1
|
Wang X, Zhang G, Jiang X, Yu L. Design and synthesis of amide derivatives inspired by capsaicin as potential antibacterial and antitumor agents. Nat Prod Res 2025:1-7. [PMID: 40340580 DOI: 10.1080/14786419.2025.2502852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/14/2025] [Accepted: 05/02/2025] [Indexed: 05/10/2025]
Abstract
Nine amide derivatives inspired by capsaicin (ADICs) were synthesised and evaluated for antibacterial and antitumor activities by a series of standard methods in this study. The results showed that ADICs had good antibacterial and antitumor activity. In the antibacterial assay, their inhibitory rates were over 76.70% at 20 μg/mL, the MIC values were not more than 32 μg/mL, and they exhibited healthy characteristics with MBC values exceeding 128 μg/mL. In antitumor assay, the inhibition rates of the products a3, b3, and c3 with chloroacetamide exceeded 55.00% at 10 μM, and their IC50 values were all less than 8.61 μM; furthermore, injection of products a3 and b3 suppressed the growth of A549 and HCT116 tumour cells transplanted subcutaneously into nude mice. As benign and healthy antibacterial and antitumor agents, the research and development of ADICs are of important realistic significance to their application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Xuan Wang
- National Key Laboratory of Marine Corrosion and Protection, Qingdao, China
- Luoyang Ship Material Research Institute, Qingdao, China
- Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| | - Guanglong Zhang
- National Key Laboratory of Marine Corrosion and Protection, Qingdao, China
- Luoyang Ship Material Research Institute, Qingdao, China
| | - Xiaohui Jiang
- Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
| | - Liangmin Yu
- Key Laboratory of Ocean Observation and Information of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Sanya, China
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
2
|
Gupta A, Joshi R, Dewangan L, Shah K, Soni D, Patil UK, Chauhan NS. Capsaicin: pharmacological applications and prospects for drug designing. J Pharm Pharmacol 2025; 77:459-474. [PMID: 39657966 DOI: 10.1093/jpp/rgae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES A primary objective of this review is to summarize the evidence-based pharmacological applications of capsaicin, particularly its use to manage pain and treat various health conditions. A second goal of the review is to research how recent technological advances are improving the bioavailability and therapeutic index of capsaicin, as well as the development of novel capsaicin-mimetics that are able to enhance therapeutic responses in various human diseases. METHODS In the review, numerous human clinical trials and preclinical studies are examined to determine how effective, safe, and optimal dosages of capsaicin can be used in pain management and therapeutic applications. Furthermore, it discusses capsaicin's mechanisms of action, specifically its interactions with the transient receptor potential vanilloid 1 (TRPV1) channel. As a result of this review, the potential of nanotechnology systems for bypassing the limits of capsaicin's pungency is discussed. The review takes into account individual factors such as pain tolerance and skin sensitivity. KEY FINDINGS For topical applications, capsaicin is typically used in concentrations ranging from 0.025% to 0.1%, with higher concentrations being used under medical supervision for neuropathic pain. The formulation can come in the form of creams, gels, or patches, which provide sustained release over the course of time. A condition such as arthritis or neuropathy can be relieved with capsaicin as it depletes substance P from nerves. Neuropathy and osteoarthritis as well as musculoskeletal disorders have been treated successfully with this herbal medicine. A major mechanism through which capsaicin relieves pain is through activating TRPV1 channels, which induce calcium influx and neurotransmitter release. Additionally, it affects the transcription of genes related to pain modulation and inflammation, particularly when disease conditions or stress are present. There have been recent developments in technology to reduce capsaicin's pungency and improve its bioavailability, including nanotechnology. CONCLUSIONS It is proven that capsaicin is effective in pain management as well as a variety of therapeutic conditions because of its ability to deplete substance P and desensitize nerve endings. Although capsaicin is highly pungent and associated with discomfort, advancements in delivery technologies and the development of capsaicin-mimetics promise improved therapeutic outcomes. There is a great deal of complexity in the pharmacological action of capsaicin due to its interaction with TRPV1 channels and its ability to affect gene transcription. There is a need for further research and development in order to optimize capsaicin's clinical applications and to enhance its therapeutic index in a variety of human diseases.
