1
|
da Silva EL, Mesquita FP, Pinto LC, Gomes BPS, de Oliveira EHC, Burbano RMR, Moraes MEAD, de Souza PFN, Montenegro RC. Transcriptome analysis displays new molecular insights into the mechanisms of action of Mebendazole in gastric cancer cells. Comput Biol Med 2025; 184:109415. [PMID: 39566281 DOI: 10.1016/j.compbiomed.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Gastric cancer (GC) is a common cancer worldwide. Therefore, searching for effective treatments is essential, and drug repositioning can be a promising strategy to find new potential drugs for GC therapy. For the first time, we sought to identify molecular alterations and validate new mechanisms related to Mebendazole (MBZ) treatment in GC cells through transcriptome analysis using microarray technology. Data revealed 1066 differentially expressed genes (DEGs), of which 345 (2.41 %) genes were upregulated, 721 (5.04 %) genes were downregulated, and 13,231 (92.54 %) genes remained unaltered after MBZ exposure. The overexpressed genes identified were CCL2, IL1A, and CDKN1A. In contrast, the H3C7, H3C11, and H1-5 were the top 3 underexpressed genes. Gene set enrichment analysis (GSEA) identified 8 pathways significantly overexpressed in the treated group (p < 0.05 and FDR<0.25). The validation of the expression of top desregulated genes by RT-qPCR confirmed the transcriptome results, where MBZ increased the CCL2, IL1A, and CDKN1A and reduced the H3C7, H3C11, and H1-5 transcript levels. Expression analysis in samples from TCGA databases correlated that the lower ILI1A and higher H3C11 and H1-5 gene expression are associated with decreased overall survival rates in patients with GC, indicating that MBZ treatment can improve the prognosis of patients. Thus, the data demonstrated that the drug MBZ alters the transcriptome of the AGP-01 lineage, mainly modulating the expression of histone proteins and inflammatory cytokines, indicating a possible epigenetic and immunological effect on tumor cells, these findings highlight new mechanisms of action related to MBZ treatment. Additional studies are still needed to better clarify the epigenetic and immune mechanism of MBZ in the therapy of GC.
Collapse
Affiliation(s)
- Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Laine Celestino Pinto
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Mundurucus Street, Belém, Brazil
| | - Bruna Puty Silva Gomes
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Rommel Mario Rodríguez Burbano
- Molecular Biology Laboratory, Ophir Loyola Hospital, Av. Governador Magalhães Barata, Belém, Brazil; Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Augusto Correa Avenue, Belém, Brazil
| | - Maria Elisabete Amaral de Moraes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Pedro Filho Noronha de Souza
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil; Visiting Researcher at the Cearense Foundation to Support Scientific and Technological Development, Brazil; National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil.
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil; Red Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil.
| |
Collapse
|
2
|
Wang T, Qian L, Zhang P, Du M, Wu J, Peng F, Yao C, Yin R, Yin L, He X. GINS2 promotes the progression of human HNSCC by altering RRM2 expression. Cancer Biomark 2024; 40:171-184. [PMID: 38517779 PMCID: PMC11307040 DOI: 10.3233/cbm-230337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/13/2024] [Indexed: 03/24/2024]
Abstract
INTRODUCTION GINS2 exerts a carcinogenic effect in multiple human malignancies, while it is still unclear that the potential roles and underlying mechanisms of GINS2 in HNSCC. METHODS TCGA database was used to screen out genes with significant differences in expression in HNSCC. Immunohistochemistry and qRT-PCR were used to measure the expression of GINS2 in HNSCC tissues and cells. GINS2 was detected by qRT-PCR or western blot after knockdown or overexpression. Celigo cell counting, MTT, colony formation, and flow cytometric assay were used to check the ability of proliferation and apoptosis. Bioinformatics and microarray were used to screen out the downstream genes of GINS2. RESULTS GINS2 in HNSCC tissues and cells was up-regulated, which was correlated with poor prognosis. GINS2 gene expression was successfully inhibited and overexpressed in HNSCC cells. Knockdown of GINS2 could inhibit proliferation and increase apoptosis of cells. Meanwhile, overexpression of GINS2 could enhance cell proliferation and colony formation. Knockdown of RRM2 may inhibit HNSCC cell proliferation, while overexpression of RRM2 rescued the effect of reducing GINS2 expression. CONCLUSION Our study reported the role of GINS2 in HNSCC for the first time. The results demonstrated that in HNSCC cells, GINS2 promoted proliferation and inhibited apoptosis via altering RRM2 expression. Therefore, GINS2 might play a carcinogen in HNSCC, and become a specific promising therapeutic target.
Collapse
Affiliation(s)
- Tianxiang Wang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Luxi Qian
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Pingchuan Zhang
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Mingyu Du
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Jing Wu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Fanyu Peng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Chengyun Yao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Rong Yin
- Department of Thoracic Surgery, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Li Yin
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xia He
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Ge R, Wang C, Liu J, Jiang H, Jiang X, Liu Z. A Novel Tumor-Promoting Role for Nuclear Factor IX in Glioblastoma Is Mediated through Transcriptional Activation of GINS1. Mol Cancer Res 2023; 21:189-198. [PMID: 36469009 DOI: 10.1158/1541-7786.mcr-22-0504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/25/2022] [Accepted: 11/30/2022] [Indexed: 12/09/2022]
Abstract
Our previous study illustrated that nuclear factor IX (NFIX) promotes glioblastoma (GBM) progression by inducing migration and proliferation of GBM cells. However, the underlying mechanism of how NFIX regulates GBM cell proliferation remains obscure. In this study, we uncovered that Go-Ichi-Ni-San 1 (GINS1) is upregulated and positively correlated with NFIX in human GBM specimen. NFIX silencing downregulates the expression of GINS1, which is pivotal for cell-cycle progression and proliferation of GBM cells. Replenishment of GINS1 largely rescues the NFIX-null effect on GBM cell proliferation. Mechanistic investigation revealed that NFIX transcriptionally actives GINS1 expression by directly binding to promoter region (-1779 to -1793bp) of the GINS1 gene. Furthermore, knockdown of NFIX sensitizes GBM cells to DNA damage-inducing agents including doxorubicin and temozolomide, in a GINS1-dependent manner. IMPLICATIONS Our study highlights that targeting NFIX-GINS1 axis could be a novel and potential therapeutic approach for GBM treatment.
