1
|
Liao L, Wang YX, Fan SS, Hu YY, Wang XC, Zhang X. The role and clinical significance of tumor-associated macrophages in the epithelial-mesenchymal transition of lung cancer. Front Oncol 2025; 15:1571583. [PMID: 40304000 PMCID: PMC12037373 DOI: 10.3389/fonc.2025.1571583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related mortality worldwide. Tumor-associated macrophages (TAMs) and epithelial-mesenchymal transition (EMT) are key drivers of lung cancer metastasis and drug resistance. M2-polarized TAMs dominate the immunosuppressive tumor microenvironment (TME) and promote EMT through cytokines such as TGF-β, IL-6, and CCL2. Conversely, EMT-transformed tumor cells reinforce TAM recruitment and M2 polarization through immunomodulatory factors such as CCL2 and ZEB1, thereby establishing a bidirectional interplay that fuels tumor progression. Current evidence on this interaction remains fragmented, and a comprehensive review of the TAM-EMT regulatory network and its therapeutic implications is lacking. This review systematically integrates the bidirectional regulatory mechanisms between TAMs and EMT, highlighting their roles in lung cancer progression. It also summarizes emerging therapeutic strategies targeting TAM polarization and the EMT process, emphasizing their potential for clinical translation. This study fills the gap in systematic reviews on the interaction between TAMs and EMT, providing a comprehensive theoretical foundation for future research and the development of novel lung cancer therapies.
Collapse
Affiliation(s)
- Lei Liao
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Ying-Xia Wang
- Department of Pathology, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Su-Su Fan
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Ying-Yue Hu
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Xue-Chang Wang
- Department of Pharmacy, Anning First People’s Hospital, Anning, China
| | - Xuan Zhang
- School of Pharmaceutical Sciences & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- Yunnan College of Modern Biomedical Industry, Kunming, China
| |
Collapse
|
2
|
Detchou D, Barrie U. Interleukin 6 and cancer resistance in glioblastoma multiforme. Neurosurg Rev 2024; 47:541. [PMID: 39231832 DOI: 10.1007/s10143-024-02783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/16/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Despite unprecedented survival in patients with glioblastoma (GB), the aggressive primary brain cancer remains largely incurable and its mechanisms of treatment resistance have gained particular attention. The cytokine interleukin 6 (IL-6) and its receptor weave through the hallmarks of malignant gliomas and may represent a key vulnerability to GB. Known for activating the STAT3 pathway in autocrine fashion, IL-6 is amplified in GB and has been recognized as a negative biomarker for GB prognosis, rendering it a putative target of novel GB therapies. While it has been recognized as a biologically active component of GB for three decades only with concurrent advances in understanding of complementary immunotherapy has the concept of targeting IL-6 for a human clinical trial gained scientific footing.
Collapse
Affiliation(s)
- Donald Detchou
- School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Umaru Barrie
- Department of Neurosurgery, New York University Grossman School of Medicine, New York City, NYC, USA
| |
Collapse
|
3
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
4
|
Odarenko KV, Zenkova MA, Markov AV. The Nexus of Inflammation-Induced Epithelial-Mesenchymal Transition and Lung Cancer Progression: A Roadmap to Pentacyclic Triterpenoid-Based Therapies. Int J Mol Sci 2023; 24:17325. [PMID: 38139154 PMCID: PMC10743660 DOI: 10.3390/ijms242417325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Its high mortality is partly due to chronic inflammation that accompanies the disease and stimulates cancer progression. In this review, we analyzed recent studies and highlighted the role of the epithelial-mesenchymal transition (EMT) as a link between inflammation and lung cancer. In the inflammatory tumor microenvironment (iTME), fibroblasts, macrophages, granulocytes, and lymphocytes produce inflammatory mediators, some of which can induce EMT. This leads to increased invasiveness of tumor cells and self-renewal of cancer stem cells (CSCs), which are associated with metastasis and tumor recurrence, respectively. Based on published data, we propose that inflammation-induced EMT may be a potential therapeutic target for the treatment of lung cancer. This prospect is partially realized in the development of EMT inhibitors based on pentacyclic triterpenoids (PTs), described in the second part of our study. PTs reduce the metastatic potential and stemness of tumor cells, making PTs promising candidates for lung cancer therapy. We emphasize that the high diversity of molecular mechanisms underlying inflammation-induced EMT far exceeds those that have been implicated in drug development. Therefore, analysis of information on the relationship between the iTME and EMT is of great interest and may provide ideas for novel treatment approaches for lung cancer.
Collapse
Affiliation(s)
- Kirill V. Odarenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (K.V.O.); (M.A.Z.)
| |
Collapse
|
5
|
Chen CT, Chen CF, Lin TY, Hua WJ, Hua K, Tsai CY, Hsu CH. Traditional Chinese medicine Kuan-Sin-Yin decoction inhibits cell mobility via downregulation of CCL2, CEACAM1 and PIK3R3 in hepatocellular carcinoma cells. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116834. [PMID: 37355084 DOI: 10.1016/j.jep.2023.116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kuan-Sin-Yin (KSY) is a traditional Chinese medical decoction, designed based on the classic Si-Jun-Zi-Tang decoction and used clinically to improve the synergic effects of energy promotion, liver function and cancer related symptom and quality of life. However, the anti-hepatocellular carcinoma (HCC) function of KSY is unclear. AIM OF THE STUDY This study aimed to investigate the anti-mobility activity of KSY on HCC cells and elucidate its molecular mechanism. MATERIALS AND METHODS Two malignancy hepatocellular carcinoma cells, Mahlavu and SK-Hep-1, were used for the test of cell proliferation via alarm blue assay. The wound healing and Transwell assays were used to determine the anti-mobility activity of KSY in HCC cells. Cell morphology was analyzed via confocal microscopy. The genomic profile of KSY-treated HCC cells was analyzed by microarray. The potential signaling pathways and bio-functions of KSY-mediated genes were analyzed by ingenuity pathway analysis (IPA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to detect the messenger RNA (mRNA) level of indicated gene. RESULTS KSY did not affect cell viability of HCC cells but significantly inhibited cell migration and invasion in those HCC Mahlavu and SK-Hep-1 cells. In parallel, KSY induced changes in morphology of HCC cells via re-modulating actin cytoskeleton. KSY upregulated 1270 genes but reduced 1534 genes in Mahlavu cells. KSY regulated various gene networks which controlled cell migration, invasion and movement. Specifically, KSY reduced expression of chemokine (C-C motif) ligand 2 (CCL2), which is correlated to cell mobility, and concomitantly downregulated mRNA levels of phosphoinositide-3-kinase regulatory subunit 3 (PIK3R3) and CEA cell adhesion molecule 1 (CEACAM1). CONCLUSION These findings indicated that regulation of CCL2-mediated PIK3R3 and CEACAM1 may be involved in KSY inhibited cell mobility. Moreover, KSY may be a potential a Chinese decoction for reducing cell mobility.
Collapse
Affiliation(s)
- Chueh-Tan Chen
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chian-Feng Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Wei-Jyun Hua
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Kate Hua
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Ching-Yao Tsai
- Department of Ophthalmology, Taipei City Hospital, Taipei, Taiwan; Institute of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Business Administration, Fu Jen Catholic University, New Taipei, Taiwan; General Education Center, University of Taipei, Taipei, Taiwan.
| | - Chung-Hua Hsu
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Chinese Medicine, Taipei City Hospital, Linsen, Chinese Medicine, and Kunming Branch, Taipei, Taiwan.
| |
Collapse
|
6
|
Augimeri G, Gonzalez ME, Paolì A, Eido A, Choi Y, Burman B, Djomehri S, Karthikeyan SK, Varambally S, Buschhaus JM, Chen YC, Mauro L, Bonofiglio D, Nesvizhskii AI, Luker GD, Andò S, Yoon E, Kleer CG. A hybrid breast cancer/mesenchymal stem cell population enhances chemoresistance and metastasis. JCI Insight 2023; 8:e164216. [PMID: 37607007 PMCID: PMC10561721 DOI: 10.1172/jci.insight.164216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/15/2023] [Indexed: 08/23/2023] Open
Abstract
Patients with triple-negative breast cancer remain at risk for metastatic disease despite treatment. The acquisition of chemoresistance is a major cause of tumor relapse and death, but the mechanisms are far from understood. We have demonstrated that breast cancer cells (BCCs) can engulf mesenchymal stem/stromal cells (MSCs), leading to enhanced dissemination. Here, we show that clinical samples of primary invasive carcinoma and chemoresistant breast cancer metastasis contain a unique hybrid cancer cell population coexpressing pancytokeratin and the MSC marker fibroblast activation protein-α. We show that hybrid cells form in primary tumors and that they promote breast cancer metastasis and chemoresistance. Using single-cell microfluidics and in vivo models, we found that there are polyploid senescent cells within the hybrid cell population that contribute to metastatic dissemination. Our data reveal that Wnt Family Member 5A (WNT5A) plays a crucial role in supporting the chemoresistance properties of hybrid cells. Furthermore, we identified that WNT5A mediates hybrid cell formation through a phagocytosis-like mechanism that requires BCC-derived IL-6 and MSC-derived C-C Motif Chemokine Ligand 2. These findings reveal hybrid cell formation as a mechanism of chemoresistance and suggest that interrupting this mechanism may be a strategy in overcoming breast cancer drug resistance.
Collapse
Affiliation(s)
- Giuseppina Augimeri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Maria E. Gonzalez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| | - Alessandro Paolì
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Ahmad Eido
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| | - Yehyun Choi
- Department of Electrical Engineering and Computer Science and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Boris Burman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sabra Djomehri
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| | | | | | - Johanna M. Buschhaus
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, Department of Computational and Systems Biology, Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Loredana Mauro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Gary D. Luker
- Rogel Cancer Center and
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Euisik Yoon
- Rogel Cancer Center and
- Department of Electrical Engineering and Computer Science and Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Celina G. Kleer
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Rogel Cancer Center and
| |
Collapse
|
7
|
Zajac KK, Malla S, Babu RJ, Raman D, Tiwari AK. Ethnic disparities in the immune microenvironment of triple negative breast cancer and its role in therapeutic outcomes. Cancer Rep (Hoboken) 2023; 6 Suppl 1:e1779. [PMID: 36632988 PMCID: PMC10440847 DOI: 10.1002/cnr2.1779] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
In 2020, newly diagnosed breast cancer (BC) cases surpassed that of lung cancer among women, making it the most common female cancer globally. In spite of recent increases in incidence rates, mortality due to BC has declined since 1989. These declines have been attributed to advancements in treatment modalities as well as increased mammography surveillance. Despite these advances, African American (AA) women are 40% more likely to die from BC than Caucasian women. Multifactorial etiology has been implicated in the disparity of BC mortality rates among AA women. As an example, AA women have a disproportionate incidence of triple negative breast cancer (TNBC), which has a poor prognosis and marginal treatment options. Increasingly, the tumor microenvironment (TME) has gained relevance as it relates to primary tumor progression, metastasis and treatment possibilities. The treatment outcomes or pathological complete response (pCR) in TNBC among AA women are affected by differences in TME. The TME of AA women exhibit several variances in acellular and cellular components associated with pro-tumorigenic effects. For example, increased levels of the adipocyte-related hormone, resistin, the pro-inflammatory cytokine, IL-6, and the CC chemokine, CCL2, within the TME of AA women gives rise to an increased density of M2 macrophages, also known as tumor-associated macrophages. Elevated levels of vascular endothelial growth factor in the TME of AA women increase the vascular density or vascularity, which facilitate aggressive tumor growth and metastasis. Furthermore, a pro-tumorigenic TME is supported by increased levels of the CXC chemokine, CXCL12 that results in the recruitment of regulatory T lymphocytes (Tregs ). Due to these and other differences in the TME of AA women, precision oncology can target specific aspects of the TME that may contribute to a poorer prognosis. In addition to the discrepancies in the TME, AA women face socio-economic barriers that limit their ability to access state-of-the-art, novel therapies against metastatic TNBC. In this review, we will provide a brief overview of the tumor immune microenvironment, immune-based treatment options for TNBC and their potential to decrease health disparities due to ethnicity.