Collapse
Affiliation(s)
- Anshita Gupta
- Rungta College of Pharmaceutical Sciences and Research, Raipur, 492009, C.G., India
| | - Renjil Joshi
- Rungta College of Pharmaceutical Sciences and Research, Bhilai, 490024, C.G., India
| | - Lokkanya Dewangan
- Shri Shankaracharya Institute of Pharmaceutical Sciences and Research (SSIPSR), Bhilai, 490020, C.G., India
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, U.P., India
| | - Deependra Soni
- Faculty of Pharmacy, MATS University, Aarang, 493441, Chhattisgarh, India
| | - Umesh K Patil
- Phytomedicine and Natural Product Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, M.P., 470003India
| | | |
Collapse
|
3
|
Cao Y, Wen Y, Zhou Z, Xi R, Shuai W, Zhang J, Suksamrarn A, Zhang G, Lu XX, Wang F. Discovery of novel capsaicin analogs as TRPV1 inhibitors for the treatment of idiopathic pulmonary fibrosis. Eur J Med Chem 2025; 284:117229. [PMID: 39826937 DOI: 10.1016/j.ejmech.2024.117229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease for which few drugs are available in clinical practice. Here, we identified novel capsaicin analogs by combining in-house chemical library screening and further structural optimization. (E)-1-(3,4-dihydroxyphenyl)-7-phenylhept-1-en-3-one (Compound 14) was found to be the most potent in inhibiting TGF-β-induced collagen accumulation, proliferation and migration in fibroblast cells. Furthermore, compound 14 (IC50 = 0.51 ± 0.06 μM) showed over 100-fold increasing antifibrotic activity compared to capsaicin (IC50 = 53.71 ± 4.78 μM). Notably, compound 14 could target TRPV1, thereby affecting the expression of the fibrosis markers Collagen Ⅰ and α-SMA by inhibiting the TGF-β/Smads and MAPK pathways to exert antifibrotic activity in vitro. Compound 14 significantly inhibited collagen deposition in lung tissues, ameliorated alveolar structures, and increased survival rates in mice with bleomycin-induced pulmonary fibrosis. In addition, compound 14 possessed lower cytotoxicity (compared to nitedanib) and no toxicity in mice. Overall, compound 14 promise as a potential drug candidate for the treatment of IPF.
Collapse
Affiliation(s)
- Yu Cao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongju Wen
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; College of Chemistry and Bioengineering Yichun University, Yichun, 336000, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Zongyuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Ruiying Xi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Wen Shuai
- State Key Laboratory of Biotherapy and Cancer Center, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, and Collaborative Innovation Center of Biotherapy, Sichuan University, 610041, PR China
| | - Jichao Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Guolin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China
| | - Xiao-Xia Lu
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, PR China.
| |
Collapse
|
4
|
Andretta E, Costa A, Ventura E, Quintiliani M, Damiano S, Giordano A, Morrione A, Ciarcia R. Capsaicin Exerts Antitumor Activity in Mesothelioma Cells. Nutrients 2024; 16:3758. [PMID: 39519591 PMCID: PMC11547426 DOI: 10.3390/nu16213758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Mesothelioma is an aggressive cancer with limited treatment options. Mesothelioma therapy often involves a multimodal approach including surgery, radiotherapy and chemotherapy. However, the prognosis for patients remains poor. Difficult diagnosis, late symptoms when the tumor is in an advanced stage and the onset of chemotherapy resistance make mesothelioma difficult to treat. For this reason, it is essential to discover new pharmacological approaches. Capsaicin (CAPS) is the active compound of chili peppers. Based on CAPS's anticancer properties on various tumor lines and its chemo-sensitizing action on resistant cells, in this study, we evaluated the effects of CAPS on mesothelioma cells to assess its potential use in mesothelioma therapy. METHODS To evaluate antiproliferative effects of CAPS, we performed MTS assays on various mesothelioma cells, representative of all major mesothelioma subtypes. Transwell migration and wound-healing assays were used to examine the effect of CAPS on mesothelioma cell migration. We also determined the effects of CAPS on oncogenic signaling pathways by assessing the levels of AKT and MAPK activation. RESULTS In this study, we show that CAPS significantly reduces proliferation of both parental and cisplatin-resistant mesothelioma cells. CAPS promotes S-phase cell cycle arrest and inhibits lateral motility and migration of mesothelioma cells. Accordingly, CAPS suppresses AKT and ERK1/2 activation in MSTO-211H and NCI-H2052 cells. Our results support an antitumor effect of CAPS on cisplatin-resistant mesothelioma cells, suggesting that it may reduce resistance to cisplatin. CONCLUSIONS Our results could pave the way for further studies to evaluate the use of CAPS for mesothelioma treatment.