Collapse
Affiliation(s)
- Ruixiang Ge
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Chenci Wang
- School of Graduate Studies, Wannan Medical College, Wuhu, Anhui, China
| | - Jiangang Liu
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.,The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China
| | - Haibo Jiang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders of Wannan Medical College, Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Zhuohao Liu
- Department of Neurosurgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China.,The Third School of Clinical Medicine, Southern Medical University, Shenzhen, Guangdong, China.,Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Song H, Shen R, Mahasin H, Guo Y, Wang D. DNA replication: Mechanisms and therapeutic interventions for diseases. MedComm (Beijing) 2023; 4:e210. [PMID: 36776764 PMCID: PMC9899494 DOI: 10.1002/mco2.210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Accurate and integral cellular DNA replication is modulated by multiple replication-associated proteins, which is fundamental to preserve genome stability. Furthermore, replication proteins cooperate with multiple DNA damage factors to deal with replication stress through mechanisms beyond their role in replication. Cancer cells with chronic replication stress exhibit aberrant DNA replication and DNA damage response, providing an exploitable therapeutic target in tumors. Numerous evidence has indicated that posttranslational modifications (PTMs) of replication proteins present distinct functions in DNA replication and respond to replication stress. In addition, abundant replication proteins are involved in tumorigenesis and development, which act as diagnostic and prognostic biomarkers in some tumors, implying these proteins act as therapeutic targets in clinical. Replication-target cancer therapy emerges as the times require. In this context, we outline the current investigation of the DNA replication mechanism, and simultaneously enumerate the aberrant expression of replication proteins as hallmark for various diseases, revealing their therapeutic potential for target therapy. Meanwhile, we also discuss current observations that the novel PTM of replication proteins in response to replication stress, which seems to be a promising strategy to eliminate diseases.
Collapse
Affiliation(s)
- Hao‐Yun Song
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Rong Shen
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Hamid Mahasin
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - Ya‐Nan Guo
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| | - De‐Gui Wang
- School of Basic Medical SciencesLanzhou UniversityLanzhouGansuChina
| |
Collapse
|
5
|
Zhao X, Duan B, Zhou L. Progress of Psf1 and prospects in the tumor: A review. Medicine (Baltimore) 2022; 101:e31811. [PMID: 36482653 PMCID: PMC9726354 DOI: 10.1097/md.0000000000031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Partner of Sld5-1(Psf1) is a member of Gins complex, which was discovered in 2003. It consists of the predominantly α-helical A-domain and the massively β-stranded B-domain. Some researches indicate that Psf1 plays a prominent part in DNA replication through cell cycle regulation, and plays a key role in early embryo development and tissue regeneration. The overexpression of Psf1 in active proliferating cells is closely correlated with the occurrence of tumors. On the side, tumor cells with high Psf1 expression showed high heterogeneity and poor clinical prognosis. In this review, we will review the research progress of Psf1 in cell cycle regulation, immature cell proliferation and oncology.
Collapse
Affiliation(s)
- Xuekai Zhao
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Botao Duan
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, China
- * Correspondence: Lei Zhou, Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, Shandong 256603, China (e-mail: )
| |
Collapse
|
6
|
Hu C, Dai Y, Zhou H, Zhang J, Xie D, Xu R, Yang M, Zhang R. Identification of GINS1 as a therapeutic target in the cancer patients infected with COVID-19: a bioinformatics and system biology approach. Hereditas 2022; 159:45. [PMID: 36451247 PMCID: PMC9713126 DOI: 10.1186/s41065-022-00258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) caused a series of biological changes in cancer patients which have rendered the original treatment ineffective and increased the difficulty of clinical treatment. However, the clinical treatment for cancer patients infected with COVID-19 is currently unavailable. Since bioinformatics is an effective method to understand undiscovered biological functions, pharmacological targets, and therapeutic mechanisms. The aim of this study was to investigate the influence of COVID-19 infection in cancer patients and to search the potential treatments. METHODS Firstly, we obtained the COVID-19-associated genes from seven databases and analyzed the cancer pathogenic genes from Gene Expression Omnibus (GEO) databases, respectively. The Cancer/COVID-19-associated genes were shown by Venn analyses. Moreover, we demonstrated the signaling pathways and biological functions of pathogenic genes in Cancer/COVID-19. RESULTS We identified that Go-Ichi-Ni-San complex subunit 1 (GINS1) is the potential therapeutic target in Cancer/COVID-19 by GEPIA. The high expression of GINS1 was not only promoting the development of cancers but also affecting their prognosis. Furthermore, eight potential compounds of Cancer/COVID-19 were identified from CMap and molecular docking analysis. CONCLUSION We revealed the GINS1 is a potential therapeutic target in cancer patients infected with COVID-19 for the first time, as COVID-19 will be a severe and prolonged pandemic. However, the findings have not been verified actually cancer patients infected with COVID-19, and further studies are needed to demonstrate the functions of GINS1 and the clinical treatment of the compounds.
Collapse
Affiliation(s)
- Changpeng Hu
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Yue Dai
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Huyue Zhou
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Jing Zhang
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Dandan Xie
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Rufu Xu
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Mengmeng Yang
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| | - Rong Zhang
- grid.410570.70000 0004 1760 6682Department of Pharmacy, The Second Affiliated Hospital of Army Medical University, 83 Xinqiao Road, 400037 Chongqing, China
| |
Collapse
|
7
|
Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex. DNA Repair (Amst) 2022; 110:103272. [DOI: 10.1016/j.dnarep.2022.103272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022]
|
8
|
Ahmad M, Hameed Y, Khan M, Usman M, Rehman A, Abid U, Asif R, Ahmed H, Hussain MS, Rehman JU, Asif HM, Arshad R, Atif M, Hadi A, Sarfraz U, Khurshid U. Up-regulation of GINS1 highlighted a good diagnostic and prognostic potential of survival in three different subtypes of human cancer. BRAZ J BIOL 2021; 84:e250575. [PMID: 34852135 DOI: 10.1590/1519-6984.250575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is a fatal malignancy and its increasing worldwide prevalence demands the discovery of more sensitive and reliable molecular biomarkers. To investigate the GINS1 expression level and its prognostic value in distinct human cancers using a series of multi-layered in silico approach may help to establish it as a potential shared diagnostic and prognostic biomarker of different cancer subtypes. The GINS1 mRNA, protein expression, and promoter methylation were analyzed using UALCAN and Human Protein Atlas (HPA), while mRNA expression was further validated via GENT2. The potential prognostic values of GINS1 were evaluated through KM plotter. Then, cBioPortal was utilized to examine the GINS1-related genetic mutations and copy number variations (CNVs), while pathway enrichment analysis was performed using DAVID. Moreover, a correlational analysis between GINS1 expression and CD8+ T immune cells and a the construction of gene-drug interaction network was performed using TIMER, CDT, and Cytoscape. The GINS1 was found down-regulated in a single subtypes of human cancer while commonly up-regulated in 23 different other subtypes. The up-regulation of GINS1 was significantly correlated with the poor overall survival (OS) of Liver Hepatocellular Carcinoma (LIHC), Lung Adenocarcinoma (LUAD), and Kidney renal clear cell carcinoma (KIRC). The GINS1 was also found up-regulated in LIHC, LUAD, and KIRC patients of different clinicopathological features. Pathways enrichment analysis revealed the involvement of GINS1 in two diverse pathways, while few interesting correlations were also documented between GINS1 expression and its promoter methylation level, CD8+ T immune cells level, and CNVs. Moreover, we also predicted few drugs that could be used in the treatment of LIHC, LUAD, and KIRC by regulating the GINS1 expression. The expression profiling of GINS1 in the current study has suggested it a novel shared diagnostic and prognostic biomarker of LIHC, LUAD, and KIRC.