Collapse
Affiliation(s)
- Kelsee K. Zajac
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Saloni Malla
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
| | - Ramapuram Jayachandra Babu
- Department of Drug Discovery and Development, Harrison School of PharmacyAuburn UniversityAuburnAlabamaUSA
| | - Dayanidhi Raman
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental TherapeuticsThe University of ToledoToledoOhioUSA
- Department of Cell and Cancer BiologyUniversity of Toledo Health Science CampusToledoOhioUSA
| |
Collapse
|
8
|
He C, Li Y, Chen ZY, Huang CK. Crosstalk of renal cell carcinoma cells and tumor-associated macrophages aggravates tumor progression by modulating muscleblind-like protein 2/B-cell lymphoma 2/beclin 1-mediated autophagy. Cytotherapy 2023; 25:298-309. [PMID: 36244911 DOI: 10.1016/j.jcyt.2022.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND AIMS M2-polarized tumor-associated macrophages contribute to the development of multiple human cancers, including renal cell carcinoma (RCC). However, the crosstalk mechanism between M2 macrophages and RCC remains unclear. METHODS The authors constructed a co-culture system of M2 macrophages differentiated from THP-1 and RCC cells. Microscopic examination and quantitative real‑time polymerase chain reaction (qRT-PCR) validated the morphology and types of macrophages. The proliferation, migration and invasion of RCC cells were assessed by Cell Counting Kit 8 (Dojindo Molecular Technologies, Inc, Santa Clara, CA, USA) and Transwell assay (Corning, Corning, NY, USA). Messenger RNA (mRNA) and protein expression of target molecules was detected by qRT‑PCR and western blotting. Expression of Ki-67, E-cadherin and N-cadherin was measured by immunofluorescence staining or immunohistochemistry. Molecular interaction was evaluated by RNA pull-down, RNA immunoprecipitation and co-immunoprecipitation. A xenograft model was established to determine tumor growth in vivo. RESULTS RCC cells triggered the activation of M2 macrophages. Functionally, M2-polarized macrophages facilitated the growth, migration, invasion and epithelial-mesenchymal transition of RCC cells by suppressing autophagy, whereas rapamycin, an activator of autophagy, significantly counteracted the tumor-promoting effects of M2 macrophages. Mechanistically, M2 macrophage-derived C-C motif chemokine 2 (CCL2) enhanced modulation of muscleblind-like protein 2 (MBNL2) expression. MBNL2 raised the stability of B-cell lymphoma 2 (Bcl-2) by directly binding to Bcl-2 mRNA, which endowed RCC cells with malignant properties via inhibition of beclin 1-dependent autophagy. CONCLUSIONS RCC-induced M2-polarized macrophages secrete CCL2 to promote the growth and metastasis of RCC cells via inhibition of MBNL2/Bcl-2/beclin 1-mediated autophagy, which provide a novel perspective for the development of a therapeutic strategy for -RCC.
Collapse
Affiliation(s)
- Cheng He
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Yang Li
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Zhi-Yong Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Chang-Kun Huang
- Department of Urology, The Second Xiangya Hospital, Central South University, 410011 Changsha, Hunan China..
| |
Collapse
|
9
|
Ansari T, Dutta G, Srivastava AK, Jagetia A, Singh D, Singh H, Bharti R, Prakash A, Kumar A. Serum cytokines in astrocytic brain tumors: a prospective study. Br J Neurosurg 2023; 37:35-40. [PMID: 33349075 DOI: 10.1080/02688697.2020.1859461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Gliomas are the most aggressive form of brain tumors responsible for the majority of brain cancer related deaths. Interleukin (IL)-6, 10 and tumor necrosis factor (TNF)- α are tumor specific proteins that are expressed in gliomas. This study aims to estimate the pre- and postoperative levels of serum markers of these cytokines to evaluate any bearing with its grade and volume. METHODS Prospective analysis of 80 patients of newly-diagnosed gliomas of any grade was carried out. Pre- and postoperative blood samples day one, one month and at 3rd month of surgery was taken and levels of IL-6, 10 and TNF- α measured and matched with 20 healthy controls. RESULTS Of the 80 patients, 3 patients had pilocytic astrocytoma, 4 had ganglioglioma, 9 had oligodendroglioma, 17 had diffuse astrocytoma, 5 had anaplastic astrocytoma while 43 had glioblastoma. Preoperative levels of IL-6 and TNF- α was found to be markedly raised in high grade gliomas. Positive correlation was seen between IL-6 with the grade of tumor and high-grade tumors were seen to be more significantly correlated with IL-6. However, preoperative IL-10 in both low and high grade of gliomas did not show any correlation with the volume and grade of tumor. CONCLUSION High level of IL-6 and TNF-α in peripheral blood in patients of high-grade gliomas provides clue to the invasiveness of the disease which can be useful for understanding the premorbid development of tumor and perhaps extrapolating to ongoing tumor response to treatment.
Collapse
Affiliation(s)
- Tariq Ansari
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Gautam Dutta
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| | - Arvind Kumar Srivastava
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Anita Jagetia
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Daljit Singh
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Hukum Singh
- Department of Neuro-Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Rohit Bharti
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| | - Anand Prakash
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| | - Anil Kumar
- Department of Neuro-Surgery, Rajendra Institute of Medical Sciences (RIMS), Jharkhand, India
| |
Collapse
|
10
|
VARISLI LOKMAN, TOLAN VEYSEL, CEN JIYANH, VLAHOPOULOS SPIROS, CEN OSMAN. Dissecting the effects of androgen deprivation therapy on cadherin switching in advanced prostate cancer: A molecular perspective. Oncol Res 2023; 30:137-155. [PMID: 37305018 PMCID: PMC10208071 DOI: 10.32604/or.2022.026074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Prostate cancer is one of the most often diagnosed malignancies in males and its prevalence is rising in both developed and developing countries. Androgen deprivation therapy has been used as a standard treatment approach for advanced prostate cancer for more than 80 years. The primary aim of androgen deprivation therapy is to decrease circulatory androgen and block androgen signaling. Although a partly remediation is accomplished at the beginning of treatment, some cell populations become refractory to androgen deprivation therapy and continue to metastasize. Recent evidences suggest that androgen deprivation therapy may cause cadherin switching, from E-cadherin to N-cadherin, which is the hallmark of epithelial-mesenchymal transition. Diverse direct and indirect mechanisms are involved in this switching and consequently, the cadherin pool changes from E-cadherin to N-cadherin in the epithelial cells. Since E-cadherin represses invasive and migrative behaviors of the tumor cells, the loss of E-cadherin disrupts epithelial tissue structure leading to the release of tumor cells into surrounding tissues and circulation. In this study, we review the androgen deprivation therapy-dependent cadherin switching in advanced prostate cancer with emphasis on its molecular basis especially the transcriptional factors regulated through TFG-β pathway.
Collapse
Affiliation(s)
- LOKMAN VARISLI
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
- Cancer Research Center, Dicle University, Diyarbakir, 21280, Turkey
| | - VEYSEL TOLAN
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir, 21280, Turkey
| | - JIYAN H. CEN
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, 61801, USA
| | - SPIROS VLAHOPOULOS
- First Department of Pediatrics, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - OSMAN CEN
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Natural Sciences and Engineering, John Wood College, Quincy, IL, 62305, USA
| |
Collapse
|
11
|
Sanchez-Sanchez JL, Giudici KV, Guyonnet S, Delrieu J, Li Y, Bateman RJ, Parini A, Vellas B, de Souto Barreto P, Vellas B, Guyonnet S, Carrié I, Brigitte L, Faisant C, Lala F, Delrieu J, Villars H, Combrouze E, Badufle C, Zueras A, Andrieu S, Cantet C, Morin C, Van Kan GA, Dupuy C, Rolland Y, Caillaud C, Ousset PJ, Lala F, Willis S, Belleville S, Gilbert B, Fontaine F, Dartigues JF, Marcet I, Delva F, Foubert A, Cerda S, Marie-Noëlle-Cuffi, Costes C, Rouaud O, Manckoundia P, Quipourt V, Marilier S, Franon E, Bories L, Pader ML, Basset MF, Lapoujade B, Faure V, Tong MLY, Malick-Loiseau C, Cazaban-Campistron E, Desclaux F, Blatge C, Dantoine T, Laubarie-Mouret C, Saulnier I, Clément JP, Picat MA, Bernard-Bourzeix L, Willebois S, Désormais I, Cardinaud N, Bonnefoy M, Livet P, Rebaudet P, Gédéon C, Burdet C, Terracol F, Pesce A, Roth S, Chaillou S, Louchart S, Sudres K, Lebrun N, Barro-Belaygues N, Touchon J, Bennys K, Gabelle A, Romano A, Touati L, Marelli C, Pays C, Robert P, Le Duff F, Gervais C, Gonfrier S, Gasnier Y, Bordes S, Begorre D, Carpuat C, Khales K, Lefebvre JF, El Idrissi SM, Skolil P, Salles JP, Dufouil C, Lehéricy S, Chupin M, et alSanchez-Sanchez JL, Giudici KV, Guyonnet S, Delrieu J, Li Y, Bateman RJ, Parini A, Vellas B, de Souto Barreto P, Vellas B, Guyonnet S, Carrié I, Brigitte L, Faisant C, Lala F, Delrieu J, Villars H, Combrouze E, Badufle C, Zueras A, Andrieu S, Cantet C, Morin C, Van Kan GA, Dupuy C, Rolland Y, Caillaud C, Ousset PJ, Lala F, Willis S, Belleville S, Gilbert B, Fontaine F, Dartigues JF, Marcet I, Delva F, Foubert A, Cerda S, Marie-Noëlle-Cuffi, Costes C, Rouaud O, Manckoundia P, Quipourt V, Marilier S, Franon E, Bories L, Pader ML, Basset MF, Lapoujade B, Faure V, Tong MLY, Malick-Loiseau C, Cazaban-Campistron E, Desclaux F, Blatge C, Dantoine T, Laubarie-Mouret C, Saulnier I, Clément JP, Picat MA, Bernard-Bourzeix L, Willebois S, Désormais I, Cardinaud N, Bonnefoy M, Livet P, Rebaudet P, Gédéon C, Burdet C, Terracol F, Pesce A, Roth S, Chaillou S, Louchart S, Sudres K, Lebrun N, Barro-Belaygues N, Touchon J, Bennys K, Gabelle A, Romano A, Touati L, Marelli C, Pays C, Robert P, Le Duff F, Gervais C, Gonfrier S, Gasnier Y, Bordes S, Begorre D, Carpuat C, Khales K, Lefebvre JF, El Idrissi SM, Skolil P, Salles JP, Dufouil C, Lehéricy S, Chupin M, Mangin JF, Bouhayia A, Allard M, Ricolfi F, Dubois D, Martel MPB, Cotton F, Bonafé A, Chanalet S, Hugon F, Bonneville F, Cognard C, Chollet F, Payoux P, Voisin T, Peiffer S, Hitzel A, Zanca M, Monteil J, Darcourt J, Molinier L, Derumeaux H, Costa N, Perret B, Vinel C, Caspar-Bauguil S, Olivier-Abbal P, Coley N. Plasma MCP-1 and changes on cognitive function in community-dwelling older adults. Alzheimers Res Ther 2022; 14:5. [PMID: 34996522 PMCID: PMC8742409 DOI: 10.1186/s13195-021-00940-2] [Show More Authors] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
Background Monocyte Chemoattractant Protein-1 (MCP-1), a glial-derived chemokine, mediates neuroinflammation and may regulate memory outcomes among older adults. We aimed to explore the associations of plasma MCP-1 levels (alone and in combination with β-amyloid deposition—Aβ42/40) with overall and domain-specific cognitive evolution among older adults. Methods Secondary analyses including 1097 subjects (mean age = 75.3 years ± 4.4; 63.8% women) from the Multidomain Alzheimer Preventive Trial (MAPT). MCP-1 (higher is worse) and Aβ42/40 (lower is worse) were measured in plasma collected at year 1. MCP-1 in continuous and as a dichotomy (values in the highest quartile (MCP-1+)) were used, as well as a dichotomy of Aβ42/40. Outcomes were measured annually over 4 years and included the following: cognitive composite z-score (CCS), the Mini-Mental State Examination (MMSE), and Clinical Dementia Rating (CDR) sum of boxes (overall cognitive function); composite executive function z-score, composite attention z-score, Free and Cued Selective Reminding Test (FCSRT - memory). Results Plasma MCP-1 as a continuous variable was associated with the worsening of episodic memory over 4 years of follow-up, specifically in measures of free and cued delayed recall. MCP-1+ was associated with worse evolution in the CCS (4-year between-group difference: β = −0.14, 95%CI = −0.26, −0.02) and the CDR sum of boxes (2-year: β = 0.19, 95%CI = 0.06, 0.32). In domain-specific analyses, MCP-1+ was associated with declines in the FCSRT delayed recall sub-domains. In the presence of low Aβ42/40, MCP-1+ was not associated with greater declines in cognitive functions. The interaction with continuous biomarker values Aβ42/40× MCP-1 × time was significant in models with CDR sum of boxes and FCSRT DTR as dependent variables. Conclusions Baseline plasma MCP-1 levels were associated with longitudinal declines in overall cognitive and episodic memory performance in older adults over a 4-year follow-up. How plasma MCP-1 interacts with Aβ42/40 to determine cognitive decline at different stages of cognitive decline/dementia should be clarified by further research. The MCP-1 association on cognitive decline was strongest in those with amyloid plaques, as measured by blood plasma Aβ42/40. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-021-00940-2.