Collapse
Affiliation(s)
- Emanuela Andretta
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
- Department of Chemical Sciences, University of Naples Federico II, via Cinthia, 4, 80126 Naples, Italy
| | - Aurora Costa
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Ventura
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
| | | | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; (E.A.); (A.C.); (E.V.); (A.G.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy; (S.D.); (R.C.)
| |
Collapse
|
5
|
Schwarztrauber M, Edwards N, Hiryak J, Chandrasekaran R, Wild J, Bommareddy A. Antitumor and chemopreventive role of major phytochemicals against breast cancer development. Nat Prod Res 2024; 38:3623-3643. [PMID: 37646820 DOI: 10.1080/14786419.2023.2251167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/20/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Breast cancer continues to be one of the most commonly diagnosed cancers around the world. Despite the decrease in mortality, there has been a steady increase in its incidence. There is much evidence that naturally occurring phytochemicals could prove to be safer alternatives aimed at prevention and development of breast cancer. In the present review, we discuss important phytochemicals, namely capsaicin, alpha-santalol and diallyl trisulphide that are shown to have chemopreventive and anti-tumour properties against breast cancer development. We examined current knowledge of their bioavailability, safety and modulation of molecular mechanisms including their ability to induce apoptotic cell death, promote cell cycle arrest, and inhibit cellular proliferation in different breast cancer cell lines and in vivo models. This review emphasises the importance of these naturally occurring phytochemicals and their potential of becoming therapeutic options in the arsenal against breast cancer development provided further scientific and clinical validation.
Collapse
Affiliation(s)
| | - Nathaniel Edwards
- Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA, USA
| | - James Hiryak
- Nesbitt School of Pharmacy, Wilkes University, Wilkes-Barre, PA, USA
| | - Ritesh Chandrasekaran
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| | - Jayson Wild
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| | - Ajay Bommareddy
- Department of Biomedical Science, Charles E Schmidt College of Medicine, FL Atlantic University, Boca Raton, FL, USA
| |
Collapse
|
6
|
Zhang Q, Soulère L, Queneau Y. Amide bioisosteric replacement in the design and synthesis of quorum sensing modulators. Eur J Med Chem 2024; 273:116525. [PMID: 38801798 DOI: 10.1016/j.ejmech.2024.116525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The prevention or control of bacterial infections requires continuous search for novel approaches among which bacterial quorum sensing inhibition is considered as a complementary antibacterial strategy. Quorum sensing, used by many different bacteria, functions through a cell-to-cell communication mechanism relying on chemical signals, referred to as autoinducers, such as N-acyl homoserine lactones (AHLs) which are the most common chemical signals in this system. Designing analogs of these autoinducers is one of the possible ways to interfere with quorum sensing. Since bioisosteres are powerful tools in medicinal chemistry, targeting analogs of AHLs or other signal molecules and mimics of known QS modulators built on amide bond bioisosteres is a relevant strategy in molecular design and synthetic routes. This review highlights the application of amide bond bioisosteric replacement in the design and synthesis of novel quorum sensing inhibitors.
Collapse
Affiliation(s)
- Qiang Zhang
- Hubei Key Laboratory of Purification and Application of Plant Anti-cancer Active Ingredients, Hubei University of Education, 129 Second Gaoxin Road, Wuhan 430205, China
| | - Laurent Soulère
- INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, UMR 5246, ICBMS, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France
| | - Yves Queneau
- INSA Lyon, CNRS, Universite Claude Bernard Lyon 1, UMR 5246, ICBMS, Bât. E. Lederer, 1 rue Victor Grignard, F-69622, Villeurbanne, France.
| |
Collapse
|
7
|
Peppers: A "Hot" Natural Source for Antitumor Compounds. Molecules 2021; 26:molecules26061521. [PMID: 33802144 PMCID: PMC8002096 DOI: 10.3390/molecules26061521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
Piper, Capsicum, and Pimenta are the main genera of peppers consumed worldwide. The traditional use of peppers by either ancient civilizations or modern societies has raised interest in their biological applications, including cytotoxic and antiproliferative effects. Cellular responses upon treatment with isolated pepper-derived compounds involve mechanisms of cell death, especially through proapoptotic stimuli in tumorigenic cells. In this review, we highlight naturally occurring secondary metabolites of peppers with cytotoxic effects on cancer cell lines. Available mechanisms of cell death, as well as the development of analogues, are also discussed.
