1
|
Jamil M, Mohammadi-Bardbori A, Safa O, Nikpoor AR, Bakhtari A, Mokhtarinejad M, Zadeh SN, Shadboorestan A, Omidi M. Arsenic trioxide-induced cytotoxicity in A549 cells: The role of necroptosis. Drug Res (Stuttg) 2023; 73:417-425. [PMID: 37230480 DOI: 10.1055/a-2076-3246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Lung cancer is one of the deadliest cancers globally. Arsenic trioxide (ATO) is still present as a highly effective drug in treating acute promyelocytic leukemia (APL). Chemotherapy resistance is one of the major problems in cancer therapy. Necroptosis, can overcomes resistance to apoptosis, and can promote cancer treatment. This study examines the necroptosis pathway in A549 cancer cells exposed to ATO. METHODS We used the MTT test to determine the ATO effects on the viability of A549 cells at three different time intervals. Also, the reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were performed in three-time intervals. The effect of ATO on apoptosis was evaluated by Annexin V / PI staining and, the RIPK1 and MLKL gene expression were measured by Real-Time PCR. RESULTS The ATO has dose and time-dependent cytotoxic effects, so at 24, 48, and 72 h, the IC50 doses were 33.81 '11.44 '2.535 µM respectively. A 50 μM ATO is the most appropriate to increase the MMP loss significantly at all three times. At 24 and 48 h after exposure of cells to ATO, the ROS levels increased. The RIPK1 gene expression increased significantly compared to the control group at concentrations of 50 and 100 μM; however, MLKL gene expression decreased. CONCLUSIONS The A549 cells, after 48 h exposure to ATO at 50 and 100 μM, induces apoptosis and necroptosis. Due to the reduced expression of MLKL, it can be concluded that ATO is probably effective in the metastatic stage of cancer cells.
Collapse
Affiliation(s)
- Maryam Jamil
- Department of Pharmacology & Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student research committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Safa
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Reza Nikpoor
- Depertment of Medical Immunology, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnoosh Mokhtarinejad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Saghar Naybandi Zadeh
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Omidi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
2
|
Managing GSH elevation and hypoxia to overcome resistance of cancer therapies using functionalized nanocarriers. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Zhang F, Shao C, Chen Z, Li Y, Jing X, Huang Q. Low Dose of Trichostatin A Improves Radiation Resistance by Activating Akt/Nrf2-Dependent Antioxidation Pathway in Cancer Cells. Radiat Res 2021; 195:366-377. [PMID: 33513620 DOI: 10.1667/rade-20-00145.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/05/2020] [Indexed: 11/03/2022]
Abstract
Numerous studies have shown that histone deacetylase inhibitors (HDACis) improve cellular acetylation while also enhancing the radiation sensitivity. In this work, however, we confirmed that low-dose trichostatin A (TSA) as a typical HDACi could reduce rather than increase the radiosensitivity of cancer cells, while the cellular acetylation was also increased with TSA-induced epigenetic modification. The surviving fraction of HeLa/HepG2 cells pretreated with 25 nM TSA for 24 h was higher at 1 Gy/2 Gy of γ-ray radiation than that of the cells with the same radiation dose but without TSA pretreatment. To understand the underlying mechanism, we investigated the effect of low-dose TSA on HO-1, SOD and CAT induction and activating Akt together with its downstream Nrf2 signaling pathway. Our results indicated that TSA activated HO-1, SOD and CAT expression by increasing the phosphorylation level of Nrf2 in an Akt-dependent manner. In addition, we also observed that the 25-nM-TSA-pretreated group showed a significant increase in the antioxidant capacity in terms of SOD and CAT activities. Therefore, our results suggest that low-dose TSA can activate the Akt/Nrf2 pathway and upregulate expression of HO-1, SOD and CAT to stimulate the cellular defense mechanism. This work demonstrates that low-dose TSA treatment may activate the adaptation mechanism against the oxidative stress induced by ionizing radiation, and application of HDACi treatment should be undertaken with caution to avoid its possible radioresistance in radiotherapy.
