1
|
Yi Q, Xie W, Sun W, Sun W, Liao Y. A Concise Review of MicroRNA-383: Exploring the Insights of Its Function in Tumorigenesis. J Cancer 2022; 13:313-324. [PMID: 34976192 PMCID: PMC8692686 DOI: 10.7150/jca.64846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that commonly have 18-22 nucleotides and play important roles in the regulation of gene expression via directly binding to the 3'-UTR of target mRNAs. Approximately 50% of human genes are regulated by miRNAs and they are involved in many human diseases, including various types of cancers. Recently, microRNA-383 (miR-383) has been identified as being aberrantly expressed in multiple cancers, such as malignant melanoma, colorectal cancer, hepatocellular cancer, and glioma. Increasing evidence suggests that miR-383 participates in tumorigenic events including proliferation, apoptosis, invasion, and metastasis as well as drug resistance. Although downstream targets including CCND1, LDHA, VEGF, and IGF are illustrated to be regulated by miR-383, its roles in carcinogenesis are still ambiguous and the underlying mechanisms are still unclear. Herein, we review the latest studies on miR-383 and summarize its functions in human cancers and other diseases. The goal of this review is to provide new strategies for targeted therapy and further investigations.
Collapse
Affiliation(s)
- Qian Yi
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China.,Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan province 646099, P.R. China.,Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan province 646099, P.R. China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China.,Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Yi Liao
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
2
|
Xu H, Zhu X, Shi L, Lin N, Li X. miR-383-5p inhibits human malignant melanoma cells function via targeting CENPF. Reprod Biol 2021; 21:100535. [PMID: 34274651 DOI: 10.1016/j.repbio.2021.100535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022]
Abstract
Human malignant melanoma (MM), is a type of skin cancer with high morbidity and mortality. In this study, we investigated the role of miR-383-5p in human MM cells in vitro. miR-383-5p expression was downregulated in MM cell lines compared with the human normal melanocyte cell line, and miR-383-5p overexpression inhibited the proliferation, migration, and invasion of M14 and A375 cells. Furthermore, miR-383-5p was able to effectively bind to the 3'UTR of CENPF mRNA. miR-383-5p expression was negatively correlated with CENPF expression and miR-383-5p overexpression inhibited CENPF protein expression in M14 and A375 cells. The overexpression of CENPF could effectively rescue the inhibitory effect on proliferation and invasion caused by miR-383-5p. Additionally, using publicly available databases, we showed that CENPF expression was upregulated in human MM tissues and could predict the prognosis of MM. In conclusion, miR-383-5p acts as a tumor suppressor in human MM by targeting CENPF, suggesting CENPF as a potential therapeutic target for human MM.
Collapse
Affiliation(s)
- Haiting Xu
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xuwei Zhu
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Li Shi
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Nan Lin
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China
| | - Xiaoyang Li
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, No.109 Xueyuan Western Road, Wenzhou, Zhejiang, 325027, PR China.
| |
Collapse
|
3
|
Unraveling the blood transcriptome after real-life exposure of Wistar-rats to PM2.5, PM1 and water-soluble metals in the ambient air. Toxicol Rep 2020; 7:1469-1479. [PMID: 33194559 PMCID: PMC7645421 DOI: 10.1016/j.toxrep.2020.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Development of a “real-life” exposure system to ambient PM1 and PM2.5 particles for Wistar rats. Blood transcriptome analysis identified differentially expressed genes as candidate biomarkers in PM1 and PM2.5 groups. Pathway analysis revealed differentially regulated gene expression in inflammation signaling. Identification of candidate metals for possible correlation with the identified candidate genes leading to the development of AOPs.