Collapse
|
8
|
Kammath AJ, Nair B, P S, Nath LR. Curry versus cancer: Potential of some selected culinary spices against cancer with in vitro, in vivo, and human trials evidences. J Food Biochem 2021; 45:e13285. [PMID: 32524639 DOI: 10.1111/jfbc.13285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Spices are dietary agents with immense potential for cancer chemo-prevention. A wide variety of spices are extensively used as food flavoring agents which possess potent antioxidant, anti-inflammatory, and anticancer properties due to the presence of certain bio-active compounds in them. In vitro, in vivo studies and clinical trials of selected spices against various types of cancer are being specified in this review. Effect of certain putative dietary spices namely turmeric, clove, garlic, ginger, fennel, black cumin, cinnamon, pepper, saffron, rosemary, and chilli along with its role in cancer are being discussed. Literature search was conducted through PubMed, Google scholar, Science direct, and Scopus using the keywords "spice," "cancer," "natural medicine," "herbal compound," "bioactive compounds." About 4,000 published articles and 127 research papers were considered to grab the brief knowledge on spices and their anticancer potential on a predefined inclusion and exclusion criteria. PRACTICAL APPLICATION: Historically, spices and herbs are known for its traditional flavor, odor, and medicinal properties. Intensified risk of chronic and pervasive clinical conditions and increased cost of advanced drug treatments have developed a keen interest among researchers to explore the miscellaneous properties of herbal spices. Cancer is one of the deleterious causes of mortality affecting a huge number of populations worldwide. Arrays of cancer treatments including surgery, chemotherapy, and radiation therapy are used to compromise the disease but effective only when the size of the tumor is small. So, an effective treatment need to be developed that produces less side effects and herbal spices are found to be the promising agents. In this review, we illustrate about different in vitro, in vivo, and clinical studies of wide range of culinary spices having antineoplastic potential.
Collapse
Affiliation(s)
- Adithya J Kammath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sreelekshmi P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lekshmi R Nath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
9
|
Kumari S, Carmona AV, Tiwari AK, Trippier PC. Amide Bond Bioisosteres: Strategies, Synthesis, and Successes. J Med Chem 2020; 63:12290-12358. [PMID: 32686940 DOI: 10.1021/acs.jmedchem.0c00530] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amide functional group plays a key role in the composition of biomolecules, including many clinically approved drugs. Bioisosterism is widely employed in the rational modification of lead compounds, being used to increase potency, enhance selectivity, improve pharmacokinetic properties, eliminate toxicity, and acquire novel chemical space to secure intellectual property. The introduction of a bioisostere leads to structural changes in molecular size, shape, electronic distribution, polarity, pKa, dipole or polarizability, which can be either favorable or detrimental to biological activity. This approach has opened up new avenues in drug design and development resulting in more efficient drug candidates introduced onto the market as well as in the clinical pipeline. Herein, we review the strategic decisions in selecting an amide bioisostere (the why), synthetic routes to each (the how), and success stories of each bioisostere (the implementation) to provide a comprehensive overview of this important toolbox for medicinal chemists.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Angelica V Carmona
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, Ohio 43614, United States
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States.,UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
10
|
Pereira GJV, Tavares MT, Azevedo RA, Martins BB, Cunha MR, Bhardwaj R, Cury Y, Zambelli VO, Barbosa EG, Hediger MA, Parise-Filho R. Capsaicin-like analogue induced selective apoptosis in A2058 melanoma cells: Design, synthesis and molecular modeling. Bioorg Med Chem 2019; 27:2893-2904. [PMID: 31104785 DOI: 10.1016/j.bmc.2019.05.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/13/2019] [Accepted: 05/12/2019] [Indexed: 01/19/2023]
Abstract
The use of molecules inspired by natural scaffolds has proven to be a very promising and efficient method of drug discovery. In this work, capsaicin, a natural product from Capsicum peppers with antitumor properties, was used as a prototype to obtain urea and thiourea analogues. Among the most promising compounds, the thiourea compound 6g exhibited significant cytotoxic activity against human melanoma A2058 cells that was twice as high as that of capsaicin. Compound 6g induced significant and dose-dependent G0/G1 cell cycle arrest in A2058 cells triggering cell death by apoptosis. Our results suggest that 6g modulates the RAF/MEK/ERK pathway, inducing important morphological changes, such as formation of apoptotic bodies and increased levels of cleaved caspase-3. Compared to capsaicin, 6g had no significant TRPV1/6 agonist effect or irritant effects on mice. Molecular modeling studies corroborate the biological findings and suggest that 6g, besides being a more reactive molecule towards its target, may also present a better pharmacokinetic profile than capsaicin. Inverse virtual screening strategy found MEK1 as a possible biological target for 6g. Consistent with these findings, our observations suggested that 6g could be developed as a potential anticancer agent.
