1
|
Gottumukkala SB, Palanisamy A. Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators. Mamm Genome 2025:10.1007/s00335-025-10110-6. [PMID: 39939487 DOI: 10.1007/s00335-025-10110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.
Collapse
Affiliation(s)
- Sai Bhavani Gottumukkala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| |
Collapse
|
2
|
Li B, Wen M, Gao F, Wang Y, Wei G, Duan Y. Regulation of HNRNP family by post-translational modifications in cancer. Cell Death Discov 2024; 10:427. [PMID: 39366930 PMCID: PMC11452504 DOI: 10.1038/s41420-024-02198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (HNRNPs) represent a large family of RNA-binding proteins consisting of more than 20 members and have attracted great attention with their distinctive roles in cancer progression by regulating RNA splicing, transcription, and translation. Nevertheless, the cancer-specific modulation of HNRNPs has not been fully elucidated. The research of LC-MS/MS technology has documented that HNRNPs were widely and significantly targeted by different post-translational modifications (PTMs), which have emerged as core regulators in shaping protein functions and are involved in multiple physiological processes. Accumulating studies have highlighted that several PTMs are involved in the mechanisms of HNRNPs regulation in cancer and may be suitable therapeutic targets. In this review, we summarize the existing evidence describing how PTMs modulate HNRNPs functions on gene regulation and the involvement of their dysregulation in cancer, which will help shed insights on their clinical impacts as well as possible therapeutic tools targeting PTMs on HNRNPs.
Collapse
Affiliation(s)
- Bohao Li
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mingxin Wen
- Department of Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fei Gao
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangwei Wei
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Yangmiao Duan
- Department of Cell Biology and Key Laboratory of Experimental Teratology, Ministry of Education, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
3
|
Yang ZY, Zhang WL, Jiang CW, Sun G. PCBP1-mediated regulation of WNT signaling is critical for breast tumorigenesis. Cell Biol Toxicol 2023; 39:2331-2343. [PMID: 35639300 DOI: 10.1007/s10565-022-09722-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/11/2022] [Indexed: 11/28/2022]
Abstract
Loss of expression or protein kinase B (Akt1)-mediated post-translational modification of the RNA binding protein Poly r(C) binding protein 1 (PCBP1) is closely related to metastatic advancement of breast cancer. However, the role of PCBP1 in tumorigenesis is not completely defined. Using a xenograft orthotopic model of breast tumorigenesis (4T1-Pcbp1-/-), we show here that PCBP1 knockdown-induced tumorigenesis is inhibited by activation of the WNT signaling via treating with the glycogen synthase kinase 3 beta inhibitor TWS119, but not the Akt2/Akt3 inhibitor GSK690693. Mass cytometry-based evaluation of the tumor microenvironment (TME) revealed significantly more regulatory T cells (Tregs) and significantly less cytotoxic T cells in 4T1-Pcbp1-/-mice treated with saline control in comparison to mice treated with TWS119. Infiltrating cytotoxic T cells were phenotypically and functionally exhausted. Treatment with TWS119 resulted in rescue of cytotoxic T cell function and inhibition of suppressor activity of Tregs. Using cytotoxic T cells isolated from healthy donors, we show that TWS119-induced WNT signaling-mediated inhibition of cytotoxic T cell expansion is reliant on expression of PCBP1. In conclusion, decreased PCBP1 expression favors breast tumorigenesis by potentiating skewing of tumor infiltrating T cells towards Tregs, thereby effectively suppressing anti-tumor immunity.
Collapse
Affiliation(s)
- Zhao-Ying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China
| | - Wen-Long Zhang
- Department of Hematology and Oncology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Cheng-Wei Jiang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130033, China
| | - Guang Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, No.126, Xiantai Street, Changchun, Jilin, 130033, China.