Collapse
Affiliation(s)
- M Ahmad
- The Islamia University of Bahawalpur, Department of Biochemistry and Biotechnology, Bahawalpur, Pakistan
| | - Y Hameed
- The Islamia University of Bahawalpur, Department of Biochemistry and Biotechnology, Bahawalpur, Pakistan
| | - M Khan
- The Islamia University of Bahawalpur, Department of Pharmacy, Bahawalpur, Pakistan
| | - M Usman
- The Islamia University of Bahawalpur, Department of Biochemistry and Biotechnology, Bahawalpur, Pakistan
| | - A Rehman
- Qarshi University, Department of Eastern Medicine, Lahore, Pakistan
| | - U Abid
- Bahauddin Zakariya University, Department of Pharmaceutics, Multan, Pakistan
| | - R Asif
- Government College University Faisalabad, Department of Microbiology, Faisalabad, Pakistan
| | - H Ahmed
- Government College University Faisalabad, Department of Eastern Medicine, Faisalabad, Pakistan
| | - M S Hussain
- The Islamia University of Bahawalpur, Department of Biochemistry and Biotechnology, Bahawalpur, Pakistan
| | - J U Rehman
- The Islamia University of Bahawalpur, College of Conventional Medicine, Faculty of Pharmacy and Alternative Medicine, Bahawalpur, Pakistan
| | - H M Asif
- The Islamia University of Bahawalpur, College of Conventional Medicine, Faculty of Pharmacy and Alternative Medicine, Bahawalpur, Pakistan
| | - R Arshad
- The Islamia University of Bahawalpur, College of Conventional Medicine, Faculty of Pharmacy and Alternative Medicine, Bahawalpur, Pakistan
| | - M Atif
- The Islamia University of Bahawalpur, College of Conventional Medicine, Faculty of Pharmacy and Alternative Medicine, Bahawalpur, Pakistan
| | - A Hadi
- The Islamia University of Bahawalpur, Department of Biochemistry and Biotechnology, Bahawalpur, Pakistan
| | - U Sarfraz
- COMSATS University Islamabad, Department of Biosciences, Islamabad, Pakistan
| | - U Khurshid
- The Islamia University of Bahawalpur, Department of Pharmacy, Bahawalpur, Pakistan
| |
Collapse
|
9
|
Li Y, Shi R, Zhu G, Chen C, Huang H, Gao M, Xu S, Cao P, Zhang Z, Wu D, Li X, Liu H, Chen J. Construction of a circular RNA-microRNA-messenger RNA regulatory network of hsa_circ_0043256 in lung cancer by integrated analysis. Thorac Cancer 2021; 13:61-75. [PMID: 34806315 PMCID: PMC8720627 DOI: 10.1111/1759-7714.14226] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer (NSCLC) are diagnosed in advanced stages and with a poor 5-year survival rate. There is a critical need to identify novel biomarkers to improve the therapy and overall prognosis of this disease. METHODS Differentially expressed genes (DEGs) were identified from three profiles of GSE101586, GSE101684 and GSE112214 using Venn diagrams. hsa_circ_0043256 were validated using quantitative real-time polymerase chain reaction (RT-qPCR). The circular RNA-microRNA-messenger RNA (circRNA-miRNA-mRNA) regulatory network was constructed with Cytoscape 3.7.0. Hub genes were identified with protein interaction (PPI) and validated with the Gene Expression Profiling Interactive Analysis (GEPIA), Human Protein Atlas (HPA) databases, and immunohistochemistry. Survival analyses were also performed using a Kaplan-Meier (KM) plotter. The effects of hsa_circ_0043256 on cell proliferation and cell cycles were evaluated by EdU staining and flow cytometry, respectively. RESULTS hsa_circ_0043256, hsa_circ_0029426 and hsa_circ_0049271 were obtained. Following RT-qPCR validation, hsa_circ_0043256 was selected for further analysis. In addition, functional experiment results indicated that hsa_circ_0043256 could inhibit cell proliferation and cell-cycle progression of NSCLC cells in vitro. Prediction by three online databases and combining with DEGs identified from The Cancer Genome Atlas (TCGA), a network containing one circRNAs, three miRNAs, and 209 mRNAs was developed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated DEGs might be associated with lung cancer onset and progression. A PPI network based on the 209 genes was established, and five hub genes (BIRC5, SHCBP1, CCNA2, SKA3, and GINS1) were determined. Following verification of five hub genes using GEPIA database, HPA database, and immunohistochemistry. High expression of all five hub genes led to poor overall survival. CONCLUSION Our study constructed a circRNA-miRNA-mRNA network of hsa_circ_0043256. hsa_circ_0043256 may be a potential therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Yongwen Li
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruifeng Shi
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Huang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Gao
- Department of Thoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Huhhot, China
| | - Songlin Xu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Peijun Cao
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihe Zhang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Di Wu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jun Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| |
Collapse
|
10
|
Li S, Wu L, Zhang H, Liu X, Wang Z, Dong B, Cao G. GINS1 Induced Sorafenib Resistance by Promoting Cancer Stem Properties in Human Hepatocellular Cancer Cells. Front Cell Dev Biol 2021; 9:711894. [PMID: 34414190 PMCID: PMC8369484 DOI: 10.3389/fcell.2021.711894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by a high rate of incidence and recurrence, and resistance to chemotherapy may aggravate the poor prognosis of HCC patients. Sorafenib resistance is a conundrum to the treatment of advanced/recurrent HCC. Therefore, studies on the molecular pathogenesis of HCC and the resistance to sorafenib are of great interest. Here, we report that GINS1 was highly expressed in HCC tumors, associated with tumor grades, and predicted poor patient survival using Gene Expression Omnibus (GEO) databases exploration. Cell cycle, cell proliferation assay and in vivo xenograft mouse model indicated that knocking down GINS1 induced in G1/S phase cell cycle arrest and decreased tumor cells proliferation in vitro and in vivo. Spheroid formation assay results showed that GINS1 promoted the stem cell activity of HCC tumor cells. Furthermore, GEO database (GSE17112) analysis showed that HRAS oncogenic gene set was enriched in GINS1 high-expressed cancer cells, and quantitative real-time PCR, and Western blot results proved that GINS1 enhanced HCC progression through regulating HRAS signaling pathway. Moreover, knocking down endogenous GINS1 with shGINS1 increased the sensitivity of HCC cells to sorafenib, and restoring HRAS or stem associated pathway partly recovered the sorafenib resistance. Overall, the collective findings highlight GINS1 functions in hepatocarcinogenesis and sorafenib resistance, and indicate its potential use of GINS1 in drug-resistant HCC.