Collapse
Affiliation(s)
- Gustavo José Vasco Pereira
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maurício Temotheo Tavares
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ricardo Alexandre Azevedo
- Experimental Oncology Unit (UNONEX), Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | - Micael Rodrigues Cunha
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Rajesh Bhardwaj
- Institute of Biochemistry and Molecular Medicine, National Center for Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Yara Cury
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | | | | | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, National Center for Competence in Research, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Roberto Parise-Filho
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
11
|
Varghese E, Samuel SM, Abotaleb M, Cheema S, Mamtani R, Büsselberg D. The "Yin and Yang" of Natural Compounds in Anticancer Therapy of Triple-Negative Breast Cancers. Cancers (Basel) 2018; 10:E346. [PMID: 30248941 PMCID: PMC6209965 DOI: 10.3390/cancers10100346] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/18/2018] [Accepted: 09/19/2018] [Indexed: 02/07/2023] Open
Abstract
Among the different types of breast cancers, triple-negative breast cancers (TNBCs) are highly aggressive, do not respond to conventional hormonal/human epidermal growth factor receptor 2 (HER2)-targeted interventions due to the lack of the respective receptor targets, have chances of early recurrence, metastasize, tend to be more invasive in nature, and develop drug resistance. The global burden of TNBCs is increasing regardless of the number of cytotoxic drugs being introduced into the market each year as they have only moderate efficacy and/or unforeseen side effects. Therefore, the demand for more efficient therapeutic interventions, with reduced side effects, for the treatment of TNBCs is rising. While some plant metabolites/derivatives actually induce the risk of cancers, many plant-derived active principles have gained attention as efficient anticancer agents against TNBCs, with fewer adverse side effects. Here we discuss the possible oncogenic molecular pathways in TNBCs and how the purified plant-derived natural compounds specifically target and modulate the genes and/or proteins involved in these aberrant pathways to exhibit their anticancer potential. We have linked the anticancer potential of plant-derived natural compounds (luteolin, chalcones, piperine, deguelin, quercetin, rutin, fisetin, curcumin, resveratrol, and others) to their ability to target multiple dysregulated signaling pathways (such as the Wnt/β-catenin, Notch, NF-κB, PI3K/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK) and Hedgehog) leading to suppression of cell growth, proliferation, migration, inflammation, angiogenesis, epithelial-mesenchymal transition (EMT) and metastasis, and activation of apoptosis in TNBCs. Plant-derived compounds in combination with classical chemotherapeutic agents were more efficient in the treatment of TNBCs, possibly with lesser side effects.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Mariam Abotaleb
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Sohaila Cheema
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Ravinder Mamtani
- Institute for Population Health, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar.
| |
Collapse
|
12
|
Multi-Spectroscopic and Theoretical Analysis on the Interaction between Human Serum Albumin and a Capsaicin Derivative-RPF101. Biomolecules 2018; 8:biom8030078. [PMID: 30142945 PMCID: PMC6164054 DOI: 10.3390/biom8030078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023] Open
Abstract
The interaction between the main carrier of endogenous and exogenous compounds in the human bloodstream (human serum albumin, HSA) and a potential anticancer compound (the capsaicin analogue RPF101) was investigated by spectroscopic techniques (circular dichroism, steady-state, time-resolved, and synchronous fluorescence), zeta potential, and computational method (molecular docking). Steady-state and time-resolved fluorescence experiments indicated an association in the ground state between HSA:RPF101. The interaction is moderate, spontaneous (ΔG° < 0), and entropically driven (ΔS° = 0.573 ± 0.069 kJ/molK). This association does not perturb significantly the potential surface of the protein, as well as the secondary structure of the albumin and the microenvironment around tyrosine and tryptophan residues. Competitive binding studies indicated Sudlow’s site I as the main protein pocket and molecular docking results suggested hydrogen bonding and hydrophobic interactions as the main binding forces.