| |
Collapse
|
4
|
KONG FANBIAO, WU KUN, PANG LIMING, HUANG YULIANG, LI LEI, XU JING, LI FEITONG, QING YAN, WANG ZHONGYU, HUANG XIURONG, XU SHENG, ZHONG XIAOGANG, ZHU ZHOU, WANG XIAOTONG, YANG JIANRONG. Inhibition of apoptosis-regulatory protein Siva-1 reverses multidrug resistance in gastric cancer by targeting PCBP1. Oncol Res 2023; 30:277-288. [PMID: 37303491 PMCID: PMC10208025 DOI: 10.32604/or.2022.027301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Siva-1, as a pro-apoptotic protein, has been shown to induce extensive apoptosis in a number of different cell lines. In our previous study, we showed that overexpressed Siva-1 decreased the apoptosis of gastric cancer cells. So, we believe that it can also work as an anti-apoptotic protein. The present study aimed to determine the specific role of Siva-1 in anticancer drug resistance in gastric cancer in vivo and in vitro and preliminarily reveal the mechanism. MATERIALS AND METHODS A vincristine-resistant MKN-28/VCR gastric cancer cell line with stably downregulated Siva-1 was established. The effect of Siva-1 downregulation on chemotherapeutic drug resistance was assessed by measuring the IC50 and pump rate of doxorubicin. Proliferation, apoptosis of cells, and cell cycle were detected via colony formation assay and flow cytometry, respectively. Additionally, migration and invasion of cells was detected via wound healing and transwell assays. Moreover, we determined in vivo effects of LV-Siva-1-RNAi on tumor size, and apoptotic cells in tumor tissues were detected using TUNEL and hematoxylin and eosin staining. RESULTS Siva-1 downregulation reduced the pump rate of doxorubicin and enhanced the response to drug treatment. Siva-1 negatively regulated proliferation and promoted apoptosis of cells by potentiality G2-M phase arresting. Inhibition of Siva-1 expression in MKN-28/VCR cells significantly weakened wound healing ability and decreased invasion ability. Poly(C)-binding protein 1 (PCBP1) was identified as a Siva-1-interacting protein in yeast two-hybrid screening. Semiquantitative RT-PCR and western blotting revealed that Siva-1 downregulation could inhibit expression of PCBP1, Akt, and NF-κB and eventually decrease the expression of MDR1 and MRP1. CONCLUSION he current study demonstrated that the downregulation of Siva-1, which functions as a regulator of MDR1 and MRP1 gene expression in gastric cancer cells by inhibiting PCBP1/Akt/NF-κB signaling pathway expression, enhanced the sensitivity of gastric cancer cells to certain chemotherapies.
Collapse
Affiliation(s)
- FANBIAO KONG
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - KUN WU
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
- Departments of Hepatobiliary and Gastrointestinal Surgery, Minzu Hospital of Guangxi Autonomous Region, Nanning, 530001, China
| | - LIMING PANG
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - YULIANG HUANG
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - LEI LI
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - JING XU
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - FEITONG LI
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - YAN QING
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - ZHONGYU WANG
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - XIURONG HUANG
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - SHENG XU
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - XIAOGANG ZHONG
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - ZHOU ZHU
- Department of Colorectal and Anal Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - XIAOTONG WANG
- Departments of Gastrointestinal, Hernia and Enterofistula Surgery, People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| | - JIANRONG YANG
- Department of Hepatobiliary, Pancreas and Spleen Surgery, The People’s Hospital of Guangxi Zhuang Autonomous Region & Institute of Minimally Invasive Technology and Applications, Guangxi Academy of Medical Sciences, Nanning, 530021, China
| |
Collapse
|
5
|
Arora R, Kim JH, Getu AA, Angajala A, Chen YL, Wang B, Kahn AG, Chen H, Reshi L, Lu J, Zhang W, Zhou M, Tan M. MST4: A Potential Oncogene and Therapeutic Target in Breast Cancer. Cells 2022; 11:cells11244057. [PMID: 36552828 PMCID: PMC9777386 DOI: 10.3390/cells11244057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The mammalian STE 20-like protein kinase 4 (MST4) gene is highly expressed in several cancer types, but little is known about the role of MST4 in breast cancer, and the function of MST4 during epithelial-mesenchymal transition (EMT) has not been fully elucidated. Here we report that overexpression of MST4 in breast cancer results in enhanced cell growth, migration, and invasion, whereas inhibition of MST4 expression significantly attenuates these properties. Further study shows that MST4 promotes EMT by activating Akt and its downstream signaling molecules such as E-cadherin/N-cadherin, Snail, and Slug. MST4 also activates AKT and its downstream pro-survival pathway. Furthermore, by analyzing breast cancer patient tissue microarray and silicon datasets, we found that MST4 expression is much higher in breast tumor tissue compared to normal tissue, and significantly correlates with cancer stage, lymph node metastasis and a poor overall survival rate (p < 0.05). Taken together, our findings demonstrate the oncogenic potential of MST4 in breast cancer, highlighting its role in cancer cell proliferation, migration/invasion, survival, and EMT, suggesting a possibility that MST4 may serve as a novel therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Ritu Arora
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Jin-Hwan Kim
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
- Markey Cancer Center, Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40508, USA
| | - Ayechew A. Getu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Anusha Angajala
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Yih-Lin Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Bin Wang
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688, USA
| | - Andrea G. Kahn
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hong Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Latif Reshi