Collapse
Affiliation(s)
- Fengqiu Zhang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,Henan Key Laboratory of Ion-beam Bioengineering, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Changsheng Shao
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Zhu Chen
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| | - Yalin Li
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Xumiao Jing
- Henan Key Laboratory of Ion-beam Bioengineering, School of Physics, Zhengzhou University, Zhengzhou, 450052, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Institute of Intelligent Machines, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.,Science Island Branch of Graduate School, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
5
|
Brancaccio M, Mennitti C, Cesaro A, Fimiani F, Moscarella E, Caiazza M, Gragnano F, Ranieri A, D’Alicandro G, Tinto N, Mazzaccara C, Lombardo B, Pero R, Limongelli G, Frisso G, Calabrò P, Scudiero O. Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E9424. [PMID: 33339141 PMCID: PMC7765667 DOI: 10.3390/ijerph17249424] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
Moderate exercise combined with proper nutrition are considered protective factors against cardiovascular disease and musculoskeletal disorders. However, physical activity is known not only to have positive effects. In fact, the achievement of a good performance requires a very high oxygen consumption, which leads to the formation of oxygen free radicals, responsible for premature cell aging and diseases such as heart failure and muscle injury. In this scenario, a primary role is played by antioxidants, in particular by natural antioxidants that can be taken through the diet. Natural antioxidants are molecules capable of counteracting oxygen free radicals without causing cellular cytotoxicity. In recent years, therefore, research has conducted numerous studies on the identification of natural micronutrients, in order to prevent or mitigate oxidative stress induced by physical activity by helping to support conventional drug therapies against heart failure and muscle damage. The aim of this review is to have an overview of how controlled physical activity and a diet rich in antioxidants can represent a "natural cure" to prevent imbalances caused by free oxygen radicals in diseases such as heart failure and muscle damage. In particular, we will focus on sulfur-containing compounds that have the ability to protect the body from oxidative stress. We will mainly focus on six natural antioxidants: glutathione, taurine, lipoic acid, sulforaphane, garlic and methylsulfonylmethane.
Collapse
Affiliation(s)
- Mariarita Brancaccio
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy;
| | - Cristina Mennitti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Fabio Fimiani
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Elisabetta Moscarella
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Felice Gragnano
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | | | - Giovanni D’Alicandro
- Department of Neuroscience and Rehabilitation, Center of Sports Medicine and Disability, AORN, Santobono-Pausillipon, 80122 Naples, Italy;
| | - Nadia Tinto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Cristina Mazzaccara
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
| | - Barbara Lombardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Raffaela Pero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| | - Giuseppe Limongelli
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Inherited and Rare Cardiovascular Diseases, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81100 Naples, Italy; (F.F.); (M.C.)
| | - Giulia Frisso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy; (A.C.); (E.M.); (F.G.); (G.L.)
- Division of Clinical Cardiology, A.O.R.N. “Sant’Anna e San Sebastiano”, 81100 Caserta, Italy
| | - Olga Scudiero
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (C.M.); (N.T.); (C.M.); (B.L.); (R.P.)
- Ceinge Biotecnologie Avanzate S. C. a R. L., 80131 Naples, Italy;
- Task Force on Microbiome Studies, University of Naples Federico II, 80100 Naples, Italy
| |
Collapse
|
6
|
Chihara Y, Iizumi Y, Horinaka M, Watanabe M, Goi W, Morita M, Nishimoto E, Sowa Y, Yamada T, Takayama K, Sakai T. Histone deacetylase inhibitor OBP‑801 and amrubicin synergistically inhibit the growth of squamous cell lung carcinoma by inducing mitochondrial ASK1‑dependent apoptosis. Int J Oncol 2020; 56:848-856. [PMID: 32124968 DOI: 10.3892/ijo.2020.4969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/03/2019] [Indexed: 12/24/2022] Open
Abstract
Squamous cell lung carcinoma (SQCLC) is an aggressive type of lung cancer. In contrast with the marked advances that have been achieved in the treatment of lung adenocarcinoma, there are currently no effective targeted therapies for SQCLC, for with cytotoxic drugs are still the main treatment strategy. Therefore, the present study aimed to develop novel combination therapies for SQCLC. The results demonstrated that a combined treatment with the potent histone deacetylase (HDAC) inhibitor OBP‑801 and the third‑generation anthracycline amrubicin synergistically inhibited the viability of SQCLC cell lines by inducing apoptosis signal‑regulating kinase 1 (ASK1)‑dependent, as well as JNK‑ and p38 mitogen‑activated protein kinase (MAPK)‑independent apoptosis. OBP‑801 treatment strongly induced the protein expression levels of thioredoxin‑interacting protein (TXNIP), and amrubicin treatment increased the levels of intracellular reactive oxygen species (ROS), which suggested that this combination oxidized and dissociated thioredoxin 2 (Trx2) from mitochondrial ASK1 and activated ASK1. Moreover, mouse xenograft experiments using human H520 SQCLC cells revealed that the co‑treatment potently suppressed tumor growth in vivo. These results suggested that a combined treatment with OBP‑801 and amrubicin may have potential as a therapeutic strategy for SQCLC.