Collapse
|
13
|
Friedman JR, Nolan NA, Brown KC, Miles SL, Akers AT, Colclough KW, Seidler JM, Rimoldi JM, Valentovic MA, Dasgupta P. Anticancer Activity of Natural and Synthetic Capsaicin Analogs. J Pharmacol Exp Ther 2018; 364:462-473. [PMID: 29246887 PMCID: PMC5803642 DOI: 10.1124/jpet.117.243691] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 12/13/2017] [Indexed: 12/28/2022] Open
Abstract
The nutritional compound capsaicin is the major spicy ingredient of chili peppers. Although traditionally associated with analgesic activity, recent studies have shown that capsaicin has profound antineoplastic effects in several types of human cancers. However, the applications of capsaicin as a clinically viable drug are limited by its unpleasant side effects, such as gastric irritation, stomach cramps, and burning sensation. This has led to extensive research focused on the identification and rational design of second-generation capsaicin analogs, which possess greater bioactivity than capsaicin. A majority of these natural capsaicinoids and synthetic capsaicin analogs have been studied for their pain-relieving activity. Only a few of these capsaicin analogs have been investigated for their anticancer activity in cell culture and animal models. The present review summarizes the current knowledge of the growth-inhibitory activity of natural capsaicinoids and synthetic capsaicin analogs. Future studies that examine the anticancer activity of a greater number of capsaicin analogs represent novel strategies in the treatment of human cancers.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Kathleen C Brown
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Sarah L Miles
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Austin T Akers
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Kate W Colclough
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Jessica M Seidler
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - John M Rimoldi
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Monica A Valentovic
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia (J.R.F., N.A.N., S.L.M., K.C.B., A.T.A., K.W.C., J.M.S., M.A.V., P.D.); and Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, Mississippi (J.M.R.)
| |
Collapse
|
14
|
Fernandes TB, Cunha MR, Sakata RP, Candido TM, Baby AR, Tavares MT, Barbosa EG, Almeida WP, Parise-Filho R. Synthesis, Molecular Modeling, and Evaluation of Novel Sulfonylhydrazones as Acetylcholinesterase Inhibitors for Alzheimer's Disease. Arch Pharm (Weinheim) 2017; 350. [PMID: 28940630 DOI: 10.1002/ardp.201700163] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/01/2017] [Accepted: 09/05/2017] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia and related to the degeneration of hippocampal cholinergic neurons, which dramatically affects cognitive ability. Acetylcholinesterase (AChE) inhibitors are employed as drugs for AD therapy. Three series of sulfonylhydrazone compounds were designed, and their ability to inhibit AChE was evaluated. Fifteen compounds were synthesized and twelve of them had IC50 values of 0.64-51.09 μM. The preliminary structure-activity relationships indicated that the methylcatechol moiety and arylsulfonyl substituents generated better compounds than both the benzodioxole and alkylsulfonyl chains. Molecular dynamics studies of compound 6d showed that the interaction with the peripheral binding site of AChE was similar to donepezil, which may explain its low IC50 (0.64 μM). Furthermore, the drug-likeness of 6d suggests that the compound may have appropriate oral absorption and brain penetration. Compound 6d also presented antiradical activity and was not cytotoxic to LL24 cells, suggesting that this compound might be considered safe. Our findings indicate that arylsulfonylhydrazones may be a promising scaffold for the design of new drug candidates for the treatment of AD.