Exposure to particulate matter (PM) is one of the most important environmental issues in Europe with major health impact. Various sizes of PM are suspended in the atmosphere and contributes to ambient air pollution. The current study aimed to explore the differential gene expression in blood, and the effect on the respective biological signaling pathways in Wistar rats, after exposure to PM2.5 and PM1 ambient air particles for an eight-week period. A control group was included with animals breathing non-filtered atmospheric air. In parallel, filtered PM2.5 and PM1 was collected in separate samplers. The results after whole genome microarray analysis showed 23 differentially expressed genes (DEGs) between control and PM2.5 group. In addition, pairwise comparison between control and PM1 group displayed 5635 DEGs linked to 69 biological pathways involved in inflammatory response, cell cycle and carcinogenicity. The smaller the size of the inhaled particles, the more gene alterations are triggered compared to non-filtered air group. More specifically, in inflammation signaling procedures differentially regulated gene expression was shown for interleukin-4 (IL-4), IL-7, IL-1, IL-5, IL-9, IL-6 and IL-2. We have identified that RASGFR1, TRIM65, TRIM33, PLEKHB1, CAR4, S100A8, S100A9, ALPL, NP4 and the PROK2 genes are potential targets for the development of adverse outcome pathways (AOPs) due to “real-life” exposure of Wistar rats. Particle measurements during the exposure period showed elevated concentrations of Fe, Mn and Zn in both PM1 and PM2.5 filter fractions, and of Cu in PM2.5. In addition, water-soluble concentration of metals showed significant differences between PM1 and PM2.5 fractions for V, Zn, As, Pb and Mn. In summary, in this study specific gene biomarkers of exposure to ambient air have been identified and heavy metals that are possibly linked to their altered regulation have been found. The results of this research will pave the way for the development of novel AOPs concerning the health effects of the environmental pollution.
Collapse
|
4
|
Juengpanich S, Topatana W, Lu C, Staiculescu D, Li S, Cao J, Lin J, Hu J, Chen M, Chen J, Cai X. Role of cellular, molecular and tumor microenvironment in hepatocellular carcinoma: Possible targets and future directions in the regorafenib era. Int J Cancer 2020; 147:1778-1792. [PMID: 32162677 DOI: 10.1002/ijc.32970] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/02/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) remains as one of the major causes of cancer-related mortality, despite the recent development of new therapeutic options. Regorafenib, an oral multikinase inhibitor, is the first systemic therapy that has a survival benefit for patients with advanced HCC that have a poor response to sorafenib. Even though regorafenib has been approved by the FDA, the clinical trial for regorafenib treatment does not show significant improvement in overall survival. The impaired efficacy of regorafenib caused by various resistance mechanisms, including epithelial-mesenchymal transitions, inflammation, angiogenesis, hypoxia, oxidative stress, fibrosis and autophagy, still needs to be resolved. In this review, we provide insight on regorafenib microenvironmental, molecular and cellular mechanisms and interactions in HCC treatment. The aim of this review is to help physicians select patients that would obtain the maximal benefits from regorafenib in HCC therapy.