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Jianrong Lu
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Wenling Zhang
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Ming Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Correspondence:
| |
Collapse
|
6
|
Lu N, Zhang M, Lu L, Liu YZ, Zhang HH, Liu XD. miRNA‑490‑3p promotes the metastatic progression of invasive ductal carcinoma. Oncol Rep 2021; 45:706-716. [PMID: 33416185 PMCID: PMC7757091 DOI: 10.3892/or.2020.7880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/10/2020] [Indexed: 11/06/2022] Open
Abstract
MicroRNA (miRNA/mir)‑490‑3p has been defined as a tumor suppressor in different types of cancer, including breast cancer. However, miR‑490‑3p has been shown to function as a tumor suppressor and promoter in a context‑dependent manner in hepatocellular and lung cancer. Contrary to previous studies, the present study revealed that miR‑490‑3p expression was significantly higher in invasive ductal carcinoma (IDC) tissue specimens, the most common form of breast cancer, compared to tumor‑adjacent normal tissue specimens (n=20). Its expression was also higher in the more metastatic breast cancer cell line, MDA‑MB‑231, compared to the non‑metastatic breast cancer cell line, MCF7, and the moderately metastatic breast cancer cell line, MDA‑MB‑468. The expression of miR‑490‑3p was induced following transforming growth factor (TGF)‑β‑induced epithelial‑to‑mesenchymal transition (EMT) in MCF10A cells. Gain‑and loss‑of‑function assays revealed that the expression of miR‑490‑3p regulated the proliferation, colony formation, EMT, migration and invasion in vitro, but not the apoptosis of MDA‑MB‑468 and MDA‑MB‑231 cells. The knockdown of miR‑490‑3p expression in MDA‑MB‑231 cells inhibited experimental metastasis in a tumor xenograft assay. As in lung cancer, miR‑490‑3p was found to target and downregulate the expression of the tumor suppressor RNA binding protein poly r(C) binding protein 1 (PCBP1). PCBP1 protein and miR‑490‑3p expression inversely correlated in patients with ductal carcinoma in situ (DCIS; n=10; no nodal involvement) and IDC (n=10; different stages of metastatic progression) with a significantly higher miR‑490‑3p expression in patients with IDC compared to those with DCIS. The expression of miR‑490‑3p was negatively associated with both overall and disease‑free survival in the patients with breast cancer included in the present study. On the whole, the results confirm a pro‑metastatic role of miR‑490‑3p in IDC, establishing it as a biomarker for disease progression in these patients.
Collapse
MESH Headings
- Animals
- Breast/pathology
- Breast/surgery
- Breast Neoplasms/genetics
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Breast Neoplasms/surgery
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Ductal, Breast/surgery
- Cell Line, Tumor
- DNA-Binding Proteins/genetics
- Disease Progression
- Disease-Free Survival
- Epithelial-Mesenchymal Transition/genetics
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Gene Knockdown Techniques
- Humans
- Mastectomy
- Mice
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Recurrence, Local/epidemiology
- Neoplasm Recurrence, Local/genetics
- RNA-Binding Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ning Lu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| | - Mei Zhang
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lu Lu
- Department of Pharmacy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Yan-Zhao Liu
- Department of Medicine, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hai-Hong Zhang
- Department of Human Resources, Tianjin Hospital, Tianjin 300211, P.R. China
| | - Xiao-Dong Liu
- Department of Breast Medical Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, P.R. China
| |
Collapse
|
7
|
Liu SQ, Xu CY, Wu WH, Fu ZH, He SW, Qin MB, Huang JA. Sphingosine kinase 1 promotes the metastasis of colorectal cancer by inducing the epithelial‑mesenchymal transition mediated by the FAK/AKT/MMPs axis. Int J Oncol 2018; 54:41-52. [PMID: 30365116 PMCID: PMC6254930 DOI: 10.3892/ijo.2018.4607] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022] Open
Abstract
It was demonstrated that Sphingosine kinase 1 (SphK1) promotes tumor progression and confers the malignancy phenotype of colorectal cancer by activating the focal adhesion kinase (FAK) pathway. However, further clarification is required to determine if SphK1 promotes the metastasis of colorectal cancer by inducing epithelial‑mesenchymal transition (EMT), and its mechanisms have not been fully elucidated. Immunohistochemistry staining was used to detect protein expression in normal colonic mucosa tissues and colorectal cancer tissues. Cells were transfected to overexpress SphK1, downregulate SphK1 or downregulate FAK. An MTT assay was used to detect the drug toxicity to cells. Transwell and wound healing assays were used to detect cell migration ability. Reverse transcription‑polymerase chain reaction and western blot analysis were used to detect the expression of mRNA and protein, respectively. Scanning electron microscopy was used to observe the microvilli and pseudopodia of the cells. The analysis of protein expression in 114 human colorectal cancer tissues demonstrated that the expressions of SphK1, FAK, phosphorylated (p)‑FAK, E‑cadherin and vimentin were associated with the metastasis of colorectal cancer. Furthermore, the patients with colorectal cancer with SphK1‑positive cancer demonstrated poorer prognosis compared with SphK1‑negative cancer. FAK knockdown and SphK1 knockdown of human colon cancer RKO cells inhibited the EMT and migrational potency, along with the expression of p‑FAK, p‑protein kinase B (AKT) and matrix metalloproteinase (MMP)2/9. In contrast, SphK1 overexpression promoted EMT, migrational potency, and the expression of p‑FAK, p‑AKT and MMP2/9 in HT29 cells. Additionally, the EMT and migrational potency of SphK1‑overexpressing HT29 cells was suppressed by a FAK inhibitor, and the expression of p‑FAK, p‑AKT and MMP2/9 was suppressed by blocking the FAK pathway. In conclusion, SphK1 promoted the migration and metastasis of colon cancer by inducing EMT mediated by the FAK/AKT/MMPs axis.