Collapse
Affiliation(s)
- Thais B Fernandes
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Micael R Cunha
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Renata P Sakata
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Campinas, Campinas, Brazil
| | - Thalita M Candido
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - André R Baby
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Maurício T Tavares
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Euzébio G Barbosa
- Health Sciences Centre, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Wanda P Almeida
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of Campinas, Campinas, Brazil
| | - Roberto Parise-Filho
- Faculty of Pharmaceutical Sciences, Department of Pharmacy, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Weber LV, Al-Refae K, Wölk G, Bonatz G, Altmüller J, Becker C, Gisselmann G, Hatt H. Expression and functionality of TRPV1 in breast cancer cells. BREAST CANCER-TARGETS AND THERAPY 2016; 8:243-252. [PMID: 28008282 PMCID: PMC5167528 DOI: 10.2147/bctt.s121610] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transient receptor potential (TRP) channels contribute to the regulation of intracellular calcium, which can promote cancer hallmarks in cases of dysregulation of gene transcription and calcium-dependent pro-proliferative or anti-apoptotic mechanisms. Several studies have begun to elucidate the roles of TRPV1, TRPV6, TRPM8, and TRPC1 in cancer progression; however, no study has examined the expression profiles of human TRP channels in breast cancer on a large scale. This study focused on the expression and functionality of TRPV1, a nonselective cation channel that was found to be expressed in different carcinoma tissues. Next-generation sequencing analyses revealed the expression of TRPV1 in several native breast cancer tissues, which was subsequently validated via reverse transcriptase-polymerase chain reaction. Activation of TRPV1 by its ligand capsaicin was associated with the growth inhibition of some cancer cell types; however, the signaling components involved are complex. In this study, stimulation by the TRPV1 agonist, capsaicin, of SUM149PT cells, a model system for the most aggressive breast cancer subtype, triple-negative breast cancer, led to intracellular calcium signals that were diminished by the specific TRPV1 antagonist, capsazepin. Activation of TRPV1 by capsaicin caused significant inhibition of cancer cell growth and induced apoptosis and necrosis. In conclusion, the current study revealed the expression profiles of human TRP channels in 60 different breast cancer tissues and cell lines and furthermore validated the antitumor activity of TRPV1 against SUM149PT breast cancer cells, indicating that activation of TRPV1 could be used as a therapeutic target, even in the most aggressive breast cancer types.
Collapse
Affiliation(s)
- Lea V Weber
- Department of Cell Physiology, Ruhr-University Bochum, Bochum
| | | | | | | | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Christian Becker
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum
| |
Collapse
|
16
|
Yang R, Tavares MT, Teixeira SF, Azevedo RA, C Pietro D, Fernandes TB, Ferreira AK, Trossini GHG, Barbuto JAM, Parise-Filho R. Toward chelerythrine optimization: Analogues designed by molecular simplification exhibit selective growth inhibition in non-small-cell lung cancer cells. Bioorg Med Chem 2016; 24:4600-4610. [PMID: 27561984 DOI: 10.1016/j.bmc.2016.07.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/30/2023]
Abstract
A series of novel chelerythrine analogues was designed and synthesized. Antitumor activity was evaluated against A549, NCI-H1299, NCI-H292, and NCI-H460 non-small-cell lung cancer (NSCLC) cell lines in vitro. The selectivity of the most active analogues and chelerythrine was also evaluated, and we compared their cytotoxicity in NSCLC cells and non-tumorigenic cell lines, including human umbilical vein endothelial cells (HUVECs) and LL24 human lung fibroblasts. In silico studies were performed to establish structure-activity relationships between chelerythrine and the analogues. The results showed that analogue compound 3f induced significant dose-dependent G0/G1 cell cycle arrest in A549 and NCI-H1299 cells. Theoretical studies indicated that the molecular arrangement and electron characteristics of compound 3f were closely related to the profile of chelerythrine, supporting its activity. The present study presents a new and simplified chelerythrinoid scaffold with enhanced selectivity against NSCLC tumor cells for further optimization.
Collapse
Affiliation(s)
- Rosania Yang
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP 5508-000, Brazil
| | - Maurício T Tavares
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP 5508-000, Brazil
| | - Sarah F Teixeira
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1730, São Paulo, SP 05508-900, Brazil
| | - Ricardo A Azevedo
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1730, São Paulo, SP 05508-900, Brazil
| | - Diego C Pietro
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP 5508-000, Brazil
| | - Thais B Fernandes
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP 5508-000, Brazil
| | - Adilson K Ferreira
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1730, São Paulo, SP 05508-900, Brazil
| | - Gustavo H G Trossini
- Laboratory of Experimental and Computational Integrated Techniques (LITEC), Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP 5508-000, Brazil
| | - José A M Barbuto
- Laboratory of Tumor Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1730, São Paulo, SP 05508-900, Brazil; Cell and Molecular Therapy Center NUCEL/NETCEM, Faculty of Medicine, University of São Paulo, Rua Pangaré, São Paulo, SP 05360-120, Brazil
| | - Roberto Parise-Filho
- Laboratory of Design and Synthesis of Bioactive Substances (LAPESSB), Department of Pharmacy, Faculty of Pharmaceutical Science, University of São Paulo, Av. Prof. Lineu Prestes, 580, São Paulo, SP 5508-000, Brazil.