Collapse
Affiliation(s)
- Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Lu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Daniel Staiculescu
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jiacheng Lin
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiang Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, Hangzhou, China.,School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Fan L, An G, Wang S, Chen X, Liu Y, Liu Z, Ma Q, Wang J. Circular RNA Expression Profiling and Selection of Key Circular RNAs in the Hypothalamus of Heat-Acclimated Rats. Front Physiol 2019; 10:1112. [PMID: 31555146 PMCID: PMC6722210 DOI: 10.3389/fphys.2019.01112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/12/2019] [Indexed: 12/31/2022] Open
Abstract
Circular RNAs (circRNAs) have vital roles in great variety of biological processes. However, expression levels and functions of circRNAs related to heat acclimation (HA) are poorly understood. This study is the first time an in-depth circRNA expression profiling were used to investigate circRNA–miRNA interactions in HA rats in order to further comprehend the mechanisms underlying HA. CircRNA expression profile was performed in rats’ hypothalamus of HA and control group with microarray assays and their functions were predicted by using Bioinformatics analysis. Differential circRNAs and their regulated downstream miRNAs and mRNAs were quantitatively validated by means of quantitative polymerase chain reaction in real-time (RT-qPCR). Enzyme-linked immunosorbent assay (ELISA) was then applied to predict the expression of proteins. In total, 53 circRNAs were expressed distinctively between the HA and Control; up- and down-regulation of circRNAs were 28 and 25, respectively, in HA (fold change > 1.5, P < 0.05). Three circRNAs and two miRNAs and three predicted mRNAs were obviously regulated after validated by RT-qPCR in HA rats. Two proteins expression were proportional to their mRNA changes. Further analysis demonstrates that circRNAs closest to HA can be categorized into three signal pathways: including rno_circRNA_014301-vs-rno-miR-3575-vs-Hif-1α, rno_circRNA_014301-vs-rno-miR-3575-vs-Lppr4, and rno_circRNA_010393-vs-rno-miR-20b-3p-vs-Mfap4 in hypoxia response pathways, substance/energy metabolism, and inflammatory response pathways. Our findings implicate that many circRNAs regulate expressions of genes that interact with each other to exert their functions during HA.
Collapse
Affiliation(s)
- Lijun Fan
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China.,Department of Human Movement Science, Tianjin University of Sport, Tianjin, China
| | - Gaihong An
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shang Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuewei Chen
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Ying Liu
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhifeng Liu
- Department of Intensive Care Medicine, General Hospital of Southern Theatre Command of People's Liberation Army, Guangzhou, China
| | - Qiang Ma
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jing Wang
- Department of Operational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
6
|
Garten A, Grohmann T, Kluckova K, Lavery GG, Kiess W, Penke M. Sorafenib-Induced Apoptosis in Hepatocellular Carcinoma Is Reversed by SIRT1. Int J Mol Sci 2019; 20:ijms20164048. [PMID: 31430957 PMCID: PMC6719220 DOI: 10.3390/ijms20164048] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Sorafenib is a multi-kinase inhibitor and one of the few systemic treatment options for patients with advanced hepatocellular carcinomas (HCCs). Resistance to sorafenib develops frequently and could be mediated by the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin (SIRT)1. We aimed to test whether sorafenib efficacy is influenced by cellular NAD levels and NAD-dependent SIRT1 function. We analyzed sorafenib effects on apoptosis induction, NAD salvage, mitochondrial function, and related signaling pathways in HCC cell lines (HepG2, Hep3B, und HUH7) overexpressing SIRT1 or supplemented with the NAD metabolite nicotinamide mononucleotide (NMN) compared to controls. Treatment of HCC cell lines with sorafenib dose-dependently induced apoptosis and a significant decrease in cellular NAD concentrations. The SIRT1 protein was downregulated in HUH7 cells but not in Hep3B cells. After sorafenib treatment, mitochondrial respiration in permeabilized cells was lower, citrate synthase activity was attenuated, and cellular adenosine triphosphate (ATP) levels were decreased. Concomitant to increased phosphorylation of adenosine monophosphate (AMP)-activated protein kinase (AMPK), sorafenib treatment led to decreased activity of the mechanistic target of rapamycin (mTOR), indicative of energy deprivation. Transient overexpression of SIRT1, as well as NAD repletion by NMN, decreased sorafenib-induced apoptosis. We can, therefore, conclude that sorafenib influences the NAD/SIRT1/AMPK axis. Overexpression of SIRT1 could be an underlying mechanism of resistance to sorafenib treatment in HCC.
Collapse
Affiliation(s)
- Antje Garten
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany.