Collapse
|
12
|
Chen X, Zhu M, Zou X, Mao Y, Niu J, Jiang J, Dong T, Shi Y, Yang X, Liu P. CCL2-targeted ginkgolic acid exerts anti-glioblastoma effects by inhibiting the JAK3-STAT1/PI3K-AKT signaling pathway. Life Sci 2022; 311:121174. [DOI: 10.1016/j.lfs.2022.121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022]
|
13
|
Esmaeili Tarzi M, Kordestani Z, Mehrabani M, Yahyapour R, Raeiszadeh M, Bahrampour Juybari K, Sharififar F. The effect of hydro alcoholic extract of Nigella sativa seeds on inflammatory mediators in C6 glioma cell line. ANNALES PHARMACEUTIQUES FRANÇAISES 2022; 81:446-456. [PMID: 36252867 DOI: 10.1016/j.pharma.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
SUBJECT Nigella sativa (N. sativa) is a highly valued nutritional plant, which has long been used in traditional medicine to treat a variety of human diseases. The multifaceted pharmacological impacts of N. sativa, such as attenuating oxidative stress and inflammation, make it a suitable therapeutic candidate against cardiovascular, hepatic, and neurological disorders as well as cancer. Therefore, the current study aimed to evaluate the effect of the hydroalcoholic extract of N. sativa seeds on several pro-inflammatory cytokines in the C6 glioma cell line and to compare it with the effect of the extract on the normal fibroblast cell line. METHODS C6 and fibroblast cell lines were treated with the extract of N. sativa seeds, and 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay was performed to determine the half-maximal inhibitory concentration (IC50) after 72h of treatment. Real-time polymerase chain reaction (RT-PCR) was carried out to assess the expression levels of interleukin (IL)-6, IL-10, tumor necrosis factor-alpha (TNF-α), and transforming growth factor- β1 (TGF-β1) at the mRNA level in both cell lines after 72h of treatment with non-toxic and IC50 concentrations obtained from C6 cell line. RESULTS The IC50 values for the hydroalcoholic extract of N. sativa seeds were 260±20μg/mL in the C6 cell line and 398±27μg/mL in fibroblast cells. The real-time PCR results indicated that the treatment of C6 and fibroblast cells with the extract at the IC50 value of N. sativa in C6 for 72h could increase the mRNA expression levels of IL-10 and reduce the mRNA expression levels of IL-6, TNF-α, and TGF-β1 in C6 and fibroblast cells. The N. sativa extract showed a higher anti-inflammatory effect on C6 cells in comparison with fibroblast cells. CONCLUSIONS Regarding the anti-inflammatory effect of Nigella sativa in C6 cell line, it may be considered a promising candidate to fortify antitumor actions in combination with other therapeutic options in the treatment of patients with GBM.
Collapse
Affiliation(s)
- M Esmaeili Tarzi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Z Kordestani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - M Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - R Yahyapour
- Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - M Raeiszadeh
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - K Bahrampour Juybari
- Abnormal Uterine Bleeding Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Pharmacology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - F Sharififar
- Herbal and traditional Medicines Research Center, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
14
|
Xu M, Wang Y, Xia R, Wei Y, Wei X. Role of the CCL2-CCR2 signalling axis in cancer: Mechanisms and therapeutic targeting. Cell Prolif 2021; 54:e13115. [PMID: 34464477 PMCID: PMC8488570 DOI: 10.1111/cpr.13115] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023] Open
Abstract
The chemokine ligand CCL2 and its receptor CCR2 are implicated in the initiation and progression of various cancers. CCL2 can activate tumour cell growth and proliferation through a variety of mechanisms. By interacting with CCR2, CCL2 promotes cancer cell migration and recruits immunosuppressive cells to the tumour microenvironment, favouring cancer development. Over the last several decades, a series of studies have been conducted to explore the CCL2-CCR2 signalling axis function in malignancies. Therapeutic strategies targeting the CCL2- CCR2 axis have also shown promising effects, enriching our approaches for fighting against cancer. In this review, we summarize the role of the CCL2-CCR2 signalling axis in tumorigenesis and highlight recent studies on CCL2-CCR2 targeted therapy, focusing on preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Ge X, Peng X, Li M, Ji F, Chen J, Zhang D. OGT regulated O-GlcNacylation promotes migration and invasion by activating IL-6/STAT3 signaling in NSCLC cells. Pathol Res Pract 2021; 225:153580. [PMID: 34391182 DOI: 10.1016/j.prp.2021.153580] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND O-linked β-N-acetylglucosamine transferase (O-GlcNAc transferase, OGT) is a key enzyme that regulates O-GlcNAc modification, which is significantly up-regulated and participates in the regulation of tumorigenesis. Although previous research indicated that OGT promotes epithelial-mesenchymal transition (EMT) of lung cancer, the underlying molecular mechanisms, especially within the tumor inflammatory microenvironment, require further elucidation. METHODS The role of the inflammatory signaling Interleukin 6/Signal Transducer and activator of transcription 3 (IL-6/STAT3) in Non-small cell lung cancer (NSCLC) cells A549 were confirmed by Transwell assay, Scratch wound healing assay, Western blot, Immunofluorescence staining, and Nuclear and cytoplasmic extraction experiment. Western blot detected OGT expression and whole protein O-GlcNacylation after IL-6 stimulation in NSCLCs cells. The biological effects and related mechanism of OGT in NSCLC cells were investigated by Western blot, Transwell assay, Immunofluorescence staining and Immunoprecipitation. The up-stream mechanism of OGT expression was explored by employing the specific chemical inhibitors, and the expression and distribution of OGT and phosphorylated STAT3 in NSCLC samples were confirmed by immunohistochemical analysis. RESULTS IL-6/STAT3 promoted the migration and invasion of NSCLC cells. IL-6 stimulation elevated OGT expression and the total protein O-GlcNacylation in A549 cells. Silencing OGT by shRNA significantly inhibited the IL-6 induced EMT marker (N-cadherin and Slug) expression, migration and invasion in A549 cells. OGT interacted with and mediated O-GlcNacylation of STAT3, which promoted STAT3 Y705 phosphorylation in IL-6 treated NSCLC cells. OGT expression was positively regulated by NF-κB p65 signaling pathway after IL-6 stimulation, instead of STAT3 signaling. OGT and phosphorylated STAT3 had an obviously higher expression in human NSCLC tissues, and phosphorylated STAT3 was mainly expressed in the nucleus. CONCLUSION The above results showed that OGT regulated O-GlcNacylation promoted migration and invasion by activating IL-6/STAT3 signaling in lung cancer.
Collapse
Affiliation(s)
- Xin Ge
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Xiao Peng
- Department of Infection Management, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Mengmeng Li
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Feng Ji
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China
| | - Jinliang Chen
- Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China.
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong University, Nantong 226001, People's Republic of China.
| |
Collapse
|
16
|
Exploring the Crosstalk between Inflammation and Epithelial-Mesenchymal Transition in Cancer. Mediators Inflamm 2021; 2021:9918379. [PMID: 34220337 PMCID: PMC8219436 DOI: 10.1155/2021/9918379] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/31/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor cells undergo invasion and metastasis through epithelial-to-mesenchymal cell transition (EMT) by activation of alterations in extracellular matrix (ECM) protein-encoding genes, enzymes responsible for the breakdown of ECM, and activation of genes that drive the transformation of the epithelial cell to the mesenchymal type. Inflammatory cytokines such as TGFβ, TNFα, IL-1, IL-6, and IL-8 activate transcription factors such as Smads, NF-κB, STAT3, Snail, Twist, and Zeb that drive EMT. EMT drives primary tumors to metastasize in different parts of the body. T and B cells, dendritic cells (DCs), and tumor-associated macrophages (TAMs) which are present in the tumor microenvironment induce EMT. The current review elucidates the interaction between EMT tumor cells and immune cells under the microenvironment. Such complex interactions provide a better understanding of tumor angiogenesis and metastasis and in defining the aggressiveness of the primary tumors. Anti-inflammatory molecules in this context may open new therapeutic options for the better treatment of tumor progression. Targeting EMT and the related mechanisms by utilizing natural compounds may be an important and safe therapeutic alternative in the treatment of tumor growth.
Collapse
|
17
|
Suárez-Arriaga MC, Méndez-Tenorio A, Pérez-Koldenkova V, Fuentes-Pananá EM. Claudin-Low Breast Cancer Inflammatory Signatures Support Polarization of M1-Like Macrophages with Protumoral Activity. Cancers (Basel) 2021; 13:2248. [PMID: 34067089 PMCID: PMC8125772 DOI: 10.3390/cancers13092248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
We previously reported that triple-negative breast cancer (BRCA) cells overexpress the cytokines GM-CSF, G-CSF, MCP-1, and RANTES, and when monocytes were 3-D co-cultured with them, M1-like macrophages were generated with the ability to induce aggressive features in luminal BRCA cell lines. These include upregulation of mesenchymal and stemness markers and invasion. In this study, we stimulated peripheral blood monocytes with the four cytokines and confirmed their capacity to generate protumoral M1-like macrophages. Using the METABRIC BRCA database, we observed that GM-CSF, MCP-1, and RANTES are associated with triple-negative BRCA and reduced overall survival, particularly in patients under 55 years of age. We propose an extended M1-like macrophage proinflammatory signature connected with these three cytokines. We found that the extended M1-like macrophage signature coexists with monocyte/macrophage, Th1 immune response, and immunosuppressive signatures, and all are enriched in claudin-low BRCA samples, and correlate with reduced patient overall survival. Furthermore, we observed that all these signatures are also present in mesenchymal carcinomas of the colon (COAD) and bladder (BLCA). The claudin-low tumor subtype has an adverse clinical outcome and remains poorly understood. This study places M1 macrophages as potential protumoral drivers in already established cancers, and as potential contributors to claudin-low aggressiveness and poor prognosis.
Collapse
Affiliation(s)
- Mayra Cecilia Suárez-Arriaga
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
- Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Vadim Pérez-Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico;
| | - Ezequiel M. Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| |
Collapse
|
18
|
Co-Targeting PIM Kinase and PI3K/mTOR in NSCLC. Cancers (Basel) 2021; 13:cancers13092139. [PMID: 33946744 PMCID: PMC8125027 DOI: 10.3390/cancers13092139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/25/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary PIM kinases interact with major oncogenic players, including the PI3K/Akt pathway, and provide an escape mechanism leading to drug resistance. This study examined PIM kinase expression in NSCLC and the potential of PIM1 as a prognostic marker. The effect on cell signaling of novel preclinical PI3K/mTOR/PIM kinase inhibitor IBL-301 was compared to PI3K/mTOR inhibition in vitro and ex vivo. PI3K-mTOR inhibitor sensitive (H1975P) and resistant (H1975GR) cells were compared for altered IL6/STAT3 pathway expression and sensitivity to IBL-301. All three PIM kinases are expressed in NSCLC and PIM1 is a marker of poor prognosis. IBL-301 inhibited c-Myc, the PI3K-Akt and JAK/STAT pathways in vitro and in NSCLC tumor tissue explants. IBL-301 also inhibited secreted pro-inflammatory cytokine MCP-1. PIM kinases were activated in H1975GR cells which were more sensitive to IBL-301 than H1975P cells. A miRNA signature of PI3K-mTOR resistance was validated. Co-targeting PIM kinase and PI3K-mTOR warrants further clinical investigation. Abstract PIM kinases are constitutively active proto-oncogenic serine/threonine kinases that play a role in cell cycle progression, metabolism, inflammation and drug resistance. PIM kinases interact with and stabilize p53, c-Myc and parallel signaling pathway PI3K/Akt. This study evaluated PIM kinase expression in NSCLC and in response to PI3K/mTOR inhibition. It investigated a novel preclinical PI3K/mTOR/PIM inhibitor (IBL-301) in vitro and in patient-derived NSCLC tumor tissues. Western blot analysis confirmed PIM1, PIM2 and PIM3 are expressed in NSCLC cell lines and PIM1 is a marker of poor prognosis in patients with NSCLC. IBL-301 decreased PIM1, c-Myc, pBAD and p4EBP1 (Thr37/46) and peIF4B (S406) protein levels in-vitro and MAP kinase, PI3K-Akt and JAK/STAT pathways in tumor tissue explants. IBL-301 significantly decreased secreted pro-inflammatory cytokine MCP-1. Altered mRNA expression, including activated PIM kinase and c-Myc, was identified in Apitolisib resistant cells (H1975GR) by an IL-6/STAT3 pathway array and validated by Western blot. H1975GR cells were more sensitive to IBL-301 than parent cells. A miRNA array identified a dysregulated miRNA signature of PI3K/mTOR drug resistance consisting of regulators of PIM kinase and c-Myc (miR17-5p, miR19b-3p, miR20a-5p, miR15b-5p, miR203a, miR-206). Our data provides a rationale for co-targeting PIM kinase and PI3K-mTOR to improve therapeutic response in NSCLC.