Collapse
Affiliation(s)
- Shi-Quan Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Chun-Yan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Wen-Hong Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Zhen-Hua Fu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Si-Wei He
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Meng-Bin Qin
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Jie-An Huang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| |
Collapse
|
8
|
Shi H, Li H, Yuan R, Guan W, Zhang X, Zhang S, Zhang W, Tong F, Li L, Song Z, Wang C, Yang S, Wang H. PCBP1 depletion promotes tumorigenesis through attenuation of p27 Kip1 mRNA stability and translation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:187. [PMID: 30086790 PMCID: PMC6081911 DOI: 10.1186/s13046-018-0840-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022]
Abstract
Background Poly C Binding Protein 1 (PCBP1) is an RNA-binding protein that binds and regulates translational activity of subsets of cellular mRNAs. Depletion of PCBP1 is implicated in various carcinomas, but the underlying mechanism in tumorigenesis remains elusive. Methods We performed a transcriptome-wide screen to identify novel bounding mRNA of PCBP1. The bind regions between PCBP1 with target mRNA were investigated by using point mutation and luciferase assay. Cell proliferation, cell cycle, tumorigenesis and cell apoptosis were also evaluated in ovary and colon cancer cell lines. The mechanism that PCBP1 affects p27 was analyzed by mRNA stability and ribosome profiling assays. We analyzed PCBP1 and p27 expression in ovary, colon and renal tumor samples and adjacent non-tumor tissues using RT-PCR, Western Blotting and immunohistochemistry. The prognostic significance of PCBP1 and p27 also analyzed using online databases. Results We identified cell cycle inhibitor p27Kip1 (p27) as a novel PCBP1-bound transcript. We then demonstrated that binding of PCBP1 to p27 3’UTR via its KH1 domain mainly stabilizes p27 mRNA, while enhances its translation to fuel p27 expression, prior to p27 protein degradation. The upregulated p27 consequently inhibits cell proliferation, cell cycle progression and tumorigenesis, whereas promotes cell apoptosis under paclitaxel treatment. Conversely, knockdown of PCBP1 in turn compromises p27 mRNA stability, leading to lower p27 level and tumorigenesis in vivo. Moreover, forced depletion of p27 counteracts the tumor suppressive ability of PCBP1 in the same PCBP1 over-expressing cells. Physiologically, we showed that decreases of both p27 mRNA and its protein expressions are well correlated to PCBP1 depletion in ovary, colon and renal tumor samples, independent of the p27 ubiquitin ligase Skp2 level. Correlation of PCBP1 with p27 is also found in the tamoxifen, doxorubincin and lapatinib resistant breast cancer cells of GEO database. Conclusion Our results thereby indicate that loss of PCBP1 expression firstly attenuates p27 expression at post-transcriptional level, and subsequently promotes carcinogenesis. PCBP1 could be used as a diagnostic marker to cancer patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0840-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongshun Shi
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Ronghua Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Xiaomei Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Shaoyang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Wenliang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Fang Tong
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Li Li
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.,Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Zhihong Song
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China
| | - Changwei Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Shulan Yang
- Centre for Translational Medicine, the First Affiliated Hospital, SUN Yat-sen University, 58 Second Zhongshan Road, Guangzhou, 510080, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, SUN Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China. .,Center for Stem Cell Biology and Tissue Engineering, Key laboratory of ministry of education, Sun Yat-sen University, 74 Second Zhongshan Road, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Ji X, Humenik J, Yang D, Liebhaber SA. PolyC-binding proteins enhance expression of the CDK2 cell cycle regulatory protein via alternative splicing. Nucleic Acids Res 2018; 46:2030-2044. [PMID: 29253178 PMCID: PMC5829739 DOI: 10.1093/nar/gkx1255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/01/2017] [Accepted: 12/05/2017] [Indexed: 11/13/2022] Open
Abstract
The PolyC binding proteins (PCBPs) impact alternative splicing of a subset of mammalian genes that are enriched in basic cellular functions. Here, we focus our analysis on PCBP-controlled cassette exon-splicing within the cell cycle control regulator cyclin-dependent kinase-2 (CDK2) transcript. We demonstrate that PCBP binding to a C-rich polypyrimidine tract (PPT) preceding exon 5 of the CDK2 transcript enhances cassette exon inclusion. This splice enhancement is U2AF65-independent and predominantly reflects actions of the PCBP1 isoform. Remarkably, PCBPs' control of CDK2 ex5 splicing has evolved subsequent to mammalian divergence via conversion of constitutive exon 5 inclusion in the mouse CDK2 transcript to PCBP-responsive exon 5 alternative splicing in humans. Importantly, exclusion of exon 5 from the hCDK2 transcript dramatically represses the expression of CDK2 protein with a corresponding perturbation in cell cycle kinetics. These data highlight a recently evolved post-transcriptional pathway in primate species with the potential to modulate cell cycle control.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jesse Humenik