Collapse
Affiliation(s)
- Yusuke Chihara
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yosuke Iizumi
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Mano Horinaka
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Motoki Watanabe
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Wakana Goi
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Mie Morita
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Emi Nishimoto
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Yoshihiro Sowa
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Tadaaki Yamada
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Koichi Takayama
- Department of Pulmonary Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| | - Toshiyuki Sakai
- Department of Molecular‑Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602‑8566, Japan
| |
Collapse
|
7
|
Time course study of oxidative stress in sulfur mustard analog 2‑chloroethyl ethyl sulfide-induced toxicity. Int Immunopharmacol 2019; 73:81-93. [DOI: 10.1016/j.intimp.2019.04.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/19/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
|
8
|
Park WH. Upregulated thioredoxin and its reductase prevent H 2O 2-induced growth inhibition and death in human pulmonary artery smooth muscle cells. Toxicol In Vitro 2019; 61:104590. [PMID: 31279089 DOI: 10.1016/j.tiv.2019.104590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023]
Abstract
The thioredoxin (Trx) system controls cellular redox in vascular smooth muscle cells. The present study investigated the roles of Trx1 and Trx reductase1 (TrxR1) proteins in regulation of cell growth, death, reactive oxygen species (ROS) and glutathione (GSH) levels in hydrogen peroxide (H2O2)-treated human pulmonary artery smooth muscle (HPASM) cells. H2O2 induced growth inhibition and cell death in HPASM cells over 24 h. Overexpression of Trx1 and TrxR1 using adenoviruses significantly weakened cell growth inhibition and cell death caused by H2O2. Increases in ROS levels including mitochondrial superoxide anion (O2•-) were observed as early as 5-30 min after H2O2 addition. Administration of adTrxR1 attenuated H2O2-induced increases in ROS levels at 30-180 min. adTrx1 and adTrxR1 significantly reduced the increases in O2•- level in H2O2-treated HPASM cells at 24 h. Furthermore, HPASM cells transfected with Trx1 or TrxR1 siRNA showed increases in ROS levels with or without H2O2 at 5 min. While H2O2 transiently decreased GSH level at 5 min, Trx1 and TrxR1 siRNA intensified the decrease in GSH level. In conclusion, upregulation of Trx1 and TrxR1 significantly attenuated cell growth inhibition and death in H2O2-treated HPASM cells. As a whole, Trx-related adenoviruses diminished H2O2-induced ROS level in HPASM cells whereas Trx-related siRNAs increased ROS levels and decreased GSH level in these cells.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, 20 Geonji-ro, Deokjin, Jeonju, Jeollabuk 54907, Republic of Korea.
| |
Collapse
|
9
|
Qu T, Zhang J, Xu N, Liu B, Li M, Liu A, Li A, Tang H. Diagnostic value analysis of combined detection of Trx, CYFRA21-1 and SCCA in lung cancer. Oncol Lett 2019; 17:4293-4298. [PMID: 30944623 PMCID: PMC6444331 DOI: 10.3892/ol.2019.10073] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/28/2019] [Indexed: 12/31/2022] Open
Abstract
The expression levels of thioredoxin (Trx), cytokeratin fragment 21–1 (CYFRA21-1) and serum squamous cell carcinoma antigen (SCCA) in patients with lung cancer and the diagnostic value of combined detection were investigated. Sixty-five patients with lung cancer in Weihai Municipal Hospital from January 2014 to June 2017 were retrospectively selected as the observation group, while 60 healthy subjects receiving physical examination were selected as the control group. The expression levels of serum Trx, CYFRA21-1 and SCCA were detected. The sensitivity and specificity of single detection and combined detection of these indexes were compared. Moreover, the diagnostic values of single detection and combined detection were analyzed using the receiver operating characteristic (ROC) curve. The levels of CYFRA21-1 and SCCA were the highest in squamous carcinoma (P<0.05). The level of Trx was the highest in small cell lung cancer compared with those in squamous carcinoma and adenocarcinoma (P<0.05). The levels of serum Trx, CYFRA21-1 and SCCA in lung cancer patients in clinical stage III–IV were obviously higher than those in patients in clinical stage I–II (P<0.001). The positive rate of Trx was the highest in small cell lung cancer, and the positive rates of CYFRA21-1 and SCCA were the highest in squamous carcinoma compared with other cancers (P<0.05). The area under the ROC curve of combined detection of the three indexes was the largest. The optimal cut-off value of combined detection of the three indexes in lung cancer was 9.952 with the sensitivity of 86.2% and specificity of 75.0%. The detection of serum Trx, CYFRA21-1 and SCCA is of great significance in the diagnosis, progression and pathological type of lung cancer, and combined detection can improve both specificity and sensitivity, which is more conducive to the positive rate of diagnosis of lung cancer.
Collapse
Affiliation(s)
- Tao Qu
- Department of Pneumology, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Jingwen Zhang
- Department of Pneumology, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Ning Xu
- Department of Pneumology, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Bo Liu
- Department of Pneumology, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Meixiang Li
- Department of Pneumology, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Ailing Liu
- Department of Pneumology, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Aijun Li
- Department of Pneumology, Weihai Municipal Hospital, Weihai, Shandong 264200, P.R. China
| | - Huaping Tang
- Department of Pneumology, Qingdao Municipal Hospital, Qingdao, Shandong 266011, P.R. China
| |
Collapse
|
10
|
Song A, Feng T, Shen X, Gai S, Zhai Y, Chen H. Fluorescence detection of glutathione S-transferases in a low GSH level environment. Chem Commun (Camb) 2019; 55:7219-7222. [DOI: 10.1039/c9cc02702e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Glutathione S-transferases (GSTs) play crucial roles in the detoxification process and the development of drug-resistance and are proved to be important markers for various tumors.