Collapse
Affiliation(s)
- Sheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department I of Thoracic Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lina Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hong Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xijuan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Central Laboratory, Peking University Cancer Hospital and Institute, Beijing, China
| | - Guang Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Interventional Therapy, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
11
|
Li M, Shi M, Hu C, Chen B, Li S. MALAT1 modulated FOXP3 ubiquitination then affected GINS1 transcription and drived NSCLC proliferation. Oncogene 2021; 40:3870-3884. [PMID: 33972684 DOI: 10.1038/s41388-021-01816-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/01/2021] [Accepted: 04/23/2021] [Indexed: 12/22/2022]
Abstract
An increasing number of studies have shown that long-noncoding RNAs (lncRNAs) are involved in the post-translational modifications (PTMs) of protein in a variety of tumors. However, little is known about the exact regulation mechanism of lncRNAs in regulating PTMs in non-small-cell lung carcinoma (NSCLC) proliferation. Metastasis-associated lung adenocarcinoma transcript1 (MALAT1) and GINS complex subunit 1(GINS1) both were upregulated and promoted proliferation progression in NSCLC. In this study, the clinicopathologic significance of MALAT1 and GINS1 in NSCLC was investigated, a positive correlation in their expression was found. The silencing of MALAT1 decreased GINS1 expression and inhibited NSCLC proliferation in vitro and in vivo. The upregulation of GINS1 reversed NSCLC proliferation inhibited by MALAT1 knockdown. FOXP3 (forkhead box protein 3) was identified as the critical transcription factor for GINS1 transcription. In addition, MALAT1 could stabilize FOXP3 by binding to zinc finger (ZF) domain and leucine zipper (LZ) domain of FOXP3. Interestingly, these two domains were also interaction domains for FOXP3 binding with E3 ligase STUB1 (STIP1 homology and U-box containing protein 1). In this way, MALAT1 masked the protein-interacting domain, and inhibited FOXP3 ubiquitination by STUB1. Together, our results identified a novel regulatory axis of MALAT1-FOXP3-GINS1, and demonstrated that MALAT1 played an important modulatory role in PTM of FOXP3 which affects GINS1 transcription and drives proliferation character in NSCLC.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China
| | - Minke Shi
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chaoyue Hu
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Baojun Chen
- Department of Thoracic and Cardiovascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Shufeng Li
- Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Department of Biochemistry and Molecular Biology, Medical School of Southeast University, Nanjing, China.
| |
Collapse
|
12
|
Bu F, Zhu X, Zhu J, Liu Z, Wu T, Luo C, Lin K, Huang J. Bioinformatics Analysis Identifies a Novel Role of GINS1 Gene in Colorectal Cancer. Cancer Manag Res 2020; 12:11677-11687. [PMID: 33235499 PMCID: PMC7680165 DOI: 10.2147/cmar.s279165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Colorectal cancer (CRC) is one of the most lethal malignancies and the incidence of CRC has been on the rise. Herein, we aimed to identify effective biomarkers for early diagnosis and treatment of colorectal cancer via bioinformatic tools. Methods To identify differentially expressed genes (DEGs) in CRC, we downloaded CRC gene expression data from GSE24514 and GSE110223 datasets in Gene Expression Omnibus (GEO) and employed R to analyze the data. We further performed functional enrichment analysis of the DEGs on the DAVID gene ontology analysis tool. STRING database and Cytoscape visualization tool were employed to construct a PPI (protein–protein interaction) network and establish intensive intervals in the network. Immunohistochemistry, qRT-PCR and Western blotting were performed to identify the expression level of GINS1 in CRC. In vitro and in vivo experiments were performed to assess the impact of GINS1 in the pathogenesis of CRC in terms of proliferation, migration and metastasis. Results Among the two datasets, 389 DEGs were identified and used to construct a PPI network. These genes were mainly involved in cell proliferation and cell cycle. Among them, 15 genes including GINS1 were found to be strongly associated with the PPI network. We further performed immunohistochemistry, qRT-PCR and Western blotting to identify that GINS1 expression was higher in CRC than in paired normal tissues. Moreover, in vitro and in vivo experiments demonstrated GINS1 could promote the proliferation, invasion and migration of colorectal cancer cells. Conclusions GINS1 could be considered as a potential biomarker for CRC patients.