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daphne Yang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
10
|
Shin KM, Hong MJ, Lee SY, Jin CC, Baek SA, Lee JH, Choi JE, Kang HG, Lee WK, Seok Y, Lee EB, Jeong JY, Yoo SS, Lee J, Cha SI, Kim CH, Kim YC, Oh IJ, Na KJ, Cho S, Jheon S, Park JY. Regulatory variants in cancer-related pathway genes predict survival of patients with surgically resected non-small cell lung cancer. Gene 2017; 646:56-63. [PMID: 29289609 DOI: 10.1016/j.gene.2017.12.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/20/2017] [Accepted: 12/27/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND We conducted this study to identify genetic variants in cancer-related pathway genes which can predict prognosis of NSCLC patients after surgery, using a comprehensive list of regulatory single nucleotide polymorphisms (SNPs) prioritized by RegulomeDB. METHOD A total of 509 potentially functional SNPs in cancer-related pathway genes selected from RegulomeDB were evaluated. These SNPs were analyzed in a discovery set (n=354), and a replication study was performed in an independent set (n=772). The association of the SNPs with overall survival (OS) and disease-free survival (DFS) were analyzed. RESULTS In the discovery set, 76 SNPs were significantly associated with OS or DFS. Among the 76 SNPs, the association was consistently observed for 5 SNPs (ERCC1 rs2298881C>A, BRCA2 rs3092989G>A, NELFE rs440454C>T, PPP2R4 rs2541164G>A, and LTBP4 rs3786527G>A) in the validation set. In combined analysis, ERCC1 rs2298881C>A, BRCA2 rs3092989, NELFE rs440454C>T, and PPP2R4 rs2541164G>A were significantly associated with OS and DFS (adjusted HR ·aHR· for OS=1.46, 0.62, 078, and 0.76, respectively; P=0.003, 0.002, 0.007, and 0.003 respectively; and aHR for DFS=1.27, 0.69, 0.86, and 0.82, respectively; P=0.02, 0.002, 0.03, and 0.008, respectively). The LTBP4 rs3786527G>A was significantly associated with better OS (aHR=0.75; P=0.003). CONCLUSION Our results suggest that five SNPs in the cancer-related pathway genes may be useful for the prediction of the prognosis in patients with surgically resected NSCLC.
Collapse
Affiliation(s)
- Kyung Min Shin
- Department of Radiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mi Jeong Hong
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Cheng Cheng Jin
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun Ah Baek
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jang Hyuck Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Eun Choi
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyo-Gyoung Kang
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Won Kee Lee
- Biostatistics, Medical Research Collaboration Center in Kyungpook National University Hospital and Kyungpook National University School of Medicine, Daegu, Korea
| | - Yangki Seok
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea; Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eung Bae Lee
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea; Department of Thoracic Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Young Chul Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - In Jae Oh
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Kook Joo Na
- Department of Thoracic and Cardiovascular Surgery, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - Sukki Cho
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul, Republic of Korea
| | - Sanghoon Jheon
- Department of Thoracic and Cardiovascular Surgery, Seoul National University School of Medicine, Seoul, Republic of Korea
| | - Jae Yong Park
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea; Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea; Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
11
|
Poly(C)-binding protein 1 mediates drug resistance in colorectal cancer. Oncotarget 2017; 8:13312-13319. [PMID: 28076324 PMCID: PMC5355098 DOI: 10.18632/oncotarget.14516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/27/2016] [Indexed: 11/25/2022] Open
Abstract
Oxaliplatin (L-OHP) is standard treatment for colorectal cancer. However, resistance to L-OHP often leads to treatment failure or cancer relapse. Understanding of the mechanism underlying L-OHP resistance is important to overcome the resistance and improve colorectal cancer treatment. This study aimed to identify new proteins that mediates L-OHP resistance in colorectal cancer and elucidate their mode of function. HT-29 cells were exposed to gradually increased concentration of L-OHP to select L-OHP resistant HT-29/L-OHP cell line. Proteomic analysis of HT-29 and HT-29/L-OHP cells were performed to identify differentially expressed proteins, including Poly(C)-binding protein 1 (PCBP1). PCBP1 expression level in 20 cases of L-OHP sensitive patients and 20 cases of L-OHP refractory patients was analyzed by immunohistochemistry. Chemoresistance and Akt activation in HT-29 and HT-29/L-OHP cells were analyzed by MTT assay and Western blot analysis. We identified 37 proteins showing differential expression in HT-29/L-OHP and HT-29 cells. In particular, PCBP1 protein level increased 15.6 fold in HT-29/L-OHP cells compared to HT-29 cells. Knockdown of PCBP1 sensitized HT-29/L-OHP and HT-29 cells to L-OHP, while overexpression of PCBP1 increased L-OHP resistance in HT-29 cells. In addition, PCBP1 expression was significantly higher in tumor samples from L-OHP refractory patients than in those from L-OHP responsive patients. Furthermore, we found that knockdown of PCBP1 inhibited the activation of Akt in HT-29/L-OHP and HT-29 cells. In conclusion, our findings suggest that PCBP1 is a molecular marker of L-OHP resistance in colorectal cancer and a promising target for colorectal cancer therapy.