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Theresa Grohmann
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany
| | - Katarina Kluckova
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Gareth G Lavery
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Wieland Kiess
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany
| | - Melanie Penke
- Center for Pediatric Research Leipzig (CPL), University Hospital for Children & Adolescents, Leipzig University, Liebigstr. 19, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Biostatistics mining associated method identifies AKR1B10 enhancing hepatocellular carcinoma cell growth and degenerated by miR-383-5p. Sci Rep 2018; 8:11094. [PMID: 30038373 PMCID: PMC6056456 DOI: 10.1038/s41598-018-29271-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/25/2018] [Indexed: 01/10/2023] Open
Abstract
Previous studies have reported that the aberrantly expressed AKR1B10 is associated with many cancer development, however the functional roles of AKR1B10 and its regulatory mechanisms in hepatocellular carcinoma (HCC) have been limited studied. In this project, we identified AKR1B10 functional as an oncogene in HCC through tumor/normal human tissue comparison from both GEO microarray and TCGA RNAseq dataset. Further experimental validations from three HCC cell lines (SMMC-7721, HePG2 and HeP3B) also suggested the ontogenetic functions of AKR1B10 in HCC tumor growth. By knocking down AKR1B10 through shRNA in HCC HeP3B cells, we showed it significantly induced cell cycle arrest and inhibited cell growth. Interestingly, integrative analysis of TCGA RNAseq data and miRNA-seq data predicted that miR-383-5p, a novel post-transcriptional tumor suppressor, is negatively associated with AKR1B10 expression. To further investigate the role of miR-383-5p in regulating AKR1B10 in HCC, we performed Dual-luciferase reporter assay experiments. Results showed that miR-383-5p is an upstream modulator targeting AKR1B10 in the post-transcriptional stage. Thus, we report AKR1B10 modulated regulated by miR-383-5p, promotes HCC tumor progress, and could be potentially a therapeutic target for precision medicine in HCC.
Collapse
|
8
|
Kanthaje S, Makol A, Chakraborti A. Sorafenib response in hepatocellular carcinoma: MicroRNAs as tuning forks. Hepatol Res 2018; 48:5-14. [PMID: 29055114 DOI: 10.1111/hepr.12991] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/08/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Abstract
Hepatocellular carcinoma (HCC) is the primary liver malignancy that contributes towards the second most common cause of cancer-related mortality. The targeted chemotherapeutic agent, sorafenib, is known to show a statistically significant but limited overall survival advantage in advanced HCC. However, the individual patient response towards sorafenib varies drastically, with most experiencing stable disease and few with partial response; complete response is very rare. Progressive disease despite the treatment is also evident in many patients, indicating drug resistance. These varied responses have been linked with the modulation of several intracellular signaling pathways. Notably, the regulation of these pathways through diverse operating biomolecules, including microRNAs (miRNAs), is the focus of recent studies. MicroRNAs are tiny, non-coding RNA molecules that regulate the expression of several target genes. In addition, miRNAs are known to play a role in the progression of HCC carcinogenesis. Interestingly, miRNAs have also been identified to play differential roles in terms of sorafenib response in HCC such as biomarkers and functional modulation of cellular response to sorafenib, hence, they are also being therapeutically evaluated. This review outlines the role of reported miRNAs in different aspects of sorafenib response in HCC.
Collapse
Affiliation(s)
- Shruthi Kanthaje
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankita Makol
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anuradha Chakraborti
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
9
|
Wang W, Yang J, Yu F, Li W, Wang L, Zou H, Long X. MicroRNA-122-3p inhibits tumor cell proliferation and induces apoptosis by targeting Forkhead box O in A549 cells. Oncol Lett 2017; 15:2695-2699. [PMID: 29434994 DOI: 10.3892/ol.2017.7577] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/12/2017] [Indexed: 11/06/2022] Open
Abstract
The imbalance between cell proliferation and apoptosis was implicated to serve key roles in cancer pathogenesis. The characteristics of microRNAs (miRNAs/miRs) have attracted much attention in research focusing on cancer pathogenesis in recent years. miR-122-3p has been reported to be associated with a number of disease processes and pathogenesis, including lung cancer. The present study aimed to investigate the association of miR-122-3p expression level with cell proliferation and apoptosis in a lung cancer cell line. A549 cells were transfected with miR-122-3p to interrupt the expression of miR-122-3p. Subsequently, MTT and BrdU assay, and western blot were used to analyze the influence of miR-122-3p on lung cancer cell proliferation, cell viability and its underlying mechanism. The present study revealed that, by targeting p27, overexpression of miR-122-3p inhibited cell proliferation in lung cancer. Furthermore, the cell apoptosis analysis suggested that overexpression of miR-122-3p was able to inhibit cell apoptosis by targeting Forkhead box O. These findings suggest that miR-122-3p may be associated with the pathology and progression of lung cancer and be a new therapeutic target for this disease.