Collapse
Affiliation(s)
- Fanqin Bu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China.,Jiangxi Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Xiaojian Zhu
- Research Center of The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Jinfeng Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China.,Jiangxi Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Zitao Liu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China.,Jiangxi Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Ting Wu
- Department of Infectious Diseases of Guixi Traditional Chinese Medicine Hospital, Yingtan, People's Republic of China
| | - Chen Luo
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China.,Jiangxi Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Kang Lin
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China.,Jiangxi Medical College of Nanchang University, Nanchang, People's Republic of China
| | - Jun Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
13
|
Chen N, Zhang G, Fu J, Wu Q. Matrix metalloproteinase-14 (MMP-14) downregulation inhibits esophageal squamous cell carcinoma cell migration, invasion, and proliferation. Thorac Cancer 2020; 11:3168-3174. [PMID: 32930509 PMCID: PMC7606025 DOI: 10.1111/1759-7714.13636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 12/17/2022] Open
Abstract
Background Matrix metalloproteinase‐14 (MMP‐14) is known to be a key regulator of oncogenesis and tumor progression. The present study was designed to assess the relationship between the downregulation of MMP‐14 and the in vitro proliferative, migratory, and invasive activity of esophageal squamous cell carcinoma (ESCC) cells. Methods MMP‐14 expression in human ESCC and paracancerous normal esophageal tissue samples was evaluated via immunohistochemistry, and correlations between MMP‐14 staining and patient clinicopathological features were examined. In addition, siRNA was used to knockdown MMP‐14 in ESCC cells, and the proliferation and invasive activity of these cells were then evaluated via MTT and Transwell assays, respectively. Flow cytometry was additionally used to assess cell cycle progression, while Western blotting was employed to measure protein levels within these cells. Results ESCC samples were found to exhibit MMP‐14 overexpression relative to paracancerous tissue samples, and this overexpression was positively correlated with tumor T classification (T1‐2 vs. T3; P < 0.05), N classification (negative vs. positive; P < 0.001), degree of differentiation (G1 vs. G3, P < 0.05; G2 vs. G3, P < 0.05) and clinical stage (I–IIA vs. IIB–III; P < 0.05). When MMP‐14 was knocked down in ESCC cells, this induced cell cycle arrest, impairing their proliferative and invasive activity. Conclusions MMP‐14 is a key regulator of the proliferation and invasion of ESCC cells, making it a viable therapeutic target for the treatment of this cancer.
Collapse
Affiliation(s)
- Nanzheng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junke Fu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qifei Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Yu S, Zhu L, Xie P, Jiang S, Wang K, Liu Y, He J, Ren Y. Mining the prognostic significance of the GINS2 gene in human breast cancer using bioinformatics analysis. Oncol Lett 2020; 20:1300-1310. [PMID: 32724372 PMCID: PMC7377083 DOI: 10.3892/ol.2020.11651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/26/2019] [Indexed: 12/24/2022] Open
Abstract
A number of studies have demonstrated the crucial functions of GINS2 within the GINS complex in various types of cancer. However, the molecular mechanisms and prognostic value of GINS2 in breast cancer remain unknown. The present study used; BC-GenExMiner, COSMIC, UCSC Xena, The Human Protein Atlas, GEPIA, cBioPortal, GeneMANIA, TIMER and Oncomine, in order to investigate gene expression, co-expression, clinical parameters and mutations in GINS2 in patients with breast cancer. Furthermore, the present study assessed the prognostic value of GINS2 in patients with breast cancer via the Kaplan-Meier plotter database. The results of the present study demonstrated that the mRNA levels of GINS2 were significantly higher in breast cancer tissue compared with normal tissue. In addition, high mRNA expression levels of GINS2 were associated with high Scarff-Bloom-Richardson status grades, a basal-like status and age (≤51 years); however, it was not associated with lymph node metastasis. The survival analysis revealed that increased GINS2 mRNA levels were associated with a worse prognosis for relapse-free survival in all patients with breast cancer, particularly in those with estrogen receptor-positive and progesterone receptor-positive subtypes. In addition, a positive association between the GINS2, CENPM and MCM4 genes was confirmed. The results of the present study suggest that GINS2 could be used as a potential prognostic biomarker for breast cancer. Nevertheless, further studies are necessary to confirm the effects of GINS2 on the pathogenesis and development of patients with breast cancer.
Collapse
Affiliation(s)
- Shibo Yu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lizhe Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Peiling Xie
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Siyuan Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ke Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Liu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yu Ren
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
15
|
Varga M, Csályi K, Bertyák I, Menyhárd DK, Poole RJ, Cerveny KL, Kövesdi D, Barátki B, Rouse H, Vad Z, Hawkins TA, Stickney HL, Cavodeassi F, Schwarz Q, Young RM, Wilson SW. Tissue-Specific Requirement for the GINS Complex During Zebrafish Development. Front Cell Dev Biol 2020; 8:373. [PMID: 32548116 PMCID: PMC7270345 DOI: 10.3389/fcell.2020.00373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Efficient and accurate DNA replication is particularly critical in stem and progenitor cells for successful proliferation and survival. The replisome, an amalgam of protein complexes, is responsible for binding potential origins of replication, unwinding the double helix, and then synthesizing complimentary strands of DNA. According to current models, the initial steps of DNA unwinding and opening are facilitated by the CMG complex, which is composed of a GINS heterotetramer that connects Cdc45 with the mini-chromosome maintenance (Mcm) helicase. In this work, we provide evidence that in the absence of GINS function DNA replication is cell autonomously impaired, and we also show that gins1 and gins2 mutants exhibit elevated levels of apoptosis restricted to actively proliferating regions of the central nervous system (CNS). Intriguingly, our results also suggest that the rapid cell cycles during early embryonic development in zebrafish may not require the function of the canonical GINS complex as neither zygotic Gins1 nor Gins2 isoforms seem to be present during these stages.
Collapse
Affiliation(s)
- Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Kitti Csályi
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - István Bertyák
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dóra K Menyhárd
- HAS-ELTE Protein Modeling Research Group and Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Richard J Poole
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Kara L Cerveny
- Biology Department, Reed College, Portland, OR, United States
| | - Dorottya Kövesdi
- Office of Supported Research Groups of the Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs Barátki
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hannah Rouse
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Zsuzsa Vad
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Thomas A Hawkins
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Heather L Stickney
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Florencia Cavodeassi
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom.,Institute of Medical and Biomedical Education, St. George's University of London, London, United Kingdom
| | - Quenten Schwarz
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| | - Rodrigo M Young
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| | - Stephen W Wilson
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
16
|
Hsieh HY, Jia W, Jin ZC, Kidoya H, Takakura N. High expression of PSF1 promotes drug resistance and cell cycle transit in leukemia cells. Cancer Sci 2020; 111:2400-2412. [PMID: 32391593 PMCID: PMC7385346 DOI: 10.1111/cas.14452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 01/10/2023] Open
Abstract
Escape of cancer cells from chemotherapy is a problem in the management of cancer patients. Research on chemotherapy resistance has mainly focused on the heterogeneity of cancer cells, multiple gene mutations, and quiescence of malignant cancer cells. However, some studies have indicated that interactions between cancer cells and vascular cells promote resistance to chemotherapy. Here, we established mouse leukemia models using the cell lines THP‐1 or MEG‐1. These were derived from acute and chronic myeloid leukemias, respectively, and highly expressed DNA replication factor PSF1, a member of the GINS complex. We found that, after anti‐cancer drug administration, surviving GFP‐positive leukemia cells in the bone marrow were located adjacent to blood vessels, as previously reported in a subcutaneous solid tumor transplantation model. Treating THP‐1 and MEG‐1 cells with anti‐cancer drugs in vitro revealed that those most strongly expressing PSF1 were most chemoresistant, suggesting that PSF1 induces not only cell cycle progression but also facilitates cell survival. Indeed, when PSF1 expression was suppressed by shRNA, the growth rate was reduced and cell death was enhanced in both cell lines. Furthermore, PSF1 knockdown in leukemia cells led to a change in their location at a distance from the blood vessels in a bone marrow transplantation model. These findings potentially reflect a mechanism of escape of leukemic cells from chemotherapy and suggest that PSF1 may be a possible therapeutic target to enhance the effect of chemotherapy.
