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/17/2015] [Indexed: 12/20/2022] Open
Abstract
It is already accepted that telocytes (TCs) represent a new type of interstitial cells in human dermis. In normal skin, TCs have particular spatial relations with different dermal structures such as blood vessels, hair follicles, arrector pili muscles or segments of sebaceous and/or eccrine sweat glands. The distribution and the density of TCs is affected in various skin pathological conditions. Previous studies mentioned the particular (ultra)structure of TCs and also their immunophenotype, miR imprint or proteome, genome or secretome features. As fibroblast is the most common intersitital cell (also in human dermis), a dedicated comparison between human skin TCs and fibroblasts (Fbs) was required to be performed. In this study, using different techniques, we document several points of difference between human dermis TCs and Fbs. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM), we demonstrated TCs with their hallmark cellular prolongations - telopodes. Thus, we showed their ultrastructural distinctiveness from Fbs. By RayBio Human Cytokine Antibody Array V analyses performed on the supernatant from separately cultured TCs and Fbs, we detected the cytokine profile of both cell types, individually. Two of 79 detected cytokines - epithelial-derived neutrophil-activating peptide 78 and granulocyte chemotactic protein-2 - were 1.5 times higher in the supernatant of TCs (comparing with Fbs). On the other hand, 37 cytokines were at least 1.5 higher in Fbs supernatant (comparing with TCs), and among them six cytokines - interleukin 5, monocyte chemotactic protein-3 (MCP-3), MCP-4, macrophage inflammatory protein-3, angiogenin, thrombopoietin - being 9.5 times higher (results also confirmed by ELISA testing). In summary, using different techniques, we showed that human dermal TCs and Fbs are different in terms of ultrastructure and cytokine profile.
Collapse
Affiliation(s)
- Yuli Kang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zaihua Zhu
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yonghua Zheng
- Department of Respirology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiguo Wan
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Catalin G Manole
- 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania.,"Victor Babeş" National Institute of Pathology, Bucharest, Romania
| | - Qiangqiang Zhang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
6
|
High density of tryptase-positive mast cells in patients with multiple myeloma: correlation with parameters of disease activity. Tumour Biol 2015; 36:8491-7. [PMID: 26026586 DOI: 10.1007/s13277-015-3586-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 05/19/2015] [Indexed: 12/17/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm characterized by bone marrow infiltration from malignant plasma cells. Mast cells play an important role in inflammation and angiogenesis in malignant diseases. The aim of the study was to evaluate the mast cell density in bone marrow of untreated MM patients with markers of disease activity such as serum interleukin-6 (IL-6), B2M, and C-reactive protein (CRP), the grade of bone marrow infiltration, and the levels of produced paraprotein. We studied 86 newly diagnosed MM patients (46 males, 40 females, mean age 59 ± 13.7 years). Thirty of them reached plateau phase after chemotherapy and 20 healthy volunteers. According to the criteria of International Staging System (ISS) staging system, 23 patients had stage I, 30 had stage II, and 33 had stage III. The serum concentrations of CRP, B2M, and IL-6, and the mast cell density (MCD) values were significantly higher in MM patients' group (1.6 ± 1.8, 4.3 ± 2.9, 7.1 ± 5.1, and 9 ± 4.8), in comparison with those found in control group (0.4 ± 0.1, 1.5 ± 0.6, 1.1 ± 0.5, and 1.9 ± 0.7; p < 0.001 in all the cases). Significant differences were found between the grade of infiltration in bone marrow, and the paraprotein values in patients' serum before and after chemotherapy. Furthermore, there was a significant correlation between the MCD values and the prognostic markers CRP (r = 0.452, p < 0.0001), IL-6 (r = 0.475, p < 0.0001), bone marrow infiltration (r = 0.333, p < 0.0002), and serum paraprotein levels(r = 0.221, p < 0.04). High MCD values strengthen the hypothesis that mast cells participate in the pathogenesis of disease progression and may be used as an indicator of the disease activity.
Collapse
|
7
|
Pappa CA, Tsirakis G, Stavroulaki E, Kokonozaki M, Xekalou A, Konsolas I, Alexandrakis MG. Mast Cells Influence the Proliferation Rate of Myeloma Plasma Cells. Cancer Invest 2015; 33:137-41. [DOI: 10.3109/07357907.2015.1008639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|