Collapse
Affiliation(s)
- Wen Wang
- Department of Cardio-Thoracic Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China.,Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jinsong Yang
- Department of Cardio-Thoracic Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Fenglei Yu
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wenjie Li
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Li Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Haoyu Zou
- Department of Cardio-Thoracic Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| | - Xia Long
- Department of Cardio-Thoracic Surgery, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
10
|
Duan DM, Dong X, Tu Y, Liu P. A microarray study of chronic unpredictable mild stress rat blood serum with electro-acupuncture intervention. Neurosci Lett 2016; 627:160-7. [PMID: 27264487 DOI: 10.1016/j.neulet.2016.05.054] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 12/21/2022]
Abstract
In the present study, we investigated the changes of microRNA (miRNA) expression upon depression and electro-acupuncture (EA) intervention in chronic unpredictable mild stress (CUMS) rats using microarray analysis. Results showed that EA intervention remarkably improved behavioral indexes in terms of crossing number, rearing number, sucrose preference and body weight of CUMS rats. Microarray analysis revealed that a total of 153 differentially expressed miRNAs were regulated by CUMS, and the expression of 180 differentially expressed miRNAs was changed after EA intervention. Among these miRNAs, two miRNAs were significantly up-regulated and four miRNAs were significantly down-regulated by CUMS. Moreover, four miRNAs were significantly up-regulated and 12 miRNAs were significantly down-regulated after EA intervention. The expressions of miR-383-5p and miR-764-5p were up-regulated after CUMS, while their expressions were down-regulated by EA intervention. Further analysis showed that 1260 possible target genes were predicted for miR-383-5p and miR-764-5p, and 97 pathways and 137 gene ontology (GO) were involved. Among these pathways and GO, about 20 pathways and 21 GO were related to depression. Changes of miR-383-5p and miR-764-5p indicated that EA might exert its therapeutic effect on depression through promoting the neurotrophy and inhibiting the abnormal apoptosis of neurons as well as other correlative signal pathways. In conclusion, our present study enriched the understanding of pathological process of depression and revealed possible mechanisms of EA on depression.
Collapse
Affiliation(s)
- Dong Mei Duan
- Department of Traditional Chinese Medicine of South Building, Chinese PLA General Hospital, Beijing 100853, China.