Collapse
|
19
|
Fein MR, He XY, Almeida AS, Bružas E, Pommier A, Yan R, Eberhardt A, Fearon DT, Van Aelst L, Wilkinson JE, Dos Santos CO, Egeblad M. Cancer cell CCR2 orchestrates suppression of the adaptive immune response. J Exp Med 2021; 217:151949. [PMID: 32667673 PMCID: PMC7537399 DOI: 10.1084/jem.20181551] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/27/2019] [Accepted: 05/26/2020] [Indexed: 01/22/2023] Open
Abstract
C-C chemokine receptor type 2 (CCR2) is expressed on monocytes and facilitates their recruitment to tumors. Though breast cancer cells also express CCR2, its functions in these cells are unclear. We found that Ccr2 deletion in cancer cells led to reduced tumor growth and approximately twofold longer survival in an orthotopic, isograft breast cancer mouse model. Deletion of Ccr2 in cancer cells resulted in multiple alterations associated with better immune control: increased infiltration and activation of cytotoxic T lymphocytes (CTLs) and CD103+ cross-presenting dendritic cells (DCs), as well as up-regulation of MHC class I and down-regulation of checkpoint regulator PD-L1 on the cancer cells. Pharmacological or genetic targeting of CCR2 increased cancer cell sensitivity to CTLs and enabled the cancer cells to induce DC maturation toward the CD103+ subtype. Consistently, Ccr2−/− cancer cells did not induce immune suppression in Batf3−/− mice lacking CD103+ DCs. Our results establish that CCR2 signaling in cancer cells can orchestrate suppression of the immune response.
Collapse
Affiliation(s)
- Miriam R Fein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.,Graduate Program in Genetics, Stony Brook University, Stony Brook, NY
| | - Xue-Yan He
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Ana S Almeida
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
| | - Emilis Bružas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.,Watson School of Biological Sciences, Cold Spring Harbor, NY
| | | | - Ran Yan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.,Watson School of Biological Sciences, Cold Spring Harbor, NY
| | - Anaïs Eberhardt
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.,Département de Biologie, École Normale Supérieure de Lyon, Lyon, France
| | - Douglas T Fearon
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.,Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.,Weill Cornell Medical College, New York, NY
| | | | - John Erby Wilkinson
- Departments of Molecular and Integrative Physiology and Internal Medicine, University of Michigan, Ann Arbor, MI
| | | | | |
Collapse
|
20
|
Iwamoto H, Izumi K, Mizokami A. Is the C-C Motif Ligand 2-C-C Chemokine Receptor 2 Axis a Promising Target for Cancer Therapy and Diagnosis? Int J Mol Sci 2020; 21:ijms21239328. [PMID: 33297571 PMCID: PMC7730417 DOI: 10.3390/ijms21239328] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/13/2022] Open
Abstract
C-C motif ligand 2 (CCL2) was originally reported as a chemical mediator attracting mononuclear cells to inflammatory tissue. Many studies have reported that CCL2 can directly activate cancer cells through a variety of mechanisms. CCL2 can also promote cancer progression indirectly through increasing the recruitment of tumor-associated macrophages into the tumor microenvironment. The role of CCL2 in cancer progression has gradually been understood, and various preclinical cancer models elucidate that CCL2 and its receptor C-C chemokine receptor 2 (CCR2) are attractive targets for intervention in cancer development. However, clinically available drugs that regulate the CCL2-CCR2 axis as anticancer agents are not available at this time. The complete elucidation of not only the oncological but also the physiological functions of the CCL2-CCR2 axis is required for achieving a satisfactory effect of the CCL2-CCR2 axis-targeted therapy.
Collapse
Affiliation(s)
| | - Kouji Izumi
- Correspondence: ; Tel.: +81-76-265-2393; Fax: +81-76-234-4263
| | | |
Collapse
|
21
|
Cancer Stem Cells: Acquisition, Characteristics, Therapeutic Implications, Targeting Strategies and Future Prospects. Stem Cell Rev Rep 2020; 15:331-355. [PMID: 30993589 DOI: 10.1007/s12015-019-09887-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since last two decades, the major cancer research has focused on understanding the characteristic properties and mechanism of formation of Cancer stem cells (CSCs), due to their ability to initiate tumor growth, self-renewal property and multi-drug resistance. The discovery of the mechanism of acquisition of stem-like properties by carcinoma cells via epithelial-mesenchymal transition (EMT) has paved a way towards a deeper understanding of CSCs and presented a possible avenue for the development of therapeutic strategies. In spite of years of research, various challenges, such as identification of CSC subpopulation, lack of appropriate experimental models, targeting cancer cells and CSCs specifically without harming normal cells, are being faced while dealing with CSCs. Here, we discuss the biology and characteristics of CSCs, mode of acquisition of stemness (via EMT) and development of multi-drug resistance, the role of tumor niche, the process of dissemination and metastasis, therapeutic implications of CSCs and necessity of targeting them. We emphasise various strategies being developed to specifically target CSCs, including those targeting biomarkers, key pathways and microenvironment. Finally, we focus on the challenges that need to be subdued and propose the aspects that need to be addressed in future studies in order to broaden the understanding of CSCs and develop novel strategies to eradicate them in clinical applications. Graphical Abstract Cancer Stem Cells(CSCs) have gained much attention in the last few decades due to their ability to initiate tumor growth and, self-renewal property and multi-drug resistance. Here, we represent the CSC model of cancer, Characteristics of CSCs, acquisition of stemness and metastatic dissemination of cancer, Therapeutic implications of CSCs and Various strategies being employed to target and eradicate CSCs.
Collapse
|
22
|
Joly-Amado A, Hunter J, Quadri Z, Zamudio F, Rocha-Rangel PV, Chan D, Kesarwani A, Nash K, Lee DC, Morgan D, Gordon MN, Selenica MLB. CCL2 Overexpression in the Brain Promotes Glial Activation and Accelerates Tau Pathology in a Mouse Model of Tauopathy. Front Immunol 2020; 11:997. [PMID: 32508844 PMCID: PMC7251073 DOI: 10.3389/fimmu.2020.00997] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Innate immune activation is a major contributor to Alzheimer's Disease (AD) pathophysiology, although the mechanisms involved are poorly understood. Chemokine C-C motif ligand (CCL) 2 is produced by neurons and glial cells and is upregulated in the AD brain. Transgene expression of CCL2 in mouse models of amyloidosis produces microglia-induced amyloid β oligomerization, a strong indication of the role of these activation pathways in the amyloidogenic processes of AD. We have previously shown that CCL2 polarizes microglia in wild type mice. However, how CCL2 signaling contributes to tau pathogenesis remains unknown. To address this question, CCL2 was delivered via recombinant adeno-associated virus serotype 9 into both cortex and hippocampus of a mouse model with tau pathology (rTg4510). We report that CCL2 overexpression aggravated tau pathology in rTg4510 as shown by the increase in Gallyas stained neurofibrillary tangles as well as phosphorylated tau-positive inclusions. In addition, biochemical analysis showed a reduction in the levels of detergent-soluble tau species followed by increase in the insoluble fraction, indicating a shift toward larger tau aggregates. Indeed, increased levels of high molecular weight species of phosphorylated tau were found in the mice injected with CCL2. We also report that worsening of tau pathology following CCL2 overexpression was accompanied by a distinct inflammatory response. We report an increase in leukocyte common antigen (CD45) and Cluster of differentiation 68 (CD68) expression in the brain of rTg4510 mice without altering the expression levels of a cell-surface protein Transmembrane Protein 119 (Tmem119) and ionized calcium-binding adaptor molecule 1 (Iba-1) in resident microglia. Furthermore, the analysis of cytokines in brain extract showed a significant increase in interleukin (IL)-6 and CCL3, while CCL5 levels were decreased in CCL2 mice. No changes were observed in IL-1α, IL-1β, TNF-α. IL-4, Vascular endothelial growth factor-VEGF, IL-13 and CCL11. Taken together our data report for the first time that overexpression of CCL2 promotes the increase of pathogenic tau species and is associated with glial neuroinflammatory changes that are deleterious. We propose that these events may contribute to the pathogenesis of Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Aurelie Joly-Amado
- Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jordan Hunter
- Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Zainuddin Quadri
- Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Frank Zamudio
- Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Patricia V Rocha-Rangel
- Michigan State University, Department of Translational Neuroscience, Grand Rapids, MI, United States
| | - Deanna Chan
- Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Anisha Kesarwani
- Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Kevin Nash
- Molecular Pharmacology and Physiology, College of Medicine, University of South Florida, Tampa, FL, United States
| | - Daniel C Lee
- Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States
| | - Dave Morgan
- Michigan State University, Department of Translational Neuroscience, Grand Rapids, MI, United States
| | - Marcia N Gordon
- Michigan State University, Department of Translational Neuroscience, Grand Rapids, MI, United States
| | - Maj-Linda B Selenica
- Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States.,Sanders-Brown Center on Aging, Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
23
|
Lautaoja JH, Pekkala S, Pasternack A, Laitinen M, Ritvos O, Hulmi JJ. Differentiation of Murine C2C12 Myoblasts Strongly Reduces the Effects of Myostatin on Intracellular Signaling. Biomolecules 2020; 10:biom10050695. [PMID: 32365803 PMCID: PMC7277184 DOI: 10.3390/biom10050695] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
Alongside in vivo models, a simpler and more mechanistic approach is required to study the effects of myostatin on skeletal muscle because myostatin is an important negative regulator of muscle size. In this study, myostatin was administered to murine (C2C12) and human (CHQ) myoblasts and myotubes. Canonical and noncanonical signaling downstream to myostatin, related ligands, and their receptor were analyzed. The effects of tumorkines were analyzed after coculture of C2C12 and colon cancer-C26 cells. The effects of myostatin on canonical and noncanonical signaling were strongly reduced in C2C12 cells after differentiation. This may be explained by increased follistatin, an endogenous blocker of myostatin and altered expression of activin receptor ligands. In contrast, CHQ cells were equally responsive to myostatin, and follistatin remained unaltered. Both myostatin administration and the coculture stimulated pathways associated with inflammation, especially in C2C12 cells. In conclusion, the effects of myostatin on intracellular signaling may be cell line- or organism-specific, and C2C12 myotubes seem to be a nonoptimal in vitro model for investigating the effects of myostatin on canonical and noncanonical signaling in skeletal muscle. This may be due to altered expression of activin receptor ligands and their regulators during muscle cell differentiation.
Collapse
Affiliation(s)
- Juulia H. Lautaoja
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, 40014 Jyväskylä, Finland; (S.P.); (J.J.H.)
- Correspondence: ; Tel.: +358-40-805-5042
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, 40014 Jyväskylä, Finland; (S.P.); (J.J.H.)
| | - Arja Pasternack
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (A.P.); (O.R.)
| | - Mika Laitinen
- Department of Medicine, Faculty of Medicine, University of Helsinki, 00029 Helsinki, Finland;
- Department of Medicine, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Olli Ritvos
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (A.P.); (O.R.)
| | - Juha J. Hulmi
- Faculty of Sport and Health Sciences, Neuromuscular Research Center, University of Jyväskylä, 40014 Jyväskylä, Finland; (S.P.); (J.J.H.)
- Department of Physiology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland; (A.P.); (O.R.)
| |
Collapse
|
24
|
Chen LM, Tseng HY, Chen YA, Al Haq AT, Hwang PA, Hsu HL. Oligo-Fucoidan Prevents M2 Macrophage Differentiation and HCT116 Tumor Progression. Cancers (Basel) 2020; 12:cancers12020421. [PMID: 32059469 PMCID: PMC7072369 DOI: 10.3390/cancers12020421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) produced during intracellular metabolism or triggered by extrinsic factors can promote neoplastic transformation and malignant microenvironment that mediate tumor development. Oligo-Fucoidan is a sulfated polysaccharide isolated from the brown seaweed. Using human THP-1 monocytes and murine Raw264.7 macrophages as well as human HCT116 colorectal cancer cells, primary C6P2-L1 colorectal cancer cells and human MDA-MB231 breast cancer cells, we investigated the effect of Oligo-Fucoidan on inhibiting M2 macrophage differentiation and its therapeutic potential as a supplement in chemotherapy and tumor prevention. We now demonstrate that Oligo-Fucoidan is an antioxidant that suppresses intracellular ROS and mitochondrial superoxide levels in monocytes/macrophages and in aggressive cancer cells. Comparable to ROS inhibitors (DPI and NAC), Oligo-Fucoidan directly induced monocyte polarization toward M1-like macrophages and repolarized M2 macrophages into M1 phenotypes. DPI and Oligo-Fucoidan also cooperatively prevented M2 macrophage invasiveness. Indirectly, M1 polarity was advanced particularly when DPI suppressed ROS generation and supplemented with Oligo-Fucoidan in the cancer cells. Moreover, cisplatin chemoagent polarized monocytes and M0 macrophages toward M2-like phenotypes and Oligo-Fucoidan supplementation reduced these side effects. Furthermore, Oligo-Fucoidan promoted cytotoxicity of cisplatin and antagonized cisplatin effect on cancer cells to prevent M2 macrophage differentiation. More importantly, Oligo-Fucoidan inhibited tumor progression and M2 macrophage infiltration in tumor microenvironment, thus increasing of anti-tumor immunity.