Collapse
Affiliation(s)
- Han-Yun Hsieh
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Ze-Cheng Jin
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Disease, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
17
|
Xing Z, Luo Z, Yang H, Huang Z, Liang X. Screening and identification of key biomarkers in adrenocortical carcinoma based on bioinformatics analysis. Oncol Lett 2019; 18:4667-4676. [PMID: 31611976 PMCID: PMC6781718 DOI: 10.3892/ol.2019.10817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 08/08/2019] [Indexed: 12/11/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. The presently available understanding of the pathogenesis of ACC is incomplete and the treatment options for patients with ACC are limited. Gene marker identification is required for accurate and timely diagnosis of the disease. In order to identify novel candidate genes associated with the occurrence and progression of ACC, the microarray datasets, GSE12368 and GSE19750, were obtained from Gene Expression Omnibus. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. A protein-protein interaction network (PPI) was constructed to identify significantly altered modules, and module analysis was performed using Search Tool for the Retrieval of Interacting Genes and Cytoscape. A total of 228 DEGs were screened, consisting of 29 up and 199 downregulated genes. The enriched functions and pathways of the DEGs primarily included 'cell division', 'regulation of transcription involved in G1/S transition of mitotic cell cycle', 'G1/S transition of mitotic cell cycle', 'p53 signaling pathway' and 'oocyte meiosis'. A total of 14 hub genes were identified, and biological process analysis revealed that these genes were significantly enriched in cell division and mitotic cell cycle. Furthermore, survival analysis revealed that AURKA, TYMS, GINS1, RACGAP1, RRM2, EZH2, ZWINT, CDK1, CCNB1, NCAPG and TPX2 may be involved in the tumorigenesis, progression or prognosis of ACC. In conclusion, the 14 hub genes identified in the present study may aid researchers in elucidating the molecular mechanisms associated with the tumorigenesis and progression of ACC, and may be powerful and promising candidate biomarkers for the diagnosis and treatment of ACC.
Collapse
Affiliation(s)
- Zengmiao Xing
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Haiyan Yang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhenxing Huang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xinghuan Liang
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
18
|
Abramov IS, Emelyanova MA, Ryabaya OO, Krasnov GS, Zasedatelev AS, Nasedkina TV. Somatic Mutations Associated with Metastasis in Acral Melanoma. Mol Biol 2019; 53:580-585. [DOI: 10.1134/s0026893319040022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 08/19/2024]
|
19
|
Tang L, Yu W, Wang Y, Li H, Shen Z. Anlotinib inhibits synovial sarcoma by targeting GINS1: a novel downstream target oncogene in progression of synovial sarcoma. Clin Transl Oncol 2019; 21:1624-1633. [DOI: 10.1007/s12094-019-02090-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022]
|
20
|
Kimura T, Cui D, Kawano H, Yoshitomi-Sakamoto C, Takakura N, Ikeda E. Induced expression of GINS complex is an essential step for reactivation of quiescent stem-like tumor cells within the peri-necrotic niche in human glioblastoma. J Cancer Res Clin Oncol 2019; 145:363-371. [PMID: 30465075 PMCID: PMC6373247 DOI: 10.1007/s00432-018-2797-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE Glioblastoma is still intractable despite the progress in therapies, and the intractability is attributable to a minor population of stem-like tumor cells. As a niche harboring quiescent stem-like tumor cells with potentially high tumorigenicity, we have specified an area around large ischemic necrosis, termed 'peri-necrotic niche', in glioblastoma. In this study, the behavior of tumor cells inside and outside the peri-necrotic niche was analyzed to find out molecules responsible for reactivation of quiescent stem-like tumor cells to proliferate outside the niche. METHODS Expression of Ki-67 and GINS complex composed of SLD5, PSF1, PSF2 and PSF3 was analyzed by immunohistochemistry in human glioblastoma tissue samples. Proliferation assays, immunoblotting and siRNA experiments were performed using a glioblastoma cell line. RESULTS Immunohistochemical analysis revealed quiescent and proliferative phenotypes of tumor cells inside and outside the niche, respectively, and the proliferation was spatially correlated with the expression of GINS components in tumor cells. To mimic the tissue microenvironment inside versus outside the niche, glioblastoma cells were cultured under hypoxic versus normoxic conditions, or without versus with serum. Quiescence and proliferation of tumor cells were reversibly determined by the microenvironment inside and outside the niche, respectively, and proliferative activities paralleled the expression levels of GINS components. Furthermore, the reactivation of proliferation after reoxygenation or serum replenishment was suppressed in quiescent tumor cells with PSF1 knockdown. CONCLUSIONS These findings indicate the essential role of GINS complex in the switch between quiescence and proliferation of tumor cells inside and outside the peri-necrotic niche.
Collapse
Affiliation(s)
- Tokuhiro Kimura
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Dan Cui
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Hiroo Kawano
- Department of Basic Laboratory Sciences, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Chihiro Yoshitomi-Sakamoto
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Ikeda
- Department of Pathology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| |
Collapse
|
21
|
Up-regulated and interrelated expressions of GINS subunits predict poor prognosis in hepatocellular carcinoma. Biosci Rep 2018; 38:BSR20181178. [PMID: 30413605 PMCID: PMC6435550 DOI: 10.1042/bsr20181178] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
The GINS complex is one of the core components of the eukaryotic replicative helicase CMG (Cdc45–MCM helicase–GINS) complex that serves as the replicative helicase unwinding duplex DNA ahead of moving replication fork during chromosome duplication. Many studies have highlighted the important functions amongst GINS subunits in various cancers. Nevertheless, the functions and prognostic roles of distinct GINS subunits in hepatocellular carcinoma (HCC) were largely unexplored. In the present study, we reported the prognostic values of GINS subunits in HCC patients through analysis of several databases, including Oncomine, (TCGA), and Kaplan–Meier Plotter (KMPlotter). We found that mRNA expressions of all GINS subunits were significantly up-regulated in HCC tumor than in non-tumor liver tissues. Survival analysis revealed that elevated expression of individual GINS subunit predicts a poor overall survival (OS) in all HCC patients. When sorting the patients by gender, the correlation between elevated expression of individual GINS subunit and poor OS remains significant in male patient subgroup, but not in female patient subgroup. Additionally, we found that co-overexpression of all GINS subunits was significantly associated with a higher hazard ratio, suggesting the GINS complex may co-operate to promote HCC progression. Indeed, their expressions were highly correlated with each other in the same cohort and TRANSFAC analysis revealed that four transcription factors including C/EBPα, Oct-1, Sp1, and USF may serve as common transcription factors binding to the promoters of all four GINS subunits. Therefore, we propose that individual GINS subunit or GINS complex as a whole could be potential prognostic biomarkers for HCC.