Collapse
|
12
|
Franks SE, Briah R, Jones RA, Moorehead RA. Unique roles of Akt1 and Akt2 in IGF-IR mediated lung tumorigenesis. Oncotarget 2016; 7:3297-316. [PMID: 26654940 PMCID: PMC4823107 DOI: 10.18632/oncotarget.6489] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/16/2015] [Indexed: 01/22/2023] Open
Abstract
AKT is a serine-threonine kinase that becomes hyperactivated in a number of cancers including lung cancer. Based on AKT's association with malignancy, molecules targeting AKT have entered clinical trials for solid tumors including lung cancer. However, the AKT inhibitors being evaluated in clinical trials indiscriminately inhibit all three AKT isoforms (AKT1-3) and it remains unclear whether AKT isoforms have overlapping or divergent functions. Using a transgenic mouse model where IGF-IR overexpression drives lung tumorigenesis, we found that loss of Akt1 inhibited while loss of Akt2 enhanced lung tumor development. Lung tumors that developed in the absence of Akt2 were less likely to appear as discrete nodules and more frequently displayed a dispersed growth pattern. RNA sequencing revealed a number of genes differentially expressed in lung tumors lacking Akt2 and five of these genes, Actc1, Bpifa1, Mmp2, Ntrk2, and Scgb3a2 have been implicated in human lung cancer. Using 2 human lung cancer cell lines, we observed that a selective AKT1 inhibitor, A-674563, was a more potent regulator of cell survival than the pan-AKT inhibitor, MK-2206. This study suggests that compounds selectively targeting AKT1 may prove more effective than compounds that inhibit all three AKT isoforms at least in the treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- S Elizabeth Franks
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ritesh Briah
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Robert A Jones
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Roger A Moorehead
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
13
|
MicroRNA-490 regulates lung cancer metastasis by targeting poly r(C)-binding protein 1. Tumour Biol 2016; 37:15221-15228. [PMID: 27683057 DOI: 10.1007/s13277-016-5347-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
Lung cancer remains a leading cause of cancer-related mortality, with metastatic progression remaining the single largest cause of lung cancer mortality. Hence, it is imperative to determine reliable biomarkers of lung cancer prognosis. MicroRNA-490-3p has been previously reported to be a positive prognostic biomarker for hepatocellular cancer. However, its role in human lung cancer has not yet been elucidated. Here, we report that hsa-miR-490-3p expression is significantly higher in human lung cancer tissue specimens and cell line. Gain- and loss-of-function studies of hsa-miR-490-3p showed that it regulates cell proliferation and is required for induction of in vitro migration and invasion-the latter being a hallmark of epithelial to mesenchymal transition. In situ analysis revealed that hsa-miR-490-3p targets poly r(C)-binding protein 1 (PCBP1), which has been previously shown to be a negative regulator of lung cancer metastasis. Reporter assays confirmed PCBP1 as a bona fide target of miR-490-3p, and metagenomic analysis revealed an inverse relation between expression of miR-490-3p and PCBP1 in metastatic lung cancer patients. In fact, PCBP1 expression, as detected by immunohistochemistry, was undetectable in advanced stages of lung cancer patients' brain and lymph node tissues. Xenograft tail vein colonization assays proved that high expression of miR-490-3p is a prerequisite for metastatic progression of lung cancer. Our results suggest that hsa-miR-490-3p might be a potential biomarker for lung cancer prognosis. In addition, we can also conclude that the lung cancer cells have evolved refractory mechanisms to downregulate the expression of the metastatic inhibitor, PCBP1.
Collapse
|
14
|
Poly r(C) binding protein is post-transcriptionally repressed by MiR-490-3p to potentiate squamous cell carcinoma. Tumour Biol 2016; 37:14773-14778. [DOI: 10.1007/s13277-016-5234-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022] Open
|
15
|
Elsafadi M, Manikandan M, Dawud RA, Alajez NM, Hamam R, Alfayez M, Kassem M, Aldahmash A, Mahmood A. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization. Cell Death Dis 2016; 7:e2321. [PMID: 27490926 PMCID: PMC5108308 DOI: 10.1038/cddis.2016.196] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/08/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
Regenerative medicine is a novel approach for treating conditions in which enhanced bone regeneration is required. We identified transgelin (TAGLN), a transforming growth factor beta (TGFβ)-inducible gene, as an upregulated gene during in vitro osteoblastic and adipocytic differentiation of human bone marrow-derived stromal (skeletal) stem cells (hMSC). siRNA-mediated gene silencing of TAGLN impaired lineage differentiation into osteoblasts and adipocytes but enhanced cell proliferation. Additional functional studies revealed that TAGLN deficiency impaired hMSC cell motility and in vitro transwell cell migration. On the other hand, TAGLN overexpression reduced hMSC cell proliferation, but enhanced cell migration, osteoblastic and adipocytic differentiation, and in vivo bone formation. In addition, deficiency or overexpression of TAGLN in hMSC was associated with significant changes in cellular and nuclear morphology and cytoplasmic organelle composition as demonstrated by high content imaging and transmission electron microscopy that revealed pronounced alterations in the distribution of the actin filament and changes in cytoskeletal organization. Molecular signature of TAGLN-deficient hMSC showed that several genes and genetic pathways associated with cell differentiation, including regulation of actin cytoskeleton and focal adhesion pathways, were downregulated. Our data demonstrate that TAGLN has a role in generating committed progenitor cells from undifferentiated hMSC by regulating cytoskeleton organization. Targeting TAGLN is a plausible approach to enrich for committed hMSC cells needed for regenerative medicine application.