Collapse
Affiliation(s)
- Aiguo Song
- Institute of Medical Research
- Northwestern Polytechnical University
- Xi’an
- P. R. China
| | - Tian Feng
- Department of Chinese Materia Medica and Natural Medicines
- School of Pharmacy
- Air Force Medical University
- Xi’an
- P. R. China
| | - Xin Shen
- Department of Medicinal Chemistry
- School of Pharmacy
- Air Force Medical University
- Xi’an
- P. R. China
| | - Shouchang Gai
- Department of Medicinal Chemistry
- School of Pharmacy
- Air Force Medical University
- Xi’an
- P. R. China
| | - Yumeng Zhai
- Department of Medicinal Chemistry
- School of Pharmacy
- Air Force Medical University
- Xi’an
- P. R. China
| | - Hui Chen
- Department of Medicinal Chemistry
- School of Pharmacy
- Air Force Medical University
- Xi’an
- P. R. China
| |
Collapse
|
11
|
Layali I, Shahriary A, Rahmani Talatappe N, Tahmasbpour E, Rostami H, Beigi Harchegani A. Sulfur mustard triggers oxidative stress through glutathione depletion and altered expression of glutathione-related enzymes in human airways. Immunopharmacol Immunotoxicol 2018; 40:290-296. [PMID: 29676192 DOI: 10.1080/08923973.2018.1460754] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CONTEXT Sulfur mustard (SM) is a lipophilic and reactive chemical compound that targets human airway system. OBJECTIVE Glutathione (GSH) depletion, oxidative stress (OS) status, and changes in expression of GSH-dependent antioxidant enzymes were considered in human mustard lungs. MATERIALS AND METHODS Lung biopsies and bronchoalveolar lavage (BAL) were collected from non-exposed (n = 10) individuals and SM-exposed patients (n = 12). Alterations in expression of GSH-dependent enzymes were studied using RT2 Profiler™ PCR array. OS was evaluated by determining BAL fluid levels of total antioxidant capacity (TAC), malondialdehyde (MDA), and GSH. RESULTS Mean TAC (0.142 ± 0.027 µmol/l) and GSH (4.98 ± 1.02 nmol/l) in BAL fluids of control group was significantly higher (p < .05) than those in SM-exposed patients (TAC = 0.095 ± 0.018 µmol/l and GSH= 3.09 ± 1.02 nmol/l), while MDA level in BAL fluids of these patients (0.71 ± 0.06 nmol/l) was significantly (p = .001) higher than that in controls (0.49 ± 0.048 nmol/l). Glutathione peroxidases (GPXs), glutathione-s-transferases (GSTs), and glutathione synthetase (GSS) enzymes were overexpressed in mustard lung biopsies, while glutathione reductase (GSR) was significantly downregulated (14.95-fold). CONCLUSIONS GSH depletion induced by GSR downregulation may be a major mechanism of SM toxicity on human lung. Despite overexpression of GSTs and GPXs genes, GSH depletion may decline the productivity of these enzymes and total antioxidants capacity, which is associated with OS.
Collapse
Affiliation(s)
- Issa Layali
- a Department of Biochemistry , Sari Branch, Islamic Azad University , Sari , Iran
| | - Alireza Shahriary
- b Chemical Injuries Research Center, System Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Nima Rahmani Talatappe
- b Chemical Injuries Research Center, System Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Eisa Tahmasbpour
- c Laboratory of Regenerative Medicine & Biomedical Innovations , Pasteur Institute of Iran , Tehran , Iran
| | - Hossein Rostami
- d Heltch Research Center, Life Style Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Asghar Beigi Harchegani
- b Chemical Injuries Research Center, System Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
12
|
Simioni C, Zauli G, Martelli AM, Vitale M, Sacchetti G, Gonelli A, Neri LM. Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging. Oncotarget 2018; 9:17181-17198. [PMID: 29682215 PMCID: PMC5908316 DOI: 10.18632/oncotarget.24729] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 12/12/2022] Open
Abstract
Physical exercise is considered to be one of the beneficial factors of a proper lifestyle and is nowadays seen as an indispensable element for good health, able to lower the risk of disorders of the cardiovascular, endocrine and osteomuscular apparatus, immune system diseases and the onset of potential neoplasms. A moderate and programmed physical exercise has often been reported to be therapeutic both in the adulthood and in aging, since capable to promote fitness. Regular exercise alleviates the negative effects caused by free radicals and offers many health benefits, including reduced risk of all-cause mortality, sarcopenia in the skeletal muscle, chronic disease, and premature death in elderly people. However, physical performance is also known to induce oxidative stress, inflammation, and muscle fatigue. Many efforts have been carried out to identify micronutrients and natural compounds, also known as nutraceuticals, able to prevent or attenuate the exercise-induced oxidative stress and inflammation. The aim of this review is to discuss the benefits deriving from a constant physical activity and by the intake of antioxidant compounds to protect the body from oxidative stress. The attention will be focused mainly on three natural antioxidants, which are quercetin, resveratrol and curcumin. Their properties and activity will be described, as well as their benefits on physical activity and on aging, which is expected to increase through the years and can get favorable benefits from a constant exercise activity.