Collapse
|
22
|
Park JK, Otsuka N, Tomaru U, Suzuki H, Azuma M, Okamoto K, Yamashiro K, Kasahara M. Clinicopathological significance of PSF3 expression in uterine endometrial carcinomas. Hum Pathol 2018; 80:104-112. [PMID: 29936059 DOI: 10.1016/j.humpath.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/30/2018] [Accepted: 06/09/2018] [Indexed: 01/03/2023]
Abstract
PSF3 (Partner of SLD Five 3) is a member of the heterotetrameric complex termed GINS. Previous studies have shown that PSF3 is up-regulated in several cancers and is associated with tumor malignancy. However, the clinicopathological significance of PSF3 expression in endometrial lesions is still poorly understood. To investigate whether PSF3 could serve as a useful biomarker for endometrial carcinomas, we performed immunohistochemical analysis of PSF3 expression. In 155 cases of endometrial carcinomas (ECs), the mean tumor proportion score of PSF3 expression was 30.7% in G1 endometrioid carcinoma, 55.0% in G2 endometrioid carcinoma, 59.0% in G3 endometrioid carcinoma, and 58.9% in nonendometrioid carcinomas. In 25 cases of atypical hyperplasia, the mean tumor proportion score of PSF3 expression was significantly lower (10.4%). High expression of PSF3 was associated with more advanced pathologic T stage (P = .000), lymphatic invasion (P = .001), and poor clinical outcomes such as shorter relapse-free survival (P = .000) and overall survival (P = .001). When we compared the immunostaining of PSF3 and Ki-67, the proportions of PSF3-positive cells in tumor epithelial cells were comparable to those of Ki-67-positive cells. However, PSF3-positive cells were selectively found in tumor cells, whereas Ki-67-positive cells were also found in tumor stromal cells. These results demonstrated that PSF3 immunostaining was valuable as a histopathologic marker for differential diagnosis between atypical hyperplasia and ECs, for tumor histologic grading, and for determining a patient's prognosis. PSF3 may play a crucial role in tumor progression in EC.
Collapse
Affiliation(s)
- Jong Kun Park
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan; Department of Surgical Pathology, National Hospital Organization, Hokkaido Cancer Center, Sapporo 003-0804, Japan
| | - Noriyuki Otsuka
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan.
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hiroaki Suzuki
- Department of Surgical Pathology, National Hospital Organization, Hokkaido Cancer Center, Sapporo 003-0804, Japan
| | - Manabu Azuma
- Department of Surgical Pathology, National Hospital Organization, Hokkaido Cancer Center, Sapporo 003-0804, Japan
| | - Kazuhira Okamoto
- Gynecologic Oncology, National Hospital Organization, Hokkaido Cancer Center, Sapporo 003-0804, Japan
| | - Katsushige Yamashiro
- Department of Surgical Pathology, National Hospital Organization, Hokkaido Cancer Center, Sapporo 003-0804, Japan
| | - Masanori Kasahara
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| |
Collapse
|
23
|
Sun B, Lin G, Ji D, Li S, Chi G, Jin X. Dysfunction of Sister Chromatids Separation Promotes Progression of Hepatocellular Carcinoma According to Analysis of Gene Expression Profiling. Front Physiol 2018; 9:1019. [PMID: 30100882 PMCID: PMC6072861 DOI: 10.3389/fphys.2018.01019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Despite studying the various molecular mechanisms of hepatocellular carcinoma (HCC), effective drugs and biomarkers in HCC therapy are still scarce. The present study was designed to investigate dysregulated pathways, novel biomarkers and therapeutic targets for HCC. The gene expression dataset of GSE14520, which included 362 tumor and their paired non-tumor tissues of HCC, was extracted for processing by the Robust multi-array average (RMA) algorithm in the R environment. SAM methods were leveraged to identify differentially expressed genes (DEGs). Functional analysis of DEGs was performed using DAVID. The GeneMania and Cytohubba were used to construct the PPI network. To avoid individual bias, GSEA and survival analysis were employed to verify the results. The results of these analyses indicated that separation of sister chromatids was the most aberrant phase in the progression of HCC, and the most frequently involved genes, EZH2, GINS1, TPX2, CENPF, and BUB1B, require further study to be used as drug targets or biomarkers in diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Baozhen Sun
- Department of Hepatopancreatobiliary, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guibo Lin
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Degang Ji
- Department of Hepatopancreatobiliary, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shuo Li
- Department of Hepatopancreatobiliary, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Guonan Chi
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xingyi Jin
- First Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
24
|
Seo YS, Kang YH. The Human Replicative Helicase, the CMG Complex, as a Target for Anti-cancer Therapy. Front Mol Biosci 2018; 5:26. [PMID: 29651420 PMCID: PMC5885281 DOI: 10.3389/fmolb.2018.00026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022] Open
Abstract
DNA helicases unwind or rearrange duplex DNA during replication, recombination and repair. Helicases of many pathogenic organisms such as viruses, bacteria, and protozoa have been studied as potential therapeutic targets to treat infectious diseases, and human DNA helicases as potential targets for anti-cancer therapy. DNA replication machineries perform essential tasks duplicating genome in every cell cycle, and one of the important functions of these machineries are played by DNA helicases. Replicative helicases are usually multi-subunit protein complexes, and the minimal complex active as eukaryotic replicative helicase is composed of 11 subunits, requiring a functional assembly of two subcomplexes and one protein. The hetero-hexameric MCM2-7 helicase is activated by forming a complex with Cdc45 and the hetero-tetrameric GINS complex; the Cdc45-Mcm2-7-GINS (CMG) complex. The CMG complex can be a potential target for a treatment of cancer and the feasibility of this replicative helicase as a therapeutic target has been tested recently. Several different strategies have been implemented and are under active investigations to interfere with helicase activity of the CMG complex. This review focuses on the molecular function of the CMG helicase during DNA replication and its relevance to cancers based on data published in the literature. In addition, current efforts made to identify small molecules inhibiting the CMG helicase to develop anti-cancer therapeutic strategies were summarized, with new perspectives to advance the discovery of the CMG-targeting drugs.