Collapse
Affiliation(s)
- M Elsafadi
- Stem Cells Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia.,KMEB, Department of Endocrinology, University Hospital of Odense and University of Southern Denmark, Odense, Denmark
| | - M Manikandan
- Stem Cells Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| | - R A Dawud
- Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| | - N M Alajez
- Stem Cells Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| | - R Hamam
- Stem Cells Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| | - M Alfayez
- Stem Cells Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| | - M Kassem
- Stem Cells Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia.,KMEB, Department of Endocrinology, University Hospital of Odense and University of Southern Denmark, Odense, Denmark
| | - A Aldahmash
- Stem Cells Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia.,KMEB, Department of Endocrinology, University Hospital of Odense and University of Southern Denmark, Odense, Denmark.,Prince Naif Health Research Center, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| | - A Mahmood
- Stem Cells Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh 11461, Kingdom of Saudi Arabia
| |
Collapse
|
16
|
Ji X, Park JW, Bahrami-Samani E, Lin L, Duncan-Lewis C, Pherribo G, Xing Y, Liebhaber SA. αCP binding to a cytosine-rich subset of polypyrimidine tracts drives a novel pathway of cassette exon splicing in the mammalian transcriptome. Nucleic Acids Res 2016; 44:2283-97. [PMID: 26896798 PMCID: PMC4797308 DOI: 10.1093/nar/gkw088] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
Alternative splicing (AS) is a robust generator of mammalian transcriptome complexity. Splice site specification is controlled by interactions of cis-acting determinants on a transcript with specific RNA binding proteins. These interactions are frequently localized to the intronic U-rich polypyrimidine tracts (PPT) located 5′ to the majority of splice acceptor junctions. αCPs (also referred to as polyC-binding proteins (PCBPs) and hnRNPEs) comprise a subset of KH-domain proteins with high affinity and specificity for C-rich polypyrimidine motifs. Here, we demonstrate that αCPs promote the splicing of a defined subset of cassette exons via binding to a C-rich subset of polypyrimidine tracts located 5′ to the αCP-enhanced exonic segments. This enhancement of splice acceptor activity is linked to interactions of αCPs with the U2 snRNP complex and may be mediated by cooperative interactions with the canonical polypyrimidine tract binding protein, U2AF65. Analysis of αCP-targeted exons predicts a substantial impact on fundamental cell functions. These findings lead us to conclude that the αCPs play a direct and global role in modulating the splicing activity and inclusion of an array of cassette exons, thus driving a novel pathway of splice site regulation within the mammalian transcriptome.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juw Won Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40292, USA KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lan Lin
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Duncan-Lewis
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon Pherribo
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen A Liebhaber
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Gener P, Rafael DFDS, Fernández Y, Ortega JS, Arango D, Abasolo I, Videira M, Schwartz S. Cancer stem cells and personalized cancer nanomedicine. Nanomedicine (Lond) 2016; 11:307-20. [DOI: 10.2217/nnm.15.200] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite the progress in cancer treatment over the past years advanced cancer is still an incurable disease. Special attention is pointed toward cancer stem cell (CSC)-targeted therapies, because this minor cell population is responsible for the treatment resistance, metastatic growth and tumor recurrence. The recently described CSC dynamic phenotype and interconversion model of cancer growth hamper even more the possible success of current cancer treatments in advanced cancer stages. Accordingly, CSCs can be generated through dedifferentiation processes from non-CSCs, in particular, when CSC populations are depleted after treatment. In this context, the use of targeted CSC nanomedicines should be considered as a promising tool to increase CSC sensitivity and efficacy of specific anti-CSC therapies.