Collapse
Affiliation(s)
- Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- CoreLab, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gianni Sacchetti
- Department of Life Sciences and Biotechnology, Pharmaceutical Biology Laboratory, University of Ferrara, Ferrara, Italy
| | - Arianna Gonelli
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Zheng Z, Fan S, Zheng J, Huang W, Gasparetto C, Chao NJ, Hu J, Kang Y. Inhibition of thioredoxin activates mitophagy and overcomes adaptive bortezomib resistance in multiple myeloma. J Hematol Oncol 2018; 11:29. [PMID: 29482577 PMCID: PMC5828316 DOI: 10.1186/s13045-018-0575-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/12/2018] [Indexed: 11/25/2022] Open
Abstract
Background Although current chemotherapy using bortezomib (Velcade) against multiple myeloma in adults has achieved significant responses and even remission, a majority of patients will develop acquired resistance to bortezomib. Increased thioredoxin level has been reported to be associated with carcinogenesis; however, the role of thioredoxin in bortezomib drug resistance of myeloma remains unclear. Methods We generated several bortezomib-resistant myeloma cell lines by serially passaging with increased concentrations of bortezomib over a period of 1.5 years. Thioredoxin expression was measured by real-time PCR and western blot. Results The role of thioredoxin in the survival of bortezomib-resistant myeloma cells was determined by specific shRNA knockdown in vitro and in vivo. Thioredoxin inhibitor (PX12) was used to determine the effectiveness of thioredoxin inhibition in the treatment of bortezomib-resistant myeloma cells. The effect of thioredoxin inhibition on mitophagy induction was examined. The correlation of thioredoxin expression with patient overall survival was interrogated. Thioredoxin expression was significantly upregulated in bortezomib-resistant myeloma cells and the change correlated with the increase of bortezomib concentration. Thioredoxin gene knockdown using specific shRNA sensitized bortezomib-resistant myeloma cells to bortezomib efficiency in vitro and in vivo. Similarly, pharmacological inhibition with PX12 inhibited the growth of bortezomib-resistant myeloma cells and overcame bortezomib resistance in vitro and in vivo. Furthermore, inhibition of thioredoxin resulted in the activation of mitophagy and blockage of mitophagy prevented the effects of PX12 on bortezomib-resistant myeloma cells, indicating that mitophagy is the important molecular mechanism for the induction of cell death in bortezomib-resistant myeloma cells by PX12. Moreover, inhibition of thioredoxin resulted in downregulation of phosphorylated mTOR and ERK1/2. Finally, thioredoxin was overexpressed in primary myeloma cells isolated from bortezomib-resistant myeloma patients and overexpression of thioredoxin correlated with poor overall survival in patients with multiple myeloma. Conclusions Our findings demonstrated that increased thioredoxin plays a critical role in bortezomib resistance in multiple myeloma through mitophagy inactivation and increased mTOR and ERK1/2 phosphorylation. Thioredoxin provides a potential target for clinical therapeutics against multiple myeloma, particularly for bortezomib-resistant/refractory myeloma patients. Electronic supplementary material The online version of this article (10.1186/s13045-018-0575-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhihong Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.,Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Shengjun Fan
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Jing Zheng
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China
| | - Wei Huang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Cristina Gasparetto
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Nelson J Chao
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
| | - Yubin Kang
- Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, 3961, Durham, NC, 27710, USA.