| | - Xianzhe Dong
- Department of Clinical Pharmacology, General Hospital of Chinese PLA, Beijing 100853, China
| | - Ya Tu
- School of Acupuncture and Moxibustion, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ping Liu
- Department of Clinical Pharmacology, General Hospital of Chinese PLA, Beijing 100853, China
| |
Collapse
|
11
|
Xiong J, Yang H, Luo W, Shan E, Liu J, Zhang F, Xi T, Yang J. The anti-metastatic effect of 8-MOP on hepatocellular carcinoma is potentiated by the down-regulation of bHLH transcription factor DEC1. Pharmacol Res 2016; 105:121-33. [PMID: 26808085 DOI: 10.1016/j.phrs.2016.01.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 01/22/2023]
Abstract
Despite progress in diagnostics and treatment of hepatocellular carcinoma (HCC), its prognosis remains poor. 8-Methoxypsoralen (8-MOP), a formerly considered photosensitizing agent, has been reported to induce cell apoptosis in HepG2 cells in a modest way when used alone. In this study, it was demonstrated that 8-MOP inhibited HCC HepG2 cells and SMMC-7721 cells migratory and invasive potentiality, as well as modulated the expression of various EMT-associated genes such as enhancing E-cadherin and reducing N-cadherin, vimentin, α-SMA and MMP9 in a concentration-dependent way. Differentiated embryonic chondrocyte-expressed gene 1, DEC1 (BHLHE40/Stra13/Sharp2), is a basic helix-loop-helix (bHLH) transcription factor that regulates cell growth, differentiation, apoptosis and tumorigenesis. 8-MOP suppressed the expression of DEC1 in a concentration- and time-dependent manner. Overexpression of DEC1 endorsed the HepG2 cells a higher metastatic phenotype, while totally abolished 8-MOP-repressed metastatic capability. In the meanwhile, overexpression of DEC1 promoted EMT process by suppressing expression of epithelial protein and enhancing expression of mesenchymal proteins, while potently antagonized the regulation of EMT-associated genes by 8-MOP. In vivo experiments revealed that the treatment of 8-MOP (5 or 20mg/kg) resulted in a dose-dependent decreases in the lung metastasis of hepatoma H22-transplanted mice without any obvious toxicity to the organs, as well as increased expression of E-cadherin in lung tissues. Consistently, 8-MOP down-regulated the expression of DEC1 in the lungs of tumor-bearing mice, which further confirms that DEC1 was correlated with 8-MOP-induced anti-metastatic effect. The present findings establish a function for DEC1 in HCC metastatic progression and suggest its candidacy as a novel target for the anti-metastasis effect of 8-MOP.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Huan Yang
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Wenjing Luo
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Enfang Shan
- Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Jie Liu
- Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China
| | - Feng Zhang
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China.
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
12
|
Zhang H, Qu Y, Duan J, Deng T, Liu R, Zhang L, Bai M, Li J, Zhou L, Ning T, Li H, Ge S, Li H, Ying G, Huang D, Ba Y. Integrated analysis of the miRNA, gene and pathway regulatory network in gastric cancer. Oncol Rep 2015; 35:1135-46. [PMID: 26719093 DOI: 10.3892/or.2015.4451] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 10/26/2015] [Indexed: 11/05/2022] Open
Abstract
Gastric cancer is one of the most common malignant tumors worldwide; however, the efficacy of clinical treatment is limited. MicroRNAs (miRNAs) are a class of small non-coding RNAs that have been reported to play a key role in the development of cancer. They also provide novel candidates for targeted therapy. To date, in-depth studies on the molecular mechanisms of gastric cancer involving miRNAs are still absent. We previously reported that 5 miRNAs were identified as being significantly increased in gastric cancer, and the role of these miRNAs was investigated in the present study. By using bioinformatics tools, we found that more than 4,000 unique genes are potential downstream targets of gastric cancer miRNAs, and these targets belong to the protein class of nucleic acid binding, transcription factor, enzyme modulator, transferase and receptor. Pathway mapping showed that the targets of gastric cancer miRNAs are involved in the MAPK signaling pathway, pathways in cancer, the PI3K-Akt signaling pathway, the HTLV-1 signaling pathway and Ras signaling pathway, thus regulating cell growth, differentiation, apoptosis and metastasis. Analysis of the pathways related to miRNAs may provides potential drug targets for future therapy of gastric cancer.
Collapse
Affiliation(s)
- Haiyang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yanjun Qu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jingjing Duan
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Ting Deng
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Rui Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Le Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Ming Bai
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Jialu Li
- Department of Gastroenterology, Tianjin First Center Hospital, Tianjin 300192, P.R. China
| | - Likun Zhou
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Tao Ning
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Hongli Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Shaohua Ge
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Hua Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Guoguang Ying
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Dingzhi Huang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| | - Yi Ba
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, P.R. China
| |
Collapse
|