Collapse
Affiliation(s)
- Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Young-Hoon Kang
- Core Protein Resources Center, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| |
Collapse
|
25
|
Yin L, Cai Z, Zhu B, Xu C. Identification of Key Pathways and Genes in the Dynamic Progression of HCC Based on WGCNA. Genes (Basel) 2018; 9:genes9020092. [PMID: 29443924 PMCID: PMC5852588 DOI: 10.3390/genes9020092] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/04/2018] [Accepted: 02/08/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a devastating disease worldwide. Though many efforts have been made to elucidate the process of HCC, its molecular mechanisms of development remain elusive due to its complexity. To explore the stepwise carcinogenic process from pre-neoplastic lesions to the end stage of HCC, we employed weighted gene co-expression network analysis (WGCNA) which has been proved to be an effective method in many diseases to detect co-expressed modules and hub genes using eight pathological stages including normal, cirrhosis without HCC, cirrhosis, low-grade dysplastic, high-grade dysplastic, very early and early, advanced HCC and very advanced HCC. Among the eight consecutive pathological stages, five representative modules are selected to perform canonical pathway enrichment and upstream regulator analysis by using ingenuity pathway analysis (IPA) software. We found that cell cycle related biological processes were activated at four neoplastic stages, and the degree of activation of the cell cycle corresponded to the deterioration degree of HCC. The orange and yellow modules enriched in energy metabolism, especially oxidative metabolism, and the expression value of the genes decreased only at four neoplastic stages. The brown module, enriched in protein ubiquitination and ephrin receptor signaling pathways, correlated mainly with the very early stage of HCC. The darkred module, enriched in hepatic fibrosis/hepatic stellate cell activation, correlated with the cirrhotic stage only. The high degree hub genes were identified based on the protein-protein interaction (PPI) network and were verified by Kaplan-Meier survival analysis. The novel five high degree hub genes signature that was identified in our study may shed light on future prognostic and therapeutic approaches. Our study brings a new perspective to the understanding of the key pathways and genes in the dynamic changes of HCC progression. These findings shed light on further investigations.
Collapse
Affiliation(s)
- Li Yin
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, Henan, China.
- Luohe Medical College, Luohe 462002, Henan, China.
| | - Zhihui Cai
- Luohe Medical College, Luohe 462002, Henan, China.
| | - Baoan Zhu
- Luohe Medical College, Luohe 462002, Henan, China.
| | - Cunshuan Xu
- College of Life Science, Henan Normal University, Xinxiang 453007, Henan, China.
- State Key Laboratory Cultivation Base for Cell Differentiation Regulation and Henan Engineering Laboratory for Bioengineering and Drug Development, Henan Normal University, Xinxiang 453007, Henan, China.
| |
Collapse
|
26
|
Knockdown of eukaryotic translation initiation factor 3 subunit D (eIF3D) inhibits proliferation of acute myeloid leukemia cells. Mol Cell Biochem 2017; 438:191-198. [PMID: 28801778 DOI: 10.1007/s11010-017-3127-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
Various eukaryotic translation initiation factors (eIFs) have been implicated in carcinoma development. Eukaryotic translation initiation factor 3 subunit D (eIF3D) has recently been shown to regulate the growth of several types of human cancer cells. However, the function of eIF3D in acute myeloid leukemia (AML) remains unclear. In this study, we investigated the expression of eIF3D in three AML cell lines and a lymphoblast cell line, and found that eIF3D was expressed in all four leukemia cell lines. To explore the role of eIF3D in AML cell proliferation, lentivirus-mediated RNA interference was applied to knock down the expression of eIF3D in U937 cells. The expression of eIF3D was significantly downregulated in U937 cells after eIF3D knockdown, as confirmed by quantitative real-time PCR (qRT-PCR) and Western blot analysis. Knockdown of eIF3D significantly inhibited proliferation of U937 cells. Furthermore, flow cytometry analysis revealed that eIF3D silencing induced cell cycle arrest at the G2/M phase, ultimately leading to apoptosis. Our results indicate that eIF3D plays a key role in the proliferation of AML cells, and suggest that eIF3D silencing might be a potential therapeutic strategy for leukemia.
Collapse
|
27
|
Ubiquitin-specific protease 39 is overexpressed in human lung cancer and promotes tumor cell proliferation in vitro. Mol Cell Biochem 2016; 422:97-107. [DOI: 10.1007/s11010-016-2809-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/29/2016] [Indexed: 10/21/2022]
|
28
|
Yamane K, Naito H, Wakabayashi T, Yoshida H, Muramatsu F, Iba T, Kidoya H, Takakura N. Regulation of SLD5 gene expression by miR-370 during acute growth of cancer cells. Sci Rep 2016; 6:30941. [PMID: 27499248 PMCID: PMC4976388 DOI: 10.1038/srep30941] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 01/26/2023] Open
Abstract
SLD5 is a member of the GINS complex, essential for DNA replication in eukaryotes. It has been reported that SLD5 is involved in early embryogenesis in the mouse, and cell cycle progression and genome integrity in Drosophila. SLD5 may be involved in malignant tumor progression, but its relevance in human cancer has not been determined. Here, we found strong SLD5 expression in both human bladder cancer tissues from patients and cell lines. Knockdown of SLD5 using small interfering RNA resulted in reduction of cell growth both in vitro and an in vivo xenograft model. Moreover, we found that high levels of SLD5 in bladder cancer cells result from downregulation of microRNA (miR)-370 that otherwise suppresses its expression. High level expression of DNA-methyltransferase (DNMT) 1 and IL-6 were also observed in bladder cancer cells. Knockdown of IL-6 led to downregulation of DNMT1 and SLD5 expression, suggesting that IL-6-induced overexpression of DNMT1 suppresses miR-370, resulting in high SLD5 expression. Our findings could contribute to understanding tumorigenic processes and progression of human bladder cancer, whereby inhibition of SLD5 could represent a novel strategy to prevent tumor growth.
Collapse
Affiliation(s)
- Keitaro Yamane
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hisamichi Naito
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Taku Wakabayashi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hironori Yoshida
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Tomohiro Iba
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|