| |
Collapse
|
14
|
Park WH. Gallic acid inhibits the growth of calf pulmonary arterial endothelial cells through cell death and glutathione depletion. Mol Med Rep 2017; 16:7805-7812. [PMID: 29048101 DOI: 10.3892/mmr.2017.7585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 03/03/2017] [Indexed: 11/05/2022] Open
Abstract
Gallic acid (GA) exhibits a number of cellular effects, including apoptosis, which is associated with oxidative stress. The present study investigated the effects of GA on calf pulmonary arterial endothelial cell (CPAEC) growth and death, along with the levels of reactive oxygen species (ROS) and glutathione (GSH). GA treatment inhibited the growth of CPAECs at 24 h, and the half‑maximal inhibitory concentration (IC50) value of GA was ~30 µM. GA treatment also induced cell death, which was accompanied by a loss of mitochondrial membrane potential (ΔѰm). GA treatment in CPAECs resulted in decreased ROS levels, including O2•‑, whereas the number of GSH‑depleted cells increased. Neither a pan‑caspase inhibitor (benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone) nor buthionine sulfoximine treatment affected GA‑induced cell growth inhibition, cell death, ROS and GSH levels in CPAECs, whereas co‑treatment with N‑acetyl‑cysteine (NAC) resulted in enhanced cell growth inhibition, cell death and ΔѰm loss in these cells. Although NAC treatment did not significantly influence ROS levels in GA‑treated CPAECs, it significantly enhanced GSH depletion in these cells. In conclusion, GA inhibited the growth of CPAECs via cell death, which was associated with GSH depletion rather than alterations to ROS levels.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| |
Collapse
|
15
|
Park WH. Treatment with a JNK inhibitor increases, whereas treatment with a p38 inhibitor decreases, H 2O 2-induced calf pulmonary arterial endothelial cell death. Oncol Lett 2017; 14:1737-1744. [PMID: 28789403 DOI: 10.3892/ol.2017.6330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/11/2017] [Indexed: 11/05/2022] Open
Abstract
Oxidative stress induces apoptosis in endothelial cells (ECs). Reactive oxygen species (ROS) promote cell death by regulating the activity of various mitogen-activated protein kinases (MAPKs) in ECs. The present study investigated the effects of MAPK inhibitors on cell survival and glutathione (GSH) levels upon H2O2 treatment in calf pulmonary artery ECs (CPAECs). H2O2 treatment inhibited the growth and induced the death of CPAECs, as well as causing GSH depletion and the loss of mitochondrial membrane potential (MMP). While treatment with the MEK or JNK inhibitor impaired the growth of H2O2-treated CPAECs, treatment with the p38 inhibitor attenuated this inhibition of growth. Additionally, JNK inhibitor treatment increased the proportion of sub-G1 phase cells in H2O2-treated CPAECs and further decreased the MMP. However, treatment with a p38 inhibitor reversed the effects of H2O2 treatment on cell growth and the MMP. Similarly, JNK inhibitor treatment further increased, whereas p38 inhibitor treatment decreased, the proportion of GSH-depleted cells in H2O2-treated CPAECs. Each of the MAPK inhibitors affected cell survival, and ROS or GSH levels differently in H2O2-untreated, control CPAECs. The data suggest that the exposure of CPAECs to H2O2 caused the cell growth inhibition and cell death through GSH depletion. Furthermore, JNK inhibitor treatment further enhanced, whereas p38 inhibitors attenuated, these effects. Thus, the results of the present study suggest a specific protective role for the p38 inhibitor, and not the JNK inhibitor, against H2O2-induced cell growth inhibition and cell death.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju, Jeollabuk 54907, Republic of Korea
| |
Collapse
|
16
|
You BR, Park WH. Suberoylanilide hydroxamic acid induces thioredoxin1-mediated apoptosis in lung cancer cells via up-regulation of miR-129-5p. Mol Carcinog 2017; 56:2566-2577. [PMID: 28667779 DOI: 10.1002/mc.22701] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 04/15/2017] [Accepted: 06/29/2017] [Indexed: 12/13/2022]
Abstract
Histone deacetylase (HDAC) inhibitors, especially suberoylanilide hydroxamic acid (SAHA) induce apoptosis in various cancer cells. Here, we investigated the effect of SAHA on apoptosis in lung cancer cells and addressed the role of reactive oxygen species (ROS), glutathione (GSH), and thioredoxin1 (Trx1) levels in this process. We also identified the miRNAs that down-regulate Trx1 expression at RNA level and thereby influence apoptotic cell death of SAHA increased intracellular ROS levels and promoted apoptotic cell death in cancerous cells but not in non-cancerous normal lung cells. Likewise, SAHA induced GSH depletion specifically in cancerous cells. While N-acetyl cysteine (NAC) reduced ROS level and reversed the effect of SAHA on cell death, L-buthionine sulfoximine (BSO) further enhanced GSH depletion, and promoted cell death. SAHA decreased the mRNA and protein levels of Trx1 in lung cancer cells. Knockdown/suppression of Trx1 intensified apoptosis in SAHA-treated lung cancer cells whereas overexpression of Trx1 prevented the cell death in these cells. SAHA up-regulated the level of miR-129-5p, which binds to 3' untranslated region (3'UTR) of Trx1 and down-regulates Trx1 expression. Down-regulation of Trx1 led to activation of apoptosis-signal regulating kinase (ASK), which induced apoptotic cell death by triggering ASK-JNK or ASK-p38 kinase pathway. In conclusion, changes in ROS and GSH levels in SAHA-treated lung cancer cells partially co-related with cell death. SAHA induced apoptosis via the down-regulation of Trx1, which was regulated by miR-129-5p.