Collapse
Affiliation(s)
- Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Aushia Tanzih Al Haq
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
| | - Pai-An Hwang
- National Taiwan Ocean University, Keelung 20224, Taiwan;
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 35053, Taiwan; (L.-M.C.); (H.-Y.T.); (Y.-A.C.); (A.T.A.H.)
- Correspondence: ; Tel.: +886-37-246-166 (ext. 35329); Fax: +886-37-586-459
| |
Collapse
|
25
|
Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition. Cells 2020; 9:cells9010217. [PMID: 31952344 PMCID: PMC7017057 DOI: 10.3390/cells9010217] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The JAK/STAT3 signaling pathway plays an essential role in various types of cancers. Activation of this pathway leads to increased tumorigenic and metastatic ability, the transition of cancer stem cells (CSCs), and chemoresistance in cancer via enhancing the epithelial–mesenchymal transition (EMT). EMT acts as a critical regulator in the progression of cancer and is involved in regulating invasion, spread, and survival. Furthermore, accumulating evidence indicates the failure of conventional therapies due to the acquisition of CSC properties. In this review, we summarize the effects of JAK/STAT3 activation on EMT and the generation of CSCs. Moreover, we discuss cutting-edge data on the link between EMT and CSCs in the tumor microenvironment that involves a previously unknown function of miRNAs, and also discuss new regulators of the JAK/STAT3 signaling pathway.
Collapse
|
26
|
Fibronectin in Cancer: Friend or Foe. Cells 2019; 9:cells9010027. [PMID: 31861892 PMCID: PMC7016990 DOI: 10.3390/cells9010027] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/10/2023] Open
Abstract
The role of fibronectin (FN) in tumorigenesis and malignant progression has been highly controversial. Cancerous FN plays a tumor-suppressive role, whereas it is pro-metastatic and associated with poor prognosis. Interestingly, FN matrix deposited in the tumor microenvironments (TMEs) promotes tumor progression but is paradoxically related to a better prognosis. Here, we justify how FN impacts tumor transformation and subsequently metastatic progression. Next, we try to reconcile and rationalize the seemingly conflicting roles of FN in cancer and TMEs. Finally, we propose future perspectives for potential FN-based therapeutic strategies.
Collapse
|
27
|
Xu Z, Ding W, Deng X. PM 2.5, Fine Particulate Matter: A Novel Player in the Epithelial-Mesenchymal Transition? Front Physiol 2019; 10:1404. [PMID: 31849690 PMCID: PMC6896848 DOI: 10.3389/fphys.2019.01404] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) refers to the conversion of epithelial cells to mesenchymal phenotype, which endows the epithelial cells with enhanced migration, invasion, and extracellular matrix production abilities. These characteristics link EMT with the pathogenesis of organ fibrosis and cancer progression. Recent studies have preliminarily established that fine particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) is correlated with EMT initiation. In this pathological process, PM2.5 particles, excessive reactive oxygen species (ROS) derived from PM2.5, and certain components in PM2.5, such as ions and polyaromatic hydrocarbons (PAHs), have been implicated as potential EMT mediators that are linked to the activation of transforming growth factor β (TGF-β)/SMADs, NF-κB, growth factor (GF)/extracellular signal-regulated protein kinase (ERK), GF/phosphatidylinositol 3-kinase (PI3K)/Akt, wingless/integrated (Wnt)/β-catenin, Notch, Hedgehog, high mobility group box B1 (HMGB1)-receptor for advanced glycation end-products (RAGE), and aryl hydrocarbon receptor (AHR) signaling cascades and to cytoskeleton rearrangement. These pathways directly and indirectly transduce pro-EMT signals that regulate EMT-related gene expression in epithelial cells, finally inducing the characteristic alterations in morphology and functions of epithelia. In addition, novel associations between autophagy, ATP citrate lyase (ACLY), and exosomes with PM2.5-induced EMT have also been summarized. However, some debates and paradoxes remain to be consolidated. This review discusses the potential molecular mechanisms underlying PM2.5-induced EMT, which might account for the latent role of PM2.5 in cancer progression and fibrogenesis.
Collapse
Affiliation(s)
- Zihan Xu
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaobei Deng
- Faculty of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Sun H, Zhang Z, Zhang T, Geng H, Xie D, Wang Y, Ding D, Zhang T, Yu D. Resveratrol Reverses Cigarette Smoke-Induced Urocystic Epithelial-Mesenchymal Transition via Suppression of STAT3 Phosphorylation in SV-HUC-1-Immortalized Human Urothelial Cells. Onco Targets Ther 2019; 12:10227-10237. [PMID: 32063715 PMCID: PMC6884977 DOI: 10.2147/ott.s226580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/06/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose Bladder cancer is a malignant tumor of the urinary tract, and cigarette smoke (CS) is closely related to tumorigenesis. Resveratrol, a plant-derived bioactive nutrient, possesses multiple anticancer effects. However, the mechanism of CS-induced tumorigenesis is still not clear. The role of resveratrol in CS-meditated bladder cancer development has not been reported. Methods MTT assay showed the toxicity of cigarette smoke extract (CSE) on the cell viability of SV-HUC-1 cells. Western blotting detected the expression levels of related proteins. Transwell migration or invasion assay evaluated the capacity of cell migration or invasion after treatment. Wound-healing assay revealed the effect of cell migratory capacity. The cell cycle was detected by flow cytometry. Results Our study demonstrated that CSE-triggered epithelial–mesenchymal transition (EMT) in SV-HUC-1-immortalized human urothelial cells via the STAT3/TWIST1 pathway. Furthermore, the results showed resveratrol effectively inhibited STAT3 phosphorylation, thus reversed EMT triggered by CSE. Meanwhile, the cell proliferation was also suppressed. Conclusion In conclusion, inhibition of the STAT3 in CSE-induced EMT on bladder cancer may be a promising cancer treatment target for suppression by resveratrol.
Collapse
Affiliation(s)
- Hongliang Sun
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Zhiqiang Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Taotao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Hao Geng
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Dongdong Xie
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Yi Wang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Demao Ding
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Tao Zhang
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| | - Dexin Yu
- Department of Urology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230032, People's Republic of China
| |
Collapse
|
29
|
Olea-Flores M, Zuñiga-Eulogio M, Tacuba-Saavedra A, Bueno-Salgado M, Sánchez-Carvajal A, Vargas-Santiago Y, Mendoza-Catalán MA, Pérez Salazar E, García-Hernández A, Padilla-Benavides T, Navarro-Tito N. Leptin Promotes Expression of EMT-Related Transcription Factors and Invasion in a Src and FAK-Dependent Pathway in MCF10A Mammary Epithelial Cells. Cells 2019; 8:E1133. [PMID: 31554180 PMCID: PMC6829404 DOI: 10.3390/cells8101133] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022] Open
Abstract
Leptin is one of the main adipokines secreted in breast tissue. Leptin promotes epithelial-mesenchymal transition (EMT), cell migration and invasion in epithelial breast cells, leading to tumor progression. Although, the molecular mechanisms that underlie these events are not fully understood, the activation of different signaling pathways appears to be essential. In this sense, the effects of leptin on the activation of kinases like Src and FAK, which regulate signaling pathways that activate the EMT program, are not completely described. Therefore, we investigated the involvement of these kinases using an in vitro model for leptin-induced EMT process in the non-tumorigenic MCF10A cell line. To this end, MCF10A cells were stimulated with leptin, and Src and FAK activation was assessed. Specific events occurring during EMT were also evaluated in the presence or absence of the kinases' chemical inhibitors PP2 and PF-573228. For instance, we tested the expression and subcellular localization of the EMT-related transcription factors Twist and β-catenin, by western blot and immunofluorescence. We also evaluated the secretion and activation of matrix metalloproteases (MMP-2 and MMP-9) by gelatin zymography. Invasiveness properties of leptin-stimulated cells were determined by invadopodia formation assays, and by the Transwell chamber method. Our results showed that leptin promotes EMT through Src and FAK activation, which leads to the secretion and activation of MMP-2 and MMP-9, invadopodia formation and cell invasion in MCF10A cells. In conclusion, our data suggest that leptin promotes an increase in the expression levels of Twist and β-catenin, the secretion of MMP-2, MMP-9, the invadopodia formation and invasion in MCF10A cells in a Src and FAK-dependent manner.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, México.
| | - Miriam Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, México.
| | - Arvey Tacuba-Saavedra
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, México.
| | - Magdalena Bueno-Salgado
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, México.
| | - Andrea Sánchez-Carvajal
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, México.
| | - Yovani Vargas-Santiago
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, México.
| | - Miguel A Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo México.
| | - Eduardo Pérez Salazar
- Departamento de Biología Celular, CINVESTAV, Av. Instituto Politécnico Nacional 2508, CDMX 07360, México
| | - Alejandra García-Hernández
- Departamento de Biología Celular, CINVESTAV, Av. Instituto Politécnico Nacional 2508, CDMX 07360, México
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, México.
| |
Collapse
|
30
|
Chong KY, Kang M, Garofalo F, Ueno D, Liang H, Cady S, Madarikan O, Pitruzzello N, Tsai CH, Hartwich TMP, Shuch BM, Yang-Hartwich Y. Inhibition of Heat Shock Protein 90 suppresses TWIST1 Transcription. Mol Pharmacol 2019; 96:168-179. [PMID: 31175180 DOI: 10.1124/mol.119.116137] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/03/2019] [Indexed: 02/14/2025] Open
Abstract
Molecular chaperone heat shock protein 90 (HSP90) is involved in oncogenic signaling pathways including epithelial-mesenchymal transition (EMT), a key process in tumor initiation, progression, metastasis, and chemoresistance. The molecular mechanisms underlying the involvement of HSP90 in EMT are still under investigation. In this study, we identified a previously unrecognized role of HSP90 in cooperating with signal transducer and activator of transcription 3 (STAT3) to regulate TWIST1 transcription in cancer cells. The HSP90 inhibitor 17-N-allylamino-17-demethoxygeldanamycin suppressed TWIST1 mRNA expression and promoter activity in epithelial ovarian cancer, renal clear cell cancer, and nasopharyngeal cancer cell lines. The interactions between HSP90 and transcription factors were visualized in cancer cell lines and tumor tissues using proximity ligation assays. Our findings reveal that HSP90 promotes the binding of STAT3 to the TWIST1 promoter, leading to the transcription of TWIST1. The inhibition of HSP90 downregulates STAT3 activity and TWIST1 transcription, thereby suppressing EMT and potentially inhibiting tumor progression, metastasis, and chemoresistance in different types of cancers. SIGNIFICANCE STATEMENT: Our study provides new evidence that HSP90 promotes EMT through enhancing TWIST1 transcription, which can be suppressed by HSP90 inhibitors. The HSP90 inhibitor inhibits EMT, thus potentially slowing down tumor growth, invasion, dissemination, metastasis, and drug resistance. These findings will hopefully pave the way for new therapeutic opportunities to target EMT and metastasis using HSP90 inhibitors.
Collapse
Affiliation(s)
- Kay Yi Chong
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Min Kang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Francesca Garofalo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Daiki Ueno
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Huamao Liang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Sarah Cady
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Oluwagbemisola Madarikan
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Nicholas Pitruzzello
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Cheng-Hsiu Tsai
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Tobias M P Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Brian M Shuch
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| | - Yang Yang-Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut (K.Y.C., M.K., F.G., S.C., T.M.P.H., Y.Y.-H.); The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China (M.K.); Ronald Reagan UCLA Medical Center, University of California Los Angeles, Santa Monica, California (D.U., B.M.S.); Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China (H.L.); Department of Biology and Environmental Science, University of New Haven, West Haven, Connecticut (O.M., N.P., C.-H.T.); and Yale Cancer Center, New Haven, Connecticut (Y.Y.-H.)
| |
Collapse
|
31
|
The Vicious Cross-Talk between Tumor Cells with an EMT Phenotype and Cells of the Immune System. Cells 2019; 8:cells8050460. [PMID: 31096701 PMCID: PMC6562673 DOI: 10.3390/cells8050460] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/02/2019] [Accepted: 05/14/2019] [Indexed: 02/08/2023] Open
Abstract
Carcinoma cells that undergo an epithelial-mesenchymal transition (EMT) and display a predominantly mesenchymal phenotype (hereafter EMT tumor cells) are associated with immune exclusion and immune deviation in the tumor microenvironment (TME). A large body of evidence has shown that EMT tumor cells and immune cells can reciprocally influence each other, with EMT cells promoting immune exclusion and deviation and immune cells promoting, under certain circumstances, the induction of EMT in tumor cells. This cross-talk between EMT tumor cells and immune cells can occur both between EMT tumor cells and cells of either the native or adaptive immune system. In this article, we review this evidence and the functional consequences of it. We also discuss some recent evidence showing that tumor cells and cells of the immune system respond to similar stimuli, activate the expression of partially overlapping gene sets, and acquire, at least in part, identical functionalities such as migration and invasion. The possible significance of these symmetrical changes in the cross-talk between EMT tumor cells and immune cells is addressed. Eventually, we also discuss possible therapeutic opportunities that may derive from disrupting this cross-talk.