Collapse
Affiliation(s)
- Petra Gener
- Drug Delivery & Targeting Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Diana Fernandes de Sousa Rafael
- Drug Delivery & Targeting Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- iMed.ULisboa, Research Institute for Medicines. Faculdade de Farmácia da Universidade de Lisboa, Av Prof Gama Pinto, 1649–003 Lisboa, Portugal
| | - Yolanda Fernández
- Drug Delivery & Targeting Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Functional Validation & Preclinical Studies (FVPR); CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Joan Sayós Ortega
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Inmunobiology Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Diego Arango
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Molecular Oncology Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Ibane Abasolo
- Drug Delivery & Targeting Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Functional Validation & Preclinical Studies (FVPR); CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| | - Mafalda Videira
- iMed.ULisboa, Research Institute for Medicines. Faculdade de Farmácia da Universidade de Lisboa, Av Prof Gama Pinto, 1649–003 Lisboa, Portugal
| | - Simo Schwartz
- Drug Delivery & Targeting Group; CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Passeig Vall d'Hebron 119–129, 08035 Barcelona, Spain
| |
Collapse
|
18
|
Computational Identification of Post Translational Modification Regulated RNA Binding Protein Motifs. PLoS One 2015; 10:e0137696. [PMID: 26368004 PMCID: PMC4569568 DOI: 10.1371/journal.pone.0137696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 08/19/2015] [Indexed: 11/19/2022] Open
Abstract
RNA and its associated RNA binding proteins (RBPs) mitigate a diverse array of cellular functions and phenotypes. The interactions between RNA and RBPs are implicated in many roles of biochemical processing by the cell such as localization, protein translation, and RNA stability. Recent discoveries of novel mechanisms that are of significant evolutionary advantage between RBPs and RNA include the interaction of the RBP with the 3’ and 5’ untranslated region (UTR) of target mRNA. These mechanisms are shown to function through interaction of a trans-factor (RBP) and a cis-regulatory element (3’ or 5’ UTR) by the binding of a RBP to a regulatory-consensus nucleic acid motif region that is conserved throughout evolution. Through signal transduction, regulatory RBPs are able to temporarily dissociate from their target sites on mRNAs and induce translation, typically through a post-translational modification (PTM). These small, regulatory motifs located in the UTR of mRNAs are subject to a loss-of-function due to single polymorphisms or other mutations that disrupt the motif and inhibit the ability to associate into the complex with RBPs. The identification of a consensus motif for a given RBP is difficult, time consuming, and requires a significant degree of experimentation to identify each motif-containing gene on a genomic scale. We have developed a computational algorithm to analyze high-throughput genomic arrays that contain differential binding induced by a PTM for a RBP of interest–RBP-PTM Target Scan (RPTS). We demonstrate the ability of this application to accurately predict a PTM-specific binding motif to an RBP that has no antibody capable of distinguishing the PTM of interest, negating the use of in-vitro exonuclease digestion techniques.
Collapse
|
19
|
PCAF-mediated Akt1 acetylation enhances the proliferation of human glioblastoma cells. Tumour Biol 2014; 36:1455-62. [PMID: 25501279 DOI: 10.1007/s13277-014-2522-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/20/2014] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is the most aggressive malignant primary brain tumor in humans. The activation of PI3K/Akt1 signaling pathway is involved in the proliferation of glioblastoma; however, the underlying mechanism of Akt1 activation during the development of glioblastoma remains largely unclear. Recently, the modification of molecular molecules at protein level such as acetylation has been shown to be related to the function of these molecules. Thus, in our present studies, the acetylation of Akt1 molecule and its role in the proliferation of glioblastoma cells was explored. The results showed that Akt1 was markedly acetylated in glioblastoma cells compared to normal human astrocytes. Mechanistically, PCAF-mediated Akt1 acetylation enhanced Akt1 phosphorylation at both sites of Thr(308) and Ser(473) and further promoted the proliferation of glioblastoma cells. Together, these data implicate that, as a post-translational regulation, PCAF-mediated Akt1 acetylation plays an important role in the proliferation of human glioblastoma, suggesting a novel target for clinical application.
Collapse
|
20
|
Derynck R, Muthusamy BP, Saeteurn KY. Signaling pathway cooperation in TGF-β-induced epithelial-mesenchymal transition. Curr Opin Cell Biol 2014; 31:56-66. [PMID: 25240174 DOI: 10.1016/j.ceb.2014.09.001] [Citation(s) in RCA: 308] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 09/01/2014] [Accepted: 09/01/2014] [Indexed: 12/28/2022]
Abstract
Transdifferentiation of epithelial cells into cells with mesenchymal properties and appearance, that is, epithelial-mesenchymal transition (EMT), is essential during development, and occurs in pathological contexts, such as in fibrosis and cancer progression. Although EMT can be induced by many extracellular ligands, TGF-β and TGF-β-related proteins have emerged as major inducers of this transdifferentiation process in development and cancer. Additionally, it is increasingly apparent that signaling pathways cooperate in the execution of EMT. This update summarizes the current knowledge of the coordination of TGF-β-induced Smad and non-Smad signaling pathways in EMT, and the remarkable ability of Smads to cooperate with other transcription-directed signaling pathways in the control of gene reprogramming during EMT.
Collapse
Affiliation(s)
- Rik Derynck
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143-0669, USA.
| | - Baby Periyanayaki Muthusamy
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143-0669, USA
| | - Koy Y Saeteurn
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143-0669, USA
| |
Collapse
|