Collapse
Affiliation(s)
- Bo Ra You
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu, Republic of Korea
| | - Woo Hyun Park
- Department of Physiology, Medical School, Institute for Medical Sciences, Chonbuk National University, JeonJu, Republic of Korea
| |
Collapse
|
17
|
Park WH. Gallic acid induces HeLa cell death via increasing GSH depletion rather than ROS levels. Oncol Rep 2016; 37:1277-1283. [DOI: 10.3892/or.2016.5335] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/19/2016] [Indexed: 11/05/2022] Open
|
18
|
Park WH. Pyrogallol induces the death of human pulmonary fibroblast cells through ROS increase and GSH depletion. Int J Oncol 2016; 49:785-92. [DOI: 10.3892/ijo.2016.3543] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/13/2016] [Indexed: 11/06/2022] Open
|
19
|
Park WH. Exogenous H2O2 induces growth inhibition and cell death of human pulmonary artery smooth muscle cells via glutathione depletion. Mol Med Rep 2016; 14:936-42. [PMID: 27220315 DOI: 10.3892/mmr.2016.5307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 05/10/2016] [Indexed: 11/05/2022] Open
Abstract
Reactive oxygen species (ROS) are associated with various pathophysiological processes of vascular smooth muscle cells (VSMCs). Pyrogallol (PG) induces the superoxide anion (O2•‑)‑mediated cell death of numerous cell types. The present study aimed to investigate the effects of exogenous hydrogen peroxide (H2O2) and PG treatment on the cell growth and death of human pulmonary artery smooth muscle cells (HPASMCs), with regards to intracellular ROS and glutathione (GSH) levels, as determined by MTT and cell number assays. H2O2 led to reduced growth of HPASMCs, with a half maximal inhibitory concentration of 250‑500 µM at 24 h, and induced apoptosis, as determined by Annexin V‑staining and benzyloxycarbonyl‑Val‑Ala‑Asp‑fluoromethylketone treatment. However, PG did not strongly induce growth inhibition and death of HPASMCs. In addition, H2O2 led to increased ROS levels, including mitochondrial O2•‑, and induced GSH depletion in HPASMCs. Treatment with N‑acetyl cysteine (NAC) attenuated apoptotic cell death and ROS levels in H2O2‑treated HPASMCs, and also prevented GSH depletion. Notably, PG treatment did not increase ROS levels, including mitochondrial O2•‑. Furthermore, NAC induced a significant increase in mitochondrial O2•‑ levels in PG‑treated HPASMCs, and cell death and GSH depletion were significantly increased. L‑buthionine sulfoximine intensified cell death and GSH depletion in PG‑treated HPASMCs. In conclusion, exogenous H2O2 induced growth inhibition and cell death of HPASMCs via GSH depletion.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju, North Jeolla 561‑180, Republic of Korea
| |
Collapse
|
20
|
Zhe N, Chen S, Zhou Z, Liu P, Lin X, Yu M, Cheng B, Zhang Y, Wang J. HIF-1α inhibition by 2-methoxyestradiol induces cell death via activation of the mitochondrial apoptotic pathway in acute myeloid leukemia. Cancer Biol Ther 2016; 17:625-34. [PMID: 27082496 DOI: 10.1080/15384047.2016.1177679] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The bone marrow microenvironment plays an important role in the development and progression of AML. Leukemia stem cells are in a hypoxic condition, which induces the expression of HIF-1α. Aberrant activation of HIF-1α is implicated in the poor prognosis of patients with acute myeloid leukemia (AML). Herein, we investigated the expression of HIF-1α in AML and tested 2-methoxyestradiol (2ME2) as a candidate HIF-1α inhibitor for the treatment of AML. We found that HIF-1α was overexpressed in AML. HIF-1α suppression by 2ME2 significantly induced apoptosis of AML cells, and it outperformed traditional chemotherapy drugs such as cytarabine. At the same time, 2ME2 downregulated the transcriptional levels of VEGF, GLUT1 and HO-1 in cellular assays. Additionally, 2ME2 displayed antileukemia activity in bone marrow blasts from AML patients, but showed little effect on normal cells. 2ME2-induced activation of mitochondrial apoptotic pathway is mediated by reactive oxygen species (ROS), which decreased the slight effect of drug on normal cells. Our data show that supression of HIF-1α expression significantly reduced the survival of AML cell lines, suggesting that 2ME2 may represent a powerful therapeutic approach for patients with AML.