Collapse
|
32
|
Su H, Lin Z, Peng W, Hu Z. Identification of potential biomarkers of lung adenocarcinoma brain metastases via microarray analysis of cDNA expression profiles. Oncol Lett 2018; 17:2228-2236. [PMID: 30675288 PMCID: PMC6341808 DOI: 10.3892/ol.2018.9829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Brain metastases originating from lung adenocarcinoma (LAD) occur frequently. The aim of the current study was to assess potential biomarkers for the prognosis of lung adenocarcinoma brain metastasis (LAD-BM) through the analysis of gene expression microarrays. The current study downloaded two gene expression datasets, GSE14108 and GSE10245, from the Gene Expression Omnibus database. From GSE14108 and GSE10245, 19 LAD-BM samples and 40 primary LAD samples were selected for analysis. To identify the differentially expressed genes (DEGs), the current study compared the two sample groups, using the limma R package. Subsequently, pathway enrichment analysis was conducted using the Cluster Profiler R package, and the construction of the protein-protein interaction (PPI) network was executed utilizing the Search Tool for the Retrieval of Interacting Genes database. The microRNA-target network was built using the TargetScore R package. Then, these networks were established and visualized using Cytoscape software. An array of 463 DEGs was identified in the LAD-BM samples, including 256 upregulated and 207 downregulated genes. Based on functional term enrichment analysis using the Gene Ontology database and signaling pathway enrichment analysis using the Kyoto Encyclopedia of Genes and Genomes database, it was identified that the overlapping DEGs were primarily involved in chemokine-associated signal transduction, which may mediate lung cancer cell metastasis to the brain. Chemokine ligand 2, lysozyme, matrix metalloproteinase-2 (MMP-2), lysyl oxidase (LOX) and granzyme B were identified as potential biomarkers according to a topological analysis of the PPI networks. Two notable nodes, MMP-2 and LOX, appeared in the PPI network and were key points in the microRNA-target network, as they were regulated by hsa-let-7d. Many DEGs and microRNAs were regarded as prognostic biomarkers for lung adenocarcinoma metastasis in the current study. These DEGs were primarily associated with chemokine-mediated signaling pathways. In addition, MMP-2 and LOX were predicted to be targets of hsa-let-7d.
Collapse
Affiliation(s)
- Haiyang Su
- Department of Neurosurgery, Peking University Ninth School of Clinical Medicine, Beijing 100038, P.R. China
| | - Zhenyang Lin
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Weicheng Peng
- Department of Neurosurgery, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Zhiqiang Hu
- Department of Neurosurgery, Peking University Ninth School of Clinical Medicine, Beijing 100038, P.R. China
| |
Collapse
|
33
|
Karatayli E, Hall RA, Weber SN, Dooley S, Lammert F. Effect of alcohol on the interleukin 6-mediated inflammatory response in a new mouse model of acute-on-chronic liver injury. Biochim Biophys Acta Mol Basis Dis 2018; 1865:298-307. [PMID: 30447270 DOI: 10.1016/j.bbadis.2018.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/09/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS ACLF is usually associated with a precipitant in the setting of a chronically damaged liver. We aim to combine a mouse model with a pre-injured liver (Abcb4/Mdr2-/-) with a recently standardized ethanol feeding model to dissect alcohol-related inflammatory responses in this model. METHOD Ten (n = 64) and 15 (n = 64) week old wild-type (WT) C57BL/6 J and Abcb4-/- knock-out (KO) mice were either fed control (WT/Cont and KO/Cont groups) or liquid ethanol diet (5% v/v) followed by an ethanol binge (4 mg/kg) (WT/EtOH and KO/EtOH groups). Hepatic mRNA levels of IL6, IFN-G, IL-1B, TGFB1, TNF-A, CCL2, HGF, CRP, RANTES, PNPLA3 and COL3A1 were evaluated using the 2-ΔΔCt method. IL6 and HGF plasma levels were quantified by ELISA. RESULTS Older mice in KO/EtOH group displayed higher IL6 expressions compared to KO/Cont, WT/EtOH and WT/Cont groups of the same age, whereas HGF did not differ. Significant over-expression of CCL2 also corresponded to the same group. Males in KO/EtOH group exhibited higher IL6 expression than females. Lipid droplets were observed in about 80% of mice challenged with ethanol. There was a profound downregulation in PNPLA3 and RANTES levels after ethanol exposure. Mean size of the LDs was inversely correlated with hepatic PNPLA3 levels. CONCLUSION We propose a novel promising approach to model alcohol-related ACLI. Acute inflammatory IL6-driven response might help transition from a stable chronic state to a progressive liver damage in Abcb4-/- mice. Repression of PNPLA3 resulted in a notable expansion in size of lipid droplets, indicating lipid remodeling in this model.
Collapse
Affiliation(s)
- Ersin Karatayli
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.
| | - Rabea A Hall
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| |
Collapse
|
34
|
Hypoxia Induces the Acquisition of Cancer Stem-like Phenotype Via Upregulation and Activation of Signal Transducer and Activator of Transcription-3 (STAT3) in MDA-MB-231, a Triple Negative Breast Cancer Cell Line. CANCER MICROENVIRONMENT 2018; 11:141-152. [PMID: 30255421 DOI: 10.1007/s12307-018-0218-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 09/13/2018] [Indexed: 01/01/2023]
Abstract
The finding that hypoxia can induce cancer stemness in various experimental models is in agreement with the conceptual basis of cancer cell plasticity. Here, we aimed to gain insights into the molecular basis of hypoxia-induced cancer cell plasticity in triple negative breast cancer (TNBC). To achieve this goal, we employed our previously published in-vitro model of TNBC, in which a small subset of stem-like cells can be distinguished from the bulk cell population based on their responsiveness to a Sox2 reporter. In MDA-MB-231, a TNBC cell line, we observed that hypoxia significantly increased the expression of luciferase and green fluorescence protein (GFP), the readouts of the Sox2 reporter. Upon hypoxic challenge, the bulk, reporter unresponsive (RU) cells acquired stem-like features, as evidenced by the significant increases in the proportion of CD44high/CD24low cells, colony formation and resistance to cisplatin. Correlating with these phenotypic changes, RU cells exposed to hypoxia exhibited a substantial upregulation of the active/phosphorylated form of STAT3 (pSTAT3). This hypoxia-induced activation of STAT3 correlated with increased STAT3 transcriptional activity, as evidenced by increased STAT3-DNA binding and an altered gene expression profile. This hypoxia-induced STAT3 activation is biologically significant, since siRNA knockdown of STAT3 in RU cells significantly attenuated the hypoxia-induced acquisition of Sox2 activity and stem-like phenotypic features. In conclusion, our data have provided the proof-of-concept that STAT3 is a critical mediator in promoting the hypoxia-induced acquisition of cancer stemness in TNBC. Targeting STAT3 in TNBC may be useful in overcoming chemoresistance and decreasing the risk of disease relapse.
Collapse
|
35
|
Yu CW, Cheng KC, Chen LC, Lin MX, Chang YC, Hwang-Verslues WW. Pro-inflammatory cytokines IL-6 and CCL2 suppress expression of circadian gene Period2 in mammary epithelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:1007-1017. [PMID: 30343691 DOI: 10.1016/j.bbagrm.2018.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/27/2018] [Accepted: 09/11/2018] [Indexed: 10/28/2022]
Abstract
Chronic inflammation is known to contribute to tumor initiation and cancer progression. In breast tissue, the core circadian gene Period (PER)2 plays a critical role in mammary gland development and possesses tumor suppressor function. Interleukin (IL)-6 and C-C motif chemokine ligand (CCL) 2 are among the most abundant cytokines in the inflammatory microenvironment. We found that acute stimulation by IL-6/CCL2 reduced PER2 expression in non-tumorigenic breast epithelial cells. Longer term exposure to IL-6/CCL2 suppressed PER2 to an even lower level. IL-6 activated STAT3/NFκB p50 signaling to recruit HDAC1 to the PER2 promoter. CCL2 activated the PI3K/AKT pathway to promote ELK-1 cytoplasm-to-nucleus translocation, recruit HDAC1 to the proximal PER2 promoter and facilitate DNMT3-EZH2-PER2 promoter association. Ectopic expression of PER2 inhibited IL-6 or CCL2 induced mammosphere forming ability and reduced sphere size indicating that PER2 repression in breast epithelial cells can be crucial to activate tumorigenesis in an inflammatory microenvironment. The diminished expression of PER2 can be observed over a time scale of hours to weeks following IL-6/CCL2 stimulation suggesting that PER2 suppression occurs in the early stage of the interaction between an inflammatory microenvironment and normal breast epithelial cells. These data show new mechanisms by which mammary cells interact with a cancerous microenvironment and provide additional evidence that PER2 expression contributes to breast tumorigenesis.
Collapse
Affiliation(s)
- Chan-Wei Yu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Kuo-Chih Cheng
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Ling-Chih Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Meng-Xuan Lin
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Graduate Institute of Life Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Cheng Chang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taipei 100, Taiwan; Department of Medicine, National Taiwan University Hospital, Taipei 100, Taiwan; Institute of Biomedical Science, Academia Sinica, Taipei 115, Taiwan
| | - Wendy W Hwang-Verslues
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
36
|
Yan L, Xu F, Dai CL. Relationship between epithelial-to-mesenchymal transition and the inflammatory microenvironment of hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:203. [PMID: 30157906 PMCID: PMC6114477 DOI: 10.1186/s13046-018-0887-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 08/21/2018] [Indexed: 02/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a complex process involving multiple genes, steps and stages. It refers to the disruption of tight intercellular junctions among epithelial cells under specific conditions, resulting in loss of the original polarity, order and consistency of the cells. Following EMT, the cells show interstitial cell characteristics with the capacity for adhesion and migration, while apoptosis is inhibited. This process is critically involved in embryogenesis, wound-healing, tumor invasion and metastasis. The tumor microenvironment is composed of infiltrating inflammatory cells, stromal cells and the active medium secreted by interstitial cells. Most patients with hepatocellular carcinoma (HCC) have a history of hepatitis virus infection. In such cases, major components of the tumor microenvironment include inflammatory cells, inflammatory factors and virus-encoded protein are major components. Here, we review the relationship between EMT and the inflammatory tumor microenvironment in the context of HCC. We also further elaborate the significant influence of infiltrating inflammatory cells and inflammatory mediators as well as the products expressed by the infecting virus in the tumor microenvironment on the EMT process.
Collapse
Affiliation(s)
- Long Yan
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Feng Xu
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China
| | - Chao-Liu Dai
- Department of Hepatobiliary and Splenic Surgery, Sheng Jing Hospital of China Medical University, No.36 Sanhao Street, Heping District, Shenyang, Liaoning, China.
| |
Collapse
|
37
|
Newcomb B, Rhein C, Mileva I, Ahmad R, Clarke CJ, Snider J, Obeid LM, Hannun YA. Identification of an acid sphingomyelinase ceramide kinase pathway in the regulation of the chemokine CCL5. J Lipid Res 2018; 59:1219-1229. [PMID: 29724781 DOI: 10.1194/jlr.m084202] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/25/2018] [Indexed: 02/01/2023] Open
Abstract
Acid sphingomyelinase (ASM) hydrolyzes sphingomyelin to produce the biologically active lipid ceramide. Previous studies have implicated ASM in the induction of the chemokine CCL5 in response to TNF-α however, the lipid mediator of this effect was not established. In the present study, we identified a novel pathway connecting ASM and ceramide kinase (CERK). The results show that TNF-α induces the formation of ceramide 1-phosphate (C-1-P) in a CERK-dependent manner. Silencing of CERK blocks CCL5 production in response to TNF-α. Interestingly, cells lacking ASM have decreased C-1-P production following TNF-α treatment, suggesting that ASM may be acting upstream of CERK. Functionally, ASM and CERK induce a highly concordant program of cytokine production and both are required for migration of breast cancer cells. Taken together, these data suggest ASM can produce ceramide which is then converted to C-1-P by CERK, and that C-1-P is required for production of CCL5 and several cytokines and chemokines, with roles in cell migration. These results highlight the diversity in action of ASM through more than one bioactive sphingolipid.