| |
Collapse
|
17
|
Basith S, Cui M, Hong S, Choi S. Harnessing the Therapeutic Potential of Capsaicin and Its Analogues in Pain and Other Diseases. Molecules 2016; 21:molecules21080966. [PMID: 27455231 PMCID: PMC6272969 DOI: 10.3390/molecules21080966] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/27/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022] Open
Abstract
Capsaicin is the most predominant and naturally occurring alkamide found in Capsicum fruits. Since its discovery in the 19th century, the therapeutic roles of capsaicin have been well characterized. The potential applications of capsaicin range from food flavorings to therapeutics. Indeed, capsaicin and few of its analogues have featured in clinical research covered by more than a thousand patents. Previous records suggest pleiotropic pharmacological activities of capsaicin such as an analgesic, anti-obesity, anti-pruritic, anti-inflammatory, anti-apoptotic, anti-cancer, anti-oxidant, and neuro-protective functions. Moreover, emerging data indicate its clinical significance in treating vascular-related diseases, metabolic syndrome, and gastro-protective effects. The dearth of potent drugs for management of such disorders necessitates the urge for further research into the pharmacological aspects of capsaicin. This review summarizes the historical background, source, structure and analogues of capsaicin, and capsaicin-triggered TRPV1 signaling and desensitization processes. In particular, we will focus on the therapeutic roles of capsaicin and its analogues in both normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Shaherin Basith
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Minghua Cui
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Sunhye Hong
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| | - Sun Choi
- National Leading Research Laboratory (NLRL) of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
18
|
Melo TS, Gattass CR, Soares DC, Cunha MR, Ferreira C, Tavares MT, Saraiva E, Parise-Filho R, Braden H, Delorenzi JC. Oleanolic acid (OA) as an antileishmanial agent: Biological evaluation and in silico mechanistic insights. Parasitol Int 2016; 65:227-37. [PMID: 26772973 DOI: 10.1016/j.parint.2016.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/23/2015] [Accepted: 01/03/2016] [Indexed: 12/12/2022]
Abstract
Although a worldwide health problem, leishmaniasis is considered a highly neglected disease, lacking efficient and low toxic treatment. The efforts for new drug development are based on alternatives such as new uses for well-known drugs, in silico and synthetic studies and naturally derived compounds. Oleanolic acid (OA) is a pentacyclic triterpenoid widely distributed throughout the Plantae kingdom that displays several pharmacological activities. OA showed potent leishmancidal effects in different Leishmania species, both against promastigotes (IC(50 L. braziliensis) 30.47 ± 6.35 μM; IC(50 L. amazonensis) 40.46 ± 14.21 μM; IC(50 L. infantum) 65.93 ± 15.12 μM) and amastigotes (IC(50 L. braziliensis) 68.75 ± 16.55 μM; IC(50 L. amazonensis) 38.45 ± 12.05 μM; IC(50 L. infantum) 64.08 ± 23.52 μM), with low cytotoxicity against mouse peritoneal macrophages (CC(50) 235.80 ± 36.95 μM). Moreover, in silico studies performed to evaluate OA molecular properties and to elucidate the possible mechanism of action over the Leishmania enzyme sterol 14α-demethylase (CYP51) suggested that OA interacts efficiently with CYP51 and could inhibit the ergosterol synthesis pathway. Collectively, these data indicate that OA is a good candidate as leading compound for the development of a new leishmaniasis treatment.
Collapse
Affiliation(s)
- Tahira Souza Melo
- Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, Brazil
| | - Cerli Rocha Gattass
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Deivid Costa Soares
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Micael Rodrigues Cunha
- Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, Brazil; Laboratório de Planejamento e Síntese de Substâncias Bioativas (LAPESSB), Universidade de São Paulo, São Paulo, Brazil
| | - Christian Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maurício Temotheo Tavares
- Laboratório de Planejamento e Síntese de Substâncias Bioativas (LAPESSB), Universidade de São Paulo, São Paulo, Brazil
| | - Elvira Saraiva
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto Parise-Filho
- Laboratório de Planejamento e Síntese de Substâncias Bioativas (LAPESSB), Universidade de São Paulo, São Paulo, Brazil
| | - Hannah Braden
- Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, Brazil; Wright State University, Dayton, OH, United States of America
| | - Jan Carlo Delorenzi
- Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, Brazil.
| |
Collapse
|