Collapse
Affiliation(s)
- Nana Zhe
- a Guizhou Medical University , Guiyang, Guizhou , China
| | - Shuya Chen
- a Guizhou Medical University , Guiyang, Guizhou , China.,b Department of Pharmacy , Guizhou Medical University , Guiyang , Guizhou , China
| | - Zhen Zhou
- a Guizhou Medical University , Guiyang, Guizhou , China.,c Department of Pharmacy , Affiliated BaiYun Hospital of Guizhou Medical University , Guiyang , Guizhou , China
| | - Ping Liu
- a Guizhou Medical University , Guiyang, Guizhou , China
| | - Xiaojing Lin
- a Guizhou Medical University , Guiyang, Guizhou , China
| | - Meisheng Yu
- a Guizhou Medical University , Guiyang, Guizhou , China
| | - Bingqing Cheng
- a Guizhou Medical University , Guiyang, Guizhou , China.,b Department of Pharmacy , Guizhou Medical University , Guiyang , Guizhou , China
| | - Yaming Zhang
- d Guizhou Province Laboratory of Haematopoietic Stem Cell Transplantation Center , Guiyang , Guizhou , China.,e Department of Hematology , Affiliated Hospital of Guizhou Medical University , Guiyang , Guizhou , China
| | - Jishi Wang
- d Guizhou Province Laboratory of Haematopoietic Stem Cell Transplantation Center , Guiyang , Guizhou , China.,e Department of Hematology , Affiliated Hospital of Guizhou Medical University , Guiyang , Guizhou , China
| |
Collapse
|
21
|
The levels of HDAC1 and thioredoxin1 are related to the death of mesothelioma cells by suberoylanilide hydroxamic acid. Int J Oncol 2016; 48:2197-204. [DOI: 10.3892/ijo.2016.3402] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/11/2016] [Indexed: 11/05/2022] Open
|
22
|
Park WH, You BR. Antimycin A induces death of the human pulmonary fibroblast cells via ROS increase and GSH depletion. Int J Oncol 2015; 48:813-20. [PMID: 26647857 DOI: 10.3892/ijo.2015.3276] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/20/2015] [Indexed: 11/06/2022] Open
Abstract
Antimycin A (AMA) inhibits the growth of various cells via stimulating oxidative stress-mediated death. However, little is known about the anti-growth effect of AMA on normal primary lung cells. Here, we investigated the effects of AMA on cell growth inhibition and death in human pulmonary fibroblast (HPF) cells in relation to reactive oxygen species (ROS) and glutathione (GSH) levels. AMA inhibited the growth of HPF cells with an IC50 of ~150 µM at 24 h. AMA induced a G1 phase arrest of the cell cycle and it also triggered apoptosis accompanied by the loss of mitochondrial membrane potential (MMP; ∆Ψm). AMA increased ROS levels including O2᛫- in HPF cells from the early time point of 25 min. It induced GSH depletion in HPF cells in a dose-dependent manner. Z-VAD (a pan-caspase inhibitor) did not significantly prevent cell death and MMP (∆Ψm) loss induced by AMA. N-acetylcysteine (NAC; an antioxidant) attenuated cell growth inhibition, death and MMP (∆Ψm) loss in AMA-treated HPF cells and NAC generally decreased the ROS level in these cells as well. Vitamin C enhanced cell growth inhibition, death, GSH depletion and O2᛫- levels in 100 µM AMA-treated HPF cells whereas this agent strongly attenuated these effects in 200 µM AMA-treated cells. In conclusion, AMA inhibited the growth of HPF cells via apoptosis as well as a G1 phase arrest of the cell cycle. AMA-induced HPF cell death was related to increased ROS levels and GSH depletion.
Collapse
Affiliation(s)
- Woo Hyun Park
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju 561-180, Republic of Korea
| | - Bo Ra You
- Department of Physiology, Medical School, Research Institute for Endocrine Sciences, Chonbuk National University, Jeonju 561-180, Republic of Korea
| |
Collapse
|
23
|
Fan C, Pan Y, Yang Y, Di S, Jiang S, Ma Z, Li T, Zhang Z, Li W, Li X, Reiter RJ, Yan X. HDAC1 inhibition by melatonin leads to suppression of lung adenocarcinoma cells via induction of oxidative stress and activation of apoptotic pathways. J Pineal Res 2015; 59:321-333. [PMID: 26184924 DOI: 10.1111/jpi.12261] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/10/2015] [Indexed: 01/07/2023]
Abstract
Melatonin is an indoleamine synthesized in the pineal gland that shows a wide range of physiological and pharmacological functions, including anticancer effects. In this study, we investigated the effect of melatonin on drug-induced cellular apoptosis against the cultured human lung adenocarcinoma cells and explored the role of histone deacetylase (HDAC) signaling in this process. The results showed that melatonin treatment led to a dose- and time-dependent decrease in the viability of human A549 and PC9 lung adenocarcinoma cells. Additionally, melatonin exhibited potent anticancer activity in vitro, as evidenced by reductions of the cell adhesion, migration, and the intracellular glutathione (GSH) level and increases in the apoptotic index, caspase 3 activity, and reactive oxygen species (ROS) in A549 and PC9 cells. Melatonin treatment also influenced the expression of HDAC-related molecules (HDAC1 and Ac-histone H3), upregulated the apoptosis-related molecules (PUMA and Bax), and downregulated the proliferation-related molecule (PCNA) and the anti-apoptosis-related molecule (Bcl2). Furthermore, the inhibition of HDAC signaling using HDAC1 siRNA or SAHA (a potent pan-inhibitor of HDACs) sensitized A549 and PC9 cells to the melatonin treatment. In summary, these data indicate that in vitro-administered melatonin is a potential suppressor of lung adenocarcinoma cells by the targeting of HDAC signaling and suggest that melatonin in combination with HDAC inhibitors may be a novel therapeutic intervention for human lung adenocarcinoma.
Collapse
Affiliation(s)
- Chongxi Fan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yunhu Pan
- Department of Respiratory Medicine, The 92nd Hospital of PLA, Nanping, China
| | - Yang Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Weimiao Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|