Collapse
Affiliation(s)
- Benjamin Newcomb
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794
| | - Cosima Rhein
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794.,Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany
| | - Izolda Mileva
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794
| | - Rasheed Ahmad
- Immunology and Innovative Cell Therapy Unit, Dasman Diabetes Institute, Kuwait City, Kuwait
| | | | - Justin Snider
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794
| | - Lina M Obeid
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794.,Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A Hannun
- Stony Brook Cancer Center Stony Brook University, Stony Brook, NY 11794 .,Department of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
38
|
Zhang M, Zhu ZL, Gao XL, Wu JS, Liang XH, Tang YL. Functions of chemokines in the perineural invasion of tumors (Review). Int J Oncol 2018. [PMID: 29532850 DOI: 10.3892/ijo.2018.4311] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The perineural invasion (PNI) of malignant tumors is a form of tumor progression in which cancer cells encroach along nerves. PNI hinders curative resection. Residual tumor cells in or around nerves can bring about local recurrence, infiltration and metastasis. This behavior is usually associated with a poor clinical prognosis. Therefore, it is necessary to investigate novel ligand-receptor crosstalk between nerves and tumor cells that promote the process of PNI. Chemokines are regarded as one of pivotal factors involved in the process of PNI. The present review collates information provided by previous studies with regard to the role of chemokines in PNI. The study presents a definition of PNI in cancer, generalizes the biological characteristics and the expression of chemokines and their receptors in cancer types associated with PNI, and discusses the underlying molecular mechanisms of chemokines, the reciprocal interactions between chemokines and other factors in PNI, and the interconnectivity of the microenvironment and chemokines. The aim of the review is to thoroughly illustrate the molecular cues of chemokines in cancer with PNI and to identify novel antitumor targets.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhuo-Li Zhu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiao-Lei Gao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jia-Shun Wu
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
39
|
KIAA0247 suppresses the proliferation, angiogenesis and promote apoptosis of human glioma through inactivation of the AKT and Stat3 signaling pathway. Oncotarget 2018; 7:87100-87113. [PMID: 27893430 PMCID: PMC5349974 DOI: 10.18632/oncotarget.13527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
Gliomas are the most common and aggressive type of primary adult brain tumors. Although KIAA0247 previously is a speculated target of the tumor suppressor gene, little is known about the association between KIAA0247 and glioma. In this study, we clearly demonstrate that KIAA0247 expression is decreased in glioma and was negatively correlated with the histologic grade. Overexpression of KIAA0247 in glioma cells inhibits proliferation, angiogenesis and promoted apoptosis of human glioma cells in vitro. In contrast, knockdown of KIAA0247 increases the proliferation, angiogenesis and decreases apoptosis of these cells. In a tumor xenograft model, overexpression of KIAA0247 suppresses tumor growth of glioma cells in vivo, while KIAA0247 knockdown promotes the tumor growth. Mechanistically, overexpression of KIAA0247 is able to inhibit phosphorylation of AKT and Stat3 in glioma cells, resulting in inactivation of the AKT and Stat3 signaling pathways, this ultimately decreases the expression of PCNA, CyclinD1, Bcl2 and VEGF. Collectively, these data indicate that KIAA0247 may work as a tumor suppressor gene in glioma and a promising therapeutic target for gliomas.
Collapse
|
40
|
Wu J, Zhang R, Hu G, Zhu HH, Gao WQ, Xue J. Carbon Monoxide Impairs CD11b+Ly-6ChiMonocyte Migration from the Blood to Inflamed Pancreas via Inhibition of the CCL2/CCR2 Axis. THE JOURNAL OF IMMUNOLOGY 2018; 200:2104-2114. [DOI: 10.4049/jimmunol.1701169] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/07/2018] [Indexed: 01/13/2023]
|
41
|
Tumor microenvironment promotes prostate cancer cell dissemination via the Akt/mTOR pathway. Oncotarget 2018; 9:9206-9218. [PMID: 29507684 PMCID: PMC5823632 DOI: 10.18632/oncotarget.24104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 01/04/2018] [Indexed: 12/30/2022] Open
Abstract
Metastasis causes high mortality in various malignancies, including prostate cancer (PCa). Accumulating data has suggested that cancer cells spread from the primary tumor to distant sites at early stage, which is characterized by disseminated tumor cells (DTCs). However, lack of direct evidence of partial localized PCa cells occurring epithelial-to-mesenchymal transition (EMT) and disseminating to distant sites (e.g bone marrow). In this study, we used luciferase labeled PCa cells to establish an EMT mouse model and to detect whether DTCs spread into the bone marrow. We observed tumor cells existing in mouse bone marrow when tumor grew subcutaneously at palpable stage. Studies also showed that ex vivo tumor cells exhibited increased proliferative, migratory, invasive and angiogenesis abilities. When compared ex vivo tumor cells with parental cells, hallmarks of EMT including E-cadherin, Vimentin, Snail, and ZO-1 were altered significantly. Specifically, the ex vivo tumor cells showed more mesenchymal properties. Angiogenesis markers, including VEGFR2, VEGFR3, MCP-3, I-TAC, I309, uPAR and GROα, were also increased in the ex vivo tumor cells. Intriguingly, MCP-1 expression was dramatically increased in those cells. Mechanistic analyses indicated that AP1 mediates PCa EMT and the appearance of DTCs via the Akt/mTOR pathway. This study may provide potential therapeutic targets and diagnostic biomarkers of PCa progression and metastasis.
Collapse
|
42
|
Yang J, Lv X, Chen J, Xie C, Xia W, Jiang C, Zeng T, Ye Y, Ke L, Yu Y, Liang H, Guan XY, Guo X, Xiang Y. CCL2-CCR2 axis promotes metastasis of nasopharyngeal carcinoma by activating ERK1/2-MMP2/9 pathway. Oncotarget 2017; 7:15632-47. [PMID: 26701209 PMCID: PMC4941266 DOI: 10.18632/oncotarget.6695] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Distant metastasis remains the major failure of nasopharyngeal carcinoma (NPC). In this study, the roles of chemokine C-C motif ligand 2 (CCL2), and its receptor chemokine C-C motif receptor type 2 (CCR2) on NPC metastasis were investigated. Serum CCL2 and CCL2/CCR2 expression level were remarkably increased in NPC patients compared to non-tumor patients by ELISA and IHC analyses. High expressions of CCL2/CCR2 were significantly associated with NPC metastasis and poor overall survival (OS). High expression of CCR2 is an independent adverse prognostic factor of OS and distant metastasis free survival (DMFS). Overexpressions of CCL2 and CCR2 were detected in high-metastatic NPC cell lines. Upregulating CCL2 and CCR2 respectively in low-metastatic NPC cell lines could promote cell migration and invasion, and exogenous CCL2 enhanced the motility in CCR2-overexpressing cells. On the other hand, downregulating CCL2 and CCR2 respectively in high-metastatic NPC cell lines by shRNA could decrease cell migration and invasion. However, exogenous CCL2 could not rescue the weaken ability of motility of CCR2-silencing cells. In nude mouse model, distant metastasis was significantly facilitated in either CCL2-overexpressing or CCR2-overexpressing groups, which was more obvious in CCR2-overexpressing group. Also, distant metastasis was considerably inhibited in either CCL2-silencing or CCR2-silencing groups. Dual overexpression of CCL2/CCR2 could activate extracellular signal-regulated kinase (ERK1/2) signaling pathway, which sequentially induced matrix metalloproteinase (MMP) 2 and 9 upregulations in the downstream. In conclusion, CCL2-CCR2 axis could promote NPC metastasis by activating ERK1/2-MMP2/9 pathway. This study helps to develop novel therapeutic targets for distant metastasis in NPC.
Collapse
Affiliation(s)
- Jing Yang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xing Lv
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jinna Chen
- Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Changqing Xie
- Internal Medicine Residency Program, Vidant Medical Center, East Carolina University, Greenville, NC, USA
| | - Weixiong Xia
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chen Jiang
- Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Tingting Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanfang Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Liangru Ke
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yahui Yu
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Hu Liang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Clinical Oncology, Hong Kong University, Hong Kong, China
| | - Xiang Guo
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yanqun Xiang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.,Department of Nasopharyngeal Carcinoma, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
43
|
P2Y14 receptor activation decreases interleukin-6 production and glioma GL261 cell proliferation in microglial transwell cultures. J Neurooncol 2017; 137:23-31. [PMID: 29189936 DOI: 10.1007/s11060-017-2700-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/24/2017] [Indexed: 12/24/2022]
Abstract
Gliomas are rich in extracellular nucleotides that modulate glioma cell production of multiple cytokines including interleukin (IL)-6, which strongly contributes to glioma cell proliferation. However, little is known about how nucleotide signaling modulates microglial/macrophage (MG/MP) cytokine production in the context of gliomas, nor how MG/MP purinergic P2 receptor expression changes in the tumor micro-environment. We hypothesized that: (1) expression of key P2Y receptors will be augmented in glioma-derived MG/MP, and (2) selective activation of these receptors in vitro will regulate microglial production of IL-6 and glioma cell proliferation. We tested these hypotheses using the murine GL261 glioma model. Compared to MG/MP isolated from the normal brain tissue, CD11b+ cells isolated from GL261 tumors expressed higher levels of several P2 receptors, including P2Y14 receptors. To evaluate microglial P2Y14 receptor function in the context of tumor cells, we first cultured N9 microglia in transwells with GL261 cells and found that microglial P2Y14 mRNA levels were similarly increased in transwell cultures. GL261 cells did not express detectable P2Y14 levels either when they were cultured alone or in transwell cultures with N9 cells. Selective P2Y14 receptor activation with UDP-glucose (UDPG) did not affect IL-6 levels in either cell type cultured alone, but in transwell cultures, UDPG decreased IL-6 protein levels in the medium. Application of conditioned medium from UDPG-treated microglia reduced GL261 cell proliferation. Together, these data suggest that P2Y14 receptors may be a key a receptor involved in glioma cell-MG/MP communication in the tumor environment.
Collapse
|
44
|
Chen LM, Liu PY, Chen YA, Tseng HY, Shen PC, Hwang PA, Hsu HL. Oligo-Fucoidan prevents IL-6 and CCL2 production and cooperates with p53 to suppress ATM signaling and tumor progression. Sci Rep 2017; 7:11864. [PMID: 28928376 PMCID: PMC5605496 DOI: 10.1038/s41598-017-12111-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/05/2017] [Indexed: 01/07/2023] Open
Abstract
Low-molecular-weight Fucoidan (Oligo-Fucoidan) is a sulfated polysaccharide that has a variety of biological effects and has also been shown to have beneficial health effects. However, the molecular mechanisms underlying the therapeutic effects of Oligo-Fucoidan in patients with cancer remain unclear. Using human colorectal cancer HCT116 cells with (p53+/+) or without (p53−/−) normal p53 expression, we found that Oligo-Fucoidan treatment reduces the occurrence of spontaneous DNA lesions. Etoposide induces double strand DNA breaks. Subsequent administration of Oligo-Fucoidan to etoposide-treated cells promotes p53 accumulation, p21 expression and significant decreases in ataxia-telangiectasia-mutated (ATM), checkpoint kinase 1 (Chk1) and γ-H2AX phosphorylation in p53+/+ cells compared with p53−/− cells. Similarly, co-administration of Oligo-Fucoidan with etoposide inhibits ATM, Chk1 and γ-H2AX phosphorylation, particularly in the presence of p53. Furthermore, Oligo-Fucoidan supplementation increases cancer cell death and attenuates the adverse effects induced by etoposide that decreases production of the pro-inflammatory cytokine IL-6 and chemokine CCL2/MCP-1. Importantly, Oligo-Fucoidan decreases the tumor-promoting M2 macrophages in microenvironment as well as collaborates with p53 and works in combination with etoposide to prevent HCT116 tumorigenicity. Our results first demonstrate that p53 enables Oligo-Fucoidan to effectively inhibit tumor progression, and Oligo-Fucoidan minimizes the side effects of chemotherapy and alters tumor microenvironment.
Collapse
Affiliation(s)
- Li-Mei Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Po-Yen Liu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-An Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Hong-Yu Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Chun Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Hsin-Ling Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan.
| |
Collapse
|
45
|
Espinoza-Sánchez NA, Vadillo E, Balandrán JC, Monroy-García A, Pelayo R, Fuentes-Pananá EM. Evidence of lateral transmission of aggressive features between different types of breast cancer cells. Int J Oncol 2017; 51:1482-1496. [PMID: 29048610 PMCID: PMC5643070 DOI: 10.3892/ijo.2017.4128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BrC) is a major public health problem worldwide. The intra-tumoral heterogeneity and tumor cell plasticity importantly contribute to disease progression and treatment failure. However, the dynamic interactions between different tumor clones, as well as their contribution to tumor aggressiveness are still poorly understood. In this study, we provide evidence of a lateral transmission of aggressive features between aggressive and non-aggressive tumor cells, consisting of gain of expression of cancer stem cell markers, increased expression of CXCL12 receptors CXCR4 and CXCR7 and increased invasiveness in response to CXCL12, which correlated with high levels of secretion of pro-inflammatory mediators G-CSF, GM-CSF, MCP-1, IL-8 and metalloproteinases 1 and 2 by the aggressive cells. Noteworthy, we found no evidence of a TGF-β participation in the inducible-invasive phenotype. Altogether, our results provide evidence of communication between tumor cells with different potentials for aggressiveness, which could influence intra-tumoral population dynamics promoting the emergence of clones with novel functions. Understanding these interactions will provide better targets for diagnosis, prognosis and therapeutic strategies.
Collapse
Affiliation(s)
- Nancy Adriana Espinoza-Sánchez
- PhD Program in Biomedical Science, Medicine Faculty, National Autonomous University of Mexico, University City, Mexico City 04510, Mexico
| | - Eduardo Vadillo
- Department of Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Juan Carlos Balandrán
- Department of Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City 07360, Mexico
| | - Alberto Monroy-García
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Mexico City 06720, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, Oncology Hospital, Mexican Institute for Social Security, Mexico City 06720, Mexico
| | - Ezequiel M Fuentes-Pananá
- Virology and Cancer Research Unit, Children's Hospital of Mexico Federico Gómez, Mexico City 06720, Mexico
| |
Collapse
|
46
|
Tanshinone IIA Inhibits Epithelial-Mesenchymal Transition in Bladder Cancer Cells via Modulation of STAT3-CCL2 Signaling. Int J Mol Sci 2017; 18:ijms18081616. [PMID: 28757590 PMCID: PMC5578008 DOI: 10.3390/ijms18081616] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Tanshinone IIA (Tan-IIA) is an extract from the widely used traditional Chinese medicine (TCM) Danshen (Salvia miltiorrhiza), and has been found to attenuate the proliferation of bladder cancer (BCa) cells (The IC50 were: 5637, 2.6 μg/mL; BFTC, 2 μg/mL; T24, 2.7 μg/mL, respectively.). However, the mechanism of the effect of Tan-IIA on migration inhibition of BCa cells remains unclear. This study investigates the anti-metastatic effect of Tan-IIA in human BCa cells and clarifies its molecular mechanism. Three human BCa cell lines, 5637, BFTC and T24, were used for subsequent experiments. Cell migration and invasion were evaluated by transwell assays. Real-time RT-PCR and western blotting were performed to detect epithelial-mesenchymal transition (EMT)-related gene expression. The enzymatic activity of matrix metalloproteinases (MMP) was evaluated by zymography assay. Tan-IIA inhibited the migration and invasion of human BCa cells. Tan-IIA suppressed both the protein expression and enzymatic activity of MMP-9/-2 in human BCa cells. Tan-IIA up-regulated the epithelial marker E-cadherin and down-regulated mesenchymal markers such as N-cadherin and Vimentin, along with transcription regulators such as Snail and Slug in BCa cells in a time- and dose-dependent manner. Mechanism dissection revealed that Tan-IIA-inhibited BCa cell invasion could function via suppressed chemokine (C-C motif) ligand 2 (CCL2) expression, which could be reversed by the addition of CCL2 recombinant protein. Furthermore, Tan-IIA could inhibit the phosphorylation of the signal transducer and activator of transcription 3 (STAT3) (Tyr705), which cannot be restored by the CCL2 recombinant protein addition. These data implicated that Tan-IIA might suppress EMT on BCa cells through STAT3-CCL2 signaling inhibition. Tan-IIA inhibits EMT of BCa cells via modulation of STAT3-CCL2 signaling. Our findings suggest that Tan-IIA can serve as a potential anti-metastatic agent in BCa therapy.
Collapse
|
47
|
Chemokine CCL2-CCR2 Signaling Induces Neuronal Cell Death via STAT3 Activation and IL-1β Production after Status Epilepticus. J Neurosci 2017; 37:7878-7892. [PMID: 28716963 DOI: 10.1523/jneurosci.0315-17.2017] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/20/2017] [Accepted: 07/12/2017] [Indexed: 12/17/2022] Open
Abstract
Elevated levels of chemokine C-C motif ligand 2 (CCL2) and its receptor CCR2 have been reported in patients with temporal lobe epilepsy and in experimental seizures. However, the functional significance and molecular mechanism underlying CCL2-CCR2 signaling in epileptic brain remains largely unknown. In this study, we found that the upregulated CCL2 was mainly expressed in hippocampal neurons and activated microglia from mice 1 d after kainic acid (KA)-induced seizures. Taking advantage of CX3CR1GFP/+:CCR2RFP/+ double-transgenic mice, we demonstrated that CCL2-CCR2 signaling has a role in resident microglial activation and blood-derived monocyte infiltration. Moreover, seizure-induced degeneration of neurons in the hippocampal CA3 region was attenuated in mice lacking CCL2 or CCR2. We further showed that CCR2 activation induced STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production, which are critical for promoting neuronal cell death after status epilepticus. Consistently, pharmacological inhibition of STAT3 by WP1066 reduced seizure-induced IL-1β production and subsequent neuronal death. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. Together, we demonstrated that CCL2-CCR2 signaling contributes to neurodegeneration via STAT3 activation and IL-1β production after status epilepticus, providing potential therapeutic targets for the treatment of epilepsy.SIGNIFICANCE STATEMENT Epilepsy is a global concern and epileptic seizures occur in many neurological conditions. Neuroinflammation associated with microglial activation and monocyte infiltration are characteristic of epileptic brains. However, molecular mechanisms underlying neuroinflammation in neuronal death following epilepsy remain to be elucidated. Here we demonstrate that CCL2-CCR2 signaling is required for monocyte infiltration, which in turn contributes to kainic acid (KA)-induced neuronal cell death. The downstream of CCR2 activation involves STAT3 (signal transducer and activator of transcription 3) phosphorylation and IL-1β production. Two weeks after KA-induced seizures, CCR2 deficiency not only reduced neuronal loss, but also attenuated seizure-induced behavioral impairments, including anxiety, memory decline, and recurrent seizure severity. The current study provides a novel insight on the function and mechanisms of CCL2-CCR2 signaling in KA-induced neurodegeneration and behavioral deficits.
Collapse
|
48
|
Suarez‐Carmona M, Lesage J, Cataldo D, Gilles C. EMT and inflammation: inseparable actors of cancer progression. Mol Oncol 2017; 11:805-823. [PMID: 28599100 PMCID: PMC5496491 DOI: 10.1002/1878-0261.12095] [Citation(s) in RCA: 404] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/31/2017] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Tumors can be depicted as wounds that never heal, and are infiltrated by a large array of inflammatory and immune cells. Tumor-associated chronic inflammation is a hallmark of cancer that fosters progression to a metastatic stage, as has been extensively reviewed lately. Indeed, inflammatory cells persisting in the tumor establish a cross-talk with tumor cells that may result in a phenotype switch into tumor-supporting cells. This has been particularly well described for macrophages and is referred to as tumor-associated 'M2' polarization. Epithelial-to-mesenchymal transition (EMT), the embryonic program that loosens cell-cell adherence complexes and endows cells with enhanced migratory and invasive properties, can be co-opted by cancer cells during metastatic progression. Cancer cells that have undergone EMT are more aggressive, displaying increased invasiveness, stem-like features, and resistance to apoptosis. EMT programs can also stimulate the production of proinflammatory factors by cancer cells. Conversely, inflammation is a potent inducer of EMT in tumors. Therefore, the two phenomena may sustain each other, in an alliance for metastasis. This is the focus of this review, where the interconnections between EMT programs and cellular and molecular actors of inflammation are described. We also recapitulate data linking the EMT/inflammation axis to metastasis.
Collapse
Affiliation(s)
- Meggy Suarez‐Carmona
- National Center for Tumor Diseases (NCT) – University Hospital HeidelbergGermany
| | - Julien Lesage
- Laboratory of Tumor and Development BiologyGIGA‐Cancer University of LiègeBelgium
| | - Didier Cataldo
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| | - Christine Gilles
- Inserm UMR‐S 903SFR CAP‐SantéUniversity of Reims Champagne‐Ardenne (URCA)France
| |
Collapse
|
49
|
Gao Y, Li W, Liu R, Guo Q, Li J, Bao Y, Zheng H, Jiang S, Hua B. Norcantharidin inhibits IL-6-induced epithelial‑mesenchymal transition via the JAK2/STAT3/TWIST signaling pathway in hepatocellular carcinoma cells. Oncol Rep 2017; 38:1224-1232. [PMID: 28677802 DOI: 10.3892/or.2017.5775] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 06/19/2017] [Indexed: 11/06/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), plays a vital role in hepatocellular carcinoma (HCC) development and metastasis. Norcantharidin (NCTD; 7-oxabicyclo (2.2.1) heptane-2,3-dicarboxylic anhydride) plays anticancer roles in the regulation of tumor cell proliferation, apoptosis and migration. However, the molecular mechanism of HCC EMT and the effects of NCTD in the HCC EMT process have been either poorly elucidated or not studied. In this study, HCC EMT was induced by the treatment of IL-6 and various concentrations of NCTD (0, 30, 60 and 120 µM) were treated with HCC cell lines, HCCLM3 and SMMC-7721. We investigated the effect of NCTD on the invasion of HCC cells by using Transwell assay. Immunofluorescence staining, western blot analysis and quantitative RT-PCR were performed to evaluate the protein and mRNA expression levels of HCC cells. Here, using cell line models, our data demonstrated that interleukin 6 (IL-6) induced EMT through the JAK/STAT3/TWIST pathway in HCC. Moreover, our studies revealed that NCTD markedly inhibited IL-6-induced EMT and cell invasiveness. Signaling studies revealed that NCTD sufficiently suppressed JAK/STAT3/TWIST signaling to reverse the IL-6-promoting effects. Collectively, these data provide evidence for the use of NCTD as a potential anticancer drug in HCC metastatic patients.
Collapse
Affiliation(s)
- Yebo Gao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Weidong Li
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Rui Liu
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Qiujun Guo
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Jie Li
- Department of Oncology, Jining First People's Hospital, Jining, Shandong 272111, P.R. China
| | - Yanju Bao
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Honggang Zheng
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Shulong Jiang
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Baojin Hua
- Department of Oncology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
50
|
Luo Y, Cui Y, Cao X, Li X, Chen A, Zhang J, Chen X, Cao J. 8-Bromo-7-methoxychrysin-blocked STAT3/Twist axis inhibits the stemness of cancer stem cell-like cell originated from SMMC-7721 cells. Acta Biochim Biophys Sin (Shanghai) 2017; 49:458-464. [PMID: 28369327 DOI: 10.1093/abbs/gmx025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Indexed: 11/14/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a member of the family of latent cytoplasmic transcriptional factors that could regulate cell proliferation, survival, and development. It has been reported that Twist is a target gene of STAT3, and STAT3/Twist signaling plays an important role in regulating cancer progress. Here, to explore whether 8-bromo-7-methoxychrysin (BrMC) inhibits liver cancer stem-like cell (LCSLC) properties via disrupting STAT3/Twist signaling, we cultured SMMC-7721 cells in vitro, and evaluated the effects of BrMC on the stemness of spheroids by determining the sphere-forming capability and migration. The sphere formation assay results showed a concentration-dependent decrease of sphere-forming capacity in LCSLCs (P < 0.05) treated with different concentrations of BrMC. Wound-healing assays results demonstrated a concentration-dependent decline in cell migration of LCSLCs treated with different concentrations of BrMC. In addition, CD133, CD44, and ALDH1 levels were decreased in LCSLCs treated with BrMC. Treatment with different concentrations of BrMC also reduced the expressions of p-STAT3 and Twist1 proteins. The effect of BrMC was substantially enhanced by co-treatment with JSI-124, a specific inhibitor of STAT3. Ectopic expression of Twist1 attenuated the inhibitory effects of BrMC on sphere formation, migration, and expression of the markers in LCSLCs. However, it had no affect on p-STAT3 expression in LCSLCs. These results demonstrated that BrMC inhibits the stemness of LCSLCs originated from SMMC-7721 cell line by inhibiting STAT3/Twist signal axis.
Collapse
Affiliation(s)
- Yimin Luo
- Cancer Institute, Medical College, University of South China, Hengyang 421001, China
- Key Laboratory of Tumor Cellular & Molecular Pathology, University of South China, engyang 421001, China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, China
| | - Yinghong Cui
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha410013, China
| | - Xiaocheng Cao
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha410013, China
| | - A Chen
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha410013, China
| | - Jiansong Zhang
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha410013, China
| | - Xiangding Chen
- Laboratory of Molecular and Statistical Genetics, Hunan Normal University, Changsha 410081, China
| | - Jianguo Cao
- Department of Pharmaceutical Science, Medical College, Hunan Normal University, Changsha410013, China
| |
